1. 2019
  2. Mostard, W., Zijlema, B., & Wiering, M. (2019). Combining visual and contextual information for fraudulent online store classification. In Proceedings - 2019 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2019 (pp. 84-90). Association for Computing Machinery, Inc. https://doi.org/10.1145/3350546.3352504
  3. van Vugt, M. (2019). Using reason to meditate: initial findings about the effects of analytical meditation on brain and behavior. Abstract from Landelijk Mindfulness Symposium, Nijmegen, Netherlands.
  4. Van Ditmarsch, H., Gattinger, M., Kokkinis, I., & Kuijer, L. B. (2019). Reachability of Five Gossip Protocols. In E. Filiot, R. Jungers, & I. Potapov (Eds.), Reachability Problems: RP 2019: International Conference on Reachability Problems (pp. 218-231). (Lecture Notes in Computer Science; Vol. 11674). Cham: Springer. https://doi.org/10.1007/978-3-030-30806-3_17
  5. Wray, R., Taatgen, N., Lebiere, C., Pastra, K., Pirolli, P., Rosenbloom, P., ... Wiles, J. (2019). Functional knowledge requirements for interactive task learning. In K. Gluck, & J. Laird (Eds.), Interactive task learning: Humans, Robots, and Agents Acquiring New Tasks through Natural Interactions (pp. 19-51). ( Strüngmann Forum Reports; Vol. 26). The MIT Press.
  6. Ayoobi, H., Cao, M., Verbrugge, L., & Verheij, B. (2019). Handling unforeseen failures using argumentation-based learning. In International Conference on Automation Science and Engineering (CASE) 2019 (pp. 1699-1704). (IEEE International Conference on Automation Science and Engineering; Vol. 2019-August). IEEE Computer Society. https://doi.org/10.1109/COASE.2019.8843207
  7. Toral Ruiz, A., Edman, L., Spenader, J., & Yeshmagambetova, G. (2019). Neural Machine Translation for English–Kazakh with Morphological Segmentation and Synthetic Data. In Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1) (Vol. 2, pp. 386-392). Forence, Italy: Association for Computational Linguistics (ACL).
  8. Spenader, J., & Roest, C. (2019). Facilitating Quantifier Acquisition: Training Can Eliminate Children's Spreading Errors. In BUCLD 43: Proceedings of the 43rd annual Boston University Conference on Language Development edited by Megan M. Brown and Brady Dailey (Vol. 2, pp. 653-666). Boston, USA: Cascadilla Press.
  9. Mohades Kasaei, H. (2019). Interactive Open-Ended Object, Affordance and Grasp Learning for Robotic Manipulation. In IEEE/RSJ International Conference on Robotics and Automation (ICRA) IEEE.
  10. van Beers, F., Lindström, A., Okafor, E., & Wiering, M. (2019). Deep Neural Networks with Intersection over Union Loss for Binary Image Segmentation. In Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods (Vol. 1 ICPRAM, pp. 438-445). Prague: SciTePress. https://doi.org/10.5220/0007347504380445
  11. Ansó, N., Wiehe, A., Drugan, M., & Wiering, M. (2019). Deep Reinforcement Learning for Pellet Eating in Agar.io. In Proceedings of the 11th International Conference on Agents and Artificial Intelligence (Vol. 2, ICAART, pp. 123-133). Prague: SciTePress. https://doi.org/10.5220/0007360901230133
  12. Wolf, B., & van Netten, S. (2019). Training submerged source detection for a 2D fluid flow sensor array with Extreme Learning Machines. In Eleventh International Conference on Machine Vision (ICMV 2018) (Vol. 11041, pp. 1104126). SPIE.Digital Library. https://doi.org/10.1117/12.2522667
  13. Boulogne, L., Dijkstra, K., & Wiering, M. (2019). Extra Domain Data Generation with Generative Adversarial Nets. In Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018 (pp. 1403-1410). (Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018; Vol. 13, No. 2). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/SSCI.2018.8628701
  14. van Vugt, M. K., Moye, A., Pollock, J., Johnson, B., Bonn-Miller, M. O., Gyatso, K., ... Fresco, D. M. (2019). Tibetan Buddhist monastic debate: Psychological and neuroscientific analysis of a reasoning-based analytical meditation practice. In Imagining the Brain: Episodes in the History of Brain Research (Progress in brain research). Elsevier. https://doi.org/10.1016/bs.pbr.2018.10.018
  15. Sillitti, A., Schomaker, L., Anakabe, J. F., Basurko, J., Dam, P., Ferreira, H., ... Zurutuza, U. (2019). Providing Proactiveness: Data Analysis Techniques Portfolios. In M. Albano, E. Jantunen, G. Papa, & U. Zurutuza (Eds.), The MANTIS Book : Cyber Physical System Based Proactive Collaborative Maintenance (pp. 145-238). Gistrup (DK): River Publishers.
  16. Bosnic, A., & Spenader, J. (2019). Acquisition Path of Distributive Markers in Serbian and Dutch: Evidence from an Act-Out Task. In M. M. Brown, & B. Dailey (Eds.), Proceedings of the 43rd Boston University Conference on Language Development (pp. 94-108). Somerville, MA: Cascadilla Press.
  17. Dijkstra, K., van de Loosdrecht, J., Schomaker, L. R. B., & Wiering, M. A. (2019). CentroidNet: A Deep Neural Network for Joint Object Localization and Counting. In U. Brefeld, E. Curry, E. Daly, B. MacNamee, A. Marascu, F. Pinelli, M. Berlingerio, ... N. Hurly (Eds.), ECML PKDD 2018: Machine Learning and Knowledge Discovery in Databases (pp. 585-601). ( Lecture Notes in Computer Science; Vol. 11053). Cham: Springer. https://doi.org/10.1007/978-3-030-10997-4_36
  18. Okafor, E. (2019). Deep learning for animal recognition. [Groningen]: University of Groningen.
  19. Ji, Y., van Rij, J., & Taatgen, N. (2019). Discoveries of the Algebraic Mind: A PRIMs Model. In Proceedings of 17th International conference on cognitive modeling
  20. Keshavarzi Zafarghandi, A., Verbrugge, R., & Verheij, B. (2019). Discussion Games for Preferred Semantics of Abstract Dialectical Frameworks. In G. Kern-Isberner, & Z. Ognjanović (Eds.), Symbolic and Quantitative Approaches to Reasoning with Uncertainty (pp. 62-73). (Lecture Notes in Computer Science ; Vol. 11726). Cham: Springer. https://doi.org/10.1007/978-3-030-29765-7_6
Previous 1 2 3 4 5 6 7 8 ...22 Next

ID: 32572