1. 2020
  2. Koster, de, A., Spenader, J., Dotlacil, J., & Hendriks, P. (2020). A Multiple Cue Explanation of Collective Interpretations with 'each'. In M. M. Brown, & A. Kohut (Eds.), BUCLD 44: Proceedings of the 44th annual Boston University Conference on Language Development (Vol. 1, pp. 252-265). Cascadilla Press.
  3. Javadpour, A., Rezaei Badafshani, S., Li, K. C., & Wang, G. (2020). A Scalable Feature Selection and Opinion Miner Using Whale Optimization Algorithm. In S. Thampi (Ed.), Advances in Signal Processing and Intelligent Recognition Systems (pp. 237 - 247). Singapore: Springer. https://doi.org/10.1007/978-981-15-4828-4_20
  4. van Eemeren, F. H., Garssen, B., Krabbe, E. C. W., Snoeck Henkemans, A. F., Verheij, B., & Wagemans, J. H. M. (2020). Argumentation and Artificial Intelligence. In Handbook of Argumentation Theory (pp. 1-51). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-6883-3_11-2
  5. Korecki, M., Gattinger, M., & Verbrugge, R. (2020). Balancing Selfishness and Efficiency in Mobile Ad-hoc Networks: An Agent-based Simulation. In Proceedings of the 12th International Conference on Agents and Artificial Intelligence : ICAART (2020) (Vol. 1, pp. 161-168). SCITEPRESS – Science and Technology Publications. https://doi.org/10.5220/0008915101610168
  6. Münch, M., Raab, C., Biehl, M., & Schleif, F-M. (2020). Structure Preserving Encoding of Non-euclidean Similarity Data. In M. De Marsico, G. Sanniti di Baja, & A. Fred (Eds.), Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2020), (Vol. 1, pp. 43-51). SCITEPRESS – Science and Technology Publications. https://doi.org/10.5220/0008955100430051
  7. Wang, X., Liu, S., Ban, X., Xu, Y., Zhou, J., & Kosinka, J. (2020). Robust turbulence simulation for particle-based fluids using the Rankine vortex model. In Proceedings - 2020 IEEE Conference on Virtual Reality and 3D User Interfaces, VRW 2020 (pp. 657-658). [9090460] (Proceedings - 2020 IEEE Conference on Virtual Reality and 3D User Interfaces, VRW 2020). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/VRW50115.2020.00179
  8. Rizky Pratama, A., Lazovik, A., & Aiello, M. (2020). Office Multi-Occupancy Detection using BLE Beacons and Power Meters. In 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON): Proceedings (pp. 0440-0448). IEEE. https://doi.org/10.1109/UEMCON47517.2019.8993008
  9. Antonucci, A., & Tiotto, T. (2020). Approximate MMAP by Marginal Search. In FLAIRS-33: The 33rd International Conference of the Florida Artificial Intelligence Research Society: Proceedings (Proceedings of the AAAI Conference on Artificial Intelligence). arXiv.
  10. Georgievski, I., Fiorini, L., & Aiello, M. (2020). Towards Service-Oriented and Intelligent Microgrids. In N. Petkov, N. Strisciuglio, & C. M. Travieso-González (Eds.), APPIS 2020: 3rd International Conference on Applications of Intelligent System (pp. 1-6). [18] ACM New York, NY, USA . https://doi.org/10.1145/3378184.3378214
  11. Aarssen, R. T. A., & Van Der Storm, T. (2020). High-fidelity metaprogramming with separator syntax trees. In PEPM 2020: Proceedings of the 2020 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation, co-located with POPL 2020 (pp. 27-37). (PEPM 2020 - Proceedings of the 2020 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation, co-located with POPL 2020). Association for Computing Machinery, Inc. https://doi.org/10.1145/3372884.3373162
  12. Owomugisha, G., Nuwamanya, E., Quinn, J. A., Biehl, M., & Mwebaze, E. (2020). Early detection of plant diseases using spectral data. In N. Petkov, N. Strisciuglio, & C. M. Travieso-González (Eds.), APPIS 2020: Proceedings of the 3rd International Conference on Applications of Intelligent Systems, January 2020 (pp. 1-6). [4] (ACM International Conference Proceeding Series). New York: Association for Computing Machinery. https://doi.org/10.1145/3378184.3378222
  13. Shafiee Kamalabad, M., & Grzegorczyk, M. (2020). A new partially segment-wise coupled piece-wise linear regression model for statistical network structure inference. In M. Raposo, P. Ribeiro, S. Serio, A. Staiano, & A. Ciaramella (Eds.), Computational Intelligence Methods for Bioinformatics and Biostatistics: 15th International Meeting, CIBB 2018, Caparica, Portugal, September 6–8, 2018, Revised Selected Papers (pp. 139-152). (Lecture Notes in Bioinformatics; No. 1). Springer. https://doi.org/10.1007/978-3-030-34585-3
  14. Taghribi, A., Bunte, K., Mastropietro, M., Rijcke, S. D., & Tino, P. (2020). ASAP - A Sub-sampling Approach for Preserving Topological Structures. Manuscript submitted for publication. In M. Verleysen (Ed.), Proceedings of the 28th European Symposium on Artificial Neural Networks (ESANN) Ciaco - i6doc.com.
  15. Wijnbergen, P., & Trenn, S. (Accepted/In press). Impulse controllability of switched differential-algebraic equations. In Proceeding of ECC2020 (pp. 1561-1566)
  16. Lee, J. G., Berger, T., Trenn, S., & Shim, H. (2020). Utility of Edge-wise Funnel Coupling for Asymptotically Solving Distributed Consensus Optimization. In Proceeding of ECC 2020 (pp. 911-916). EUKA.
  17. Chen, X., Zeng, G., Kosinka, J., & Telea, A. (Accepted/In press). Visual Exploration of 3D Shape Databases via Feature Selection. In Proceedings IVAPP 2020
  18. 2019
  19. Trenn, S. (2019). Asymptotic tracking with funnel control. In J. Eberhardsteiner, & M. Schöberl (Eds.), 90th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM) (PAMM; Vol. 19, No. 1). Wiley. https://doi.org/10.1002/pamm.201900071
  20. Stoel, J., Van Der Storm, T., & Vinju, J. J. (2019). Allealle: Bounded relational model finding with unbounded data. In Onward! 2019 : Proceedings of the 2019 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software, co-located with SPLASH 2019 (pp. 46-61). (Onward! 2019 - Proceedings of the 2019 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software, co-located with SPLASH 2019). Association for Computing Machinery, Inc. https://doi.org/10.1145/3359591.3359726
  21. Soethout, T., Van Der Storm, T., & Vinju, J. J. (2019). Static local coordination avoidance for distributed objects. In AGERE 2019 - Proceedings of the 9th ACM SIGPLAN International Workshop on Programming Based on Actors, Agents, and Decentralized Control, co-located with SPLASH 2019 (pp. 21-30). Association for Computing Machinery, Inc. https://doi.org/10.1145/3358499.3361222
  22. Schaefer, I., Reichenbach, C., & Van Der Storm, T. (2019). Message from the Chairs. In GPCE 2019 : Proceedings of the 18th ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences, co-located with SPLASH 2019 (pp. III). Association for Computing Machinery, Inc.
  23. Mostard, W., Zijlema, B., & Wiering, M. (2019). Combining visual and contextual information for fraudulent online store classification. In Proceedings - 2019 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2019 (pp. 84-90). Association for Computing Machinery, Inc. https://doi.org/10.1145/3350546.3352504
  24. Strisciuglio, N., & Petkov, N. (2019). Trainable COPE Features for Sound Event Detection. In I. Nyström, Y. Hernández Heredia, & V. Milián Núñez (Eds.), Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications - 24th Iberoamerican Congress, CIARP 2019, Proceedings (pp. 599-609). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11896 ). Springer. https://doi.org/10.1007/978-3-030-33904-3_56
  25. Dal Canton, F., Wiering, M., & Quinten, V. (2019). Early Detection of Sepsis Induced Deterioration Using Machine Learning. In M. Atzmueller, & W. Duivestijn (Eds.), BNAIC 2018: Benelux Conference on Artificial Intelligence (pp. 1-15). (Communications in Computer and Information Science; Vol. 1021). Springer. https://doi.org/10.1007/978-3-030-31978-6
  26. Van Ditmarsch, H., Gattinger, M., Kokkinis, I., & Kuijer, L. B. (2019). Reachability of Five Gossip Protocols. In E. Filiot, R. Jungers, & I. Potapov (Eds.), Reachability Problems: RP 2019: International Conference on Reachability Problems (pp. 218-231). (Lecture Notes in Computer Science; Vol. 11674). Cham: Springer. https://doi.org/10.1007/978-3-030-30806-3_17
  27. Karastoyanova, D., & Stage, L. (2019). Provenance Holder: Bringing Provenance, Reproducibility and Trust to Flexible ScientificWorkflows and Choreographies. In Proceedings of Second Workshop on Security and Privacy-enhanced Business Process Management at BPM 2019 IEEE.
  28. Klint, P., Van Der Storm, T., & Vinju, J. (2019). Rascal, 10 years later. In Proceedings - 19th IEEE International Working Conference on Source Code Analysis and Manipulation, SCAM 2019 (pp. 139). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/SCAM.2019.00023
  29. Foggia, P., Saggese, A., Strisciuglio, N., Vento, M., & Vigilante, V. (2019). Detecting Sounds of Interest in Roads with Deep Networks. In E. Ricci, N. Sebe, S. Rota Bulò, C. Snoek, O. Lanz, & S. Messelodi (Eds.), Image Analysis and Processing – ICIAP 2019 - 20th International Conference, Proceedings (pp. 583-592). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11752 ). Springer Verlag. https://doi.org/10.1007/978-3-030-30645-8_53
  30. Wray, R., Taatgen, N., Lebiere, C., Pastra, K., Pirolli, P., Rosenbloom, P., ... Wiles, J. (2019). Functional knowledge requirements for interactive task learning. In K. Gluck, & J. Laird (Eds.), Interactive task learning: Humans, Robots, and Agents Acquiring New Tasks through Natural Interactions (pp. 19-51). ( Strüngmann Forum Reports; Vol. 26). The MIT Press.
  31. Leyva-Vallina, M., Strisciuglio, N., & Petkov, N. (2019). Place Recognition in Gardens by Learning Visual Representations: Data Set and Benchmark Analysis. In M. Vento, & G. Percannella (Eds.), Computer Analysis of Images and Patterns - 18th International Conference, CAIP 2019, Proceedings (pp. 324-335). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11678 ). Springer Verlag. https://doi.org/10.1007/978-3-030-29888-3_26
  32. Ayoobi, H., Cao, M., Verbrugge, L., & Verheij, B. (2019). Handling unforeseen failures using argumentation-based learning. In International Conference on Automation Science and Engineering (CASE) 2019 (pp. 1699-1704). (IEEE International Conference on Automation Science and Engineering; Vol. 2019-August). IEEE Computer Society. https://doi.org/10.1109/COASE.2019.8843207
  33. Toral Ruiz, A., Edman, L., Spenader, J., & Yeshmagambetova, G. (2019). Neural Machine Translation for English–Kazakh with Morphological Segmentation and Synthetic Data. In Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1) (Vol. 2, pp. 386-392). Forence, Italy: Association for Computational Linguistics (ACL).
  34. Zhang, X., & Wilkinson, M. H. F. (2019). Preventing Chaining in Alpha-Trees Using Gabor Filters. In B. Burgeth, A. Kleefeld, B. Naegel, N. Passat, & B. Perret (Eds.), Mathematical Morphology and Its Applications to Signal and Image Processing (pp. 268-280). (Lecture Notes in Computer Science; Vol. 11564). Springer. https://doi.org/10.1007/978-3-030-20867-7
  35. Grzegorczyk, M., & Husmeier, D. (2019). Modelling Non-homogeneous Dynamic Bayesian Networks with Piecewise Linear Regression Models. In D. Balding, I. Moltke, & J. Marioni (Eds.), Handbook of Statistical Genetics (4 ed., Vol. 2, pp. 899-931). John Wiley and Sons Inc.. https://doi.org/10.1002/9781119487845.ch32
  36. Veldman, A., Seubers, H., Hosseini Zahraei, S. M., Chang, X., Wellens, P. R., Plas, van der, P., & Helder, J. (2019). Computational methods for moving and deforming objects in extreme waves. In Proceedings of the ASME 38th International Conference on Ocean, Offshore and Arctic EngineeringOMAE2019June 9-14, 2019, Glasgow, Scotland [OMAE2019-96321] ASME.
  37. You, J., Trager, S., & Wilkinson, M. H. F. (2019). A Fast, Memory-Efficient Alpha-Tree Algorithm using Flooding and Tree Size Estimation. In B. Burgeth , A. Kleefeld , B. Naegel , N. Passat , & B. Perret (Eds.), Mathematical Morphology and Its Applications to Signal and Image Processing (pp. 256-267). (Lecture Notes in Computer Science; Vol. 11564). Cham: Springer. https://doi.org/10.1007/978-3-030-20867-7_20
  38. Spenader, J., & Roest, C. (2019). Facilitating Quantifier Acquisition: Training Can Eliminate Children's Spreading Errors. In BUCLD 43: Proceedings of the 43rd annual Boston University Conference on Language Development edited by Megan M. Brown and Brady Dailey (Vol. 2, pp. 653-666). Boston, USA: Cascadilla Press.
  39. Veldman, A., Seubers, H., Hosseini Zahraei, S. M., Chang, X., Wellens, P. R., Plas, van der, P., & Helder, J. (2019). The ComMotion project: Computational methods for moving and deforming objects in extreme waves. In Computational Methods inMarine Engineering MARINE2019 International Centre for Numerical Methods in Engineering (CIMNE).
  40. Mohades Kasaei, H. (2019). Interactive Open-Ended Object, Affordance and Grasp Learning for Robotic Manipulation. In IEEE/RSJ International Conference on Robotics and Automation (ICRA) IEEE.
  41. Bakker, J., & Bunte, K. (2019). Efficient learning of email similarities for customer support. In M. Verleysen (Ed.), 27th European Symposium on Artificial Neural Networks, ESANN 2019 (pp. 119-124). d-side publishing.
  42. Biehl, M., Caticha, N., Opper, M., & Villmann, T. (2019). Statistical Physics of Learning and Inference. In M. Verleysen (Ed.), Proc. European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning : ESANN 2019 Ciaco - i6doc.com.
  43. van Beers, F., Lindström, A., Okafor, E., & Wiering, M. (2019). Deep Neural Networks with Intersection over Union Loss for Binary Image Segmentation. In Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods (Vol. 1 ICPRAM, pp. 438-445). Prague: SciTePress. https://doi.org/10.5220/0007347504380445
  44. Ansó, N., Wiehe, A., Drugan, M., & Wiering, M. (2019). Deep Reinforcement Learning for Pellet Eating in Agar.io. In Proceedings of the 11th International Conference on Agents and Artificial Intelligence (Vol. 2, ICAART, pp. 123-133). Prague: SciTePress. https://doi.org/10.5220/0007360901230133
  45. Wolf, B., & van Netten, S. (2019). Training submerged source detection for a 2D fluid flow sensor array with Extreme Learning Machines. In Eleventh International Conference on Machine Vision (ICMV 2018) (Vol. 11041, pp. 1104126). SPIE.Digital Library. https://doi.org/10.1117/12.2522667
Previous 1 2 3 4 5 6 7 8 ...47 Next

ID: 61696742