1. 2019
  2. NIMA Consortium, & Annex: NIMA–Wellcome Trust Consortium for Neuroimmunology of Mood Disorders and Alzheimer's Disease (2019). Inflammatory biomarkers in Alzheimer's disease plasma. Alzheimer's and Dementia, 15(6), 776-787. https://doi.org/10.1016/j.jalz.2019.03.007
  3. Spenader, J., & Roest, C. (2019). Facilitating Quantifier Acquisition: Training Can Eliminate Children's Spreading Errors. In BUCLD 43: Proceedings of the 43rd annual Boston University Conference on Language Development edited by Megan M. Brown and Brady Dailey (Vol. 2, pp. 653-666). Boston, USA: Cascadilla Press.
  4. Ayoobi, H., Cao, M., Verbrugge, L., & Verheij, B. (Accepted/In press). Handling Unforeseen Failures Using Argumentation-Based Learning. In International Conference on Automation Science and Engineering (CASE) 2019 (pp. 1-8)
  5. Mohades Kasaei, H. (2019). Interactive Open-Ended Object, Affordance and Grasp Learning for Robotic Manipulation. In IEEE/RSJ International Conference on Robotics and Automation (ICRA) IEEE.
  6. Bakker, J., & Bunte, K. (2019). Efficient learning of email similarities for customer support. In M. Verleysen (Ed.), 27th European Symposium on Artificial Neural Networks, ESANN 2019 (pp. 119-124). d-side publishing.
  7. Biehl, M., Caticha, N., Opper, M., & Villmann, T. (2019). Statistical Physics of Learning and Inference. In M. Verleysen (Ed.), Proc. European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning : ESANN 2019 Ciaco - i6doc.com.
  8. Biehl, M. (2019). Supervised Learning - An Introduction: Lectures given at the 30th Canary Islands Winter School of Astrophysics. (Machine Learning Reports; Vol. 01/2019). Mittweida, Germany: Machine Learning Reports.
  9. Biehl, M., Abadi, F., Göpfert, C., & Hammer, B. (2019). Prototype-based classifiers in the presence of concept drift: A modelling framework. ArXiv e-prints, 1903.07273 (1903.07273 ), [1903.07273 ].
  10. van Beers, F., Lindström, A., Okafor, E., & Wiering, M. (2019). Deep Neural Networks with Intersection over Union Loss for Binary Image Segmentation. In Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods (Vol. 1 ICPRAM, pp. 438-445). Prague: SciTePress. https://doi.org/10.5220/0007347504380445
  11. Ansó, N., Wiehe, A., Drugan, M., & Wiering, M. (2019). Deep Reinforcement Learning for Pellet Eating in Agar.io. In Proceedings of the 11th International Conference on Agents and Artificial Intelligence (Vol. 2, ICAART, pp. 123-133). Prague: SciTePress. https://doi.org/10.5220/0007360901230133
  12. Wolf, B., & van Netten, S. (2019). Training submerged source detection for a 2D fluid flow sensor array with Extreme Learning Machines. In Eleventh International Conference on Machine Vision (ICMV 2018) (Vol. 11041, pp. 1104126). SPIE.Digital Library. https://doi.org/10.1117/12.2522667
Previous 1 2 3 4 5 6 7 8 ...111 Next

ID: 61696742