Acta Biomaterialia, 1742-7061

Journal

  1. 2019
  2. 2018
  3. 2017
  4. 2016
  5. Long, R. G., Buerki, A., Zysset, P., Eglin, D., Grijpma, D. W., Blanquer, S. B. G., ... Iatridis, J. C. (2016). Mechanical restoration and failure analyses of a hydrogel and scaffold composite strategy for annulus fibrosus repair. Acta Biomaterialia, 30, 116-125. https://doi.org/10.1016/j.actbio.2015.11.015
  6. 2015
  7. 2013
  8. Barbieri, D., Yuan, H., Luo, X., Fare, S., Grijpma, D. W., & de Bruijn, J. D. (2013). Influence of polymer molecular weight in osteoinductive composites for bone tissue regeneration. Acta Biomaterialia, 9(12), 9401-9413. https://doi.org/10.1016/j.actbio.2013.07.026
  9. Diban, N., Haimi, S., Bolhuis-Versteeg, L., Teixeira, S., Miettinen, S., Poot, A., ... Stamatialis, D. (2013). Hollow fibers of poly(lactide-co-glycolide) and poly(epsilon-caprolactone) blends for vascular tissue engineering applications. Acta Biomaterialia, 9(5), 6450-6458. https://doi.org/10.1016/j.actbio.2013.01.005
  10. 2012
  11. 2011
  12. Elomaa, L., Teixeira, S., Hakala, R., Korhonen, H., Grijpma, D. W., & Seppala, J. V. (2011). Preparation of poly(epsilon-caprolactone)-based tissue engineering scaffolds by stereolithography. Acta Biomaterialia, 7(11), 3850-3856. https://doi.org/10.1016/j.actbio.2011.06.039
  13. Liao, H., Walboomers, X. F., Habraken, W. J. E. M., Zhang, Z., Li, Y., Grijpma, D. W., ... Jansen, J. A. (2011). Injectable calcium phosphate cement with PLGA, gelatin and PTMC microspheres in a rabbit femoral defect. Acta Biomaterialia, 7(4), 1752-1759. https://doi.org/10.1016/j.actbio.2010.12.020
  14. 2010
  15. Melchels, F. P. W., Barradas, A. M. C., van Blitterswijk, C. A., de Boer, J., Feijen, J., & Grijpma, D. W. (2010). Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing. Acta Biomaterialia, 6(11), 4208-4217. https://doi.org/10.1016/j.actbio.2010.06.012
  16. Papenburg, B. J., Bolhuis-Versteeg, L. A. M., Grijpma, D. W., Feijen, J., Wessling, M., & Stamatialis, D. (2010). A facile method to fabricate poly(L-lactide) nano-fibrous morphologies by phase inversion. Acta Biomaterialia, 6(7), 2477-2483. https://doi.org/10.1016/j.actbio.2009.12.051
  17. Habraken, W. J. E. M., Liao, H. B., Zhang, Z., Wolke, J. G. C., Grijpma, D. W., Mikos, A. G., ... Jansen, J. A. (2010). In vivo degradation of calcium phosphate cement incorporated into biodegradable microspheres. Acta Biomaterialia, 6(6), 2200-2211. https://doi.org/10.1016/j.actbio.2009.12.028
  18. Song, Y., Zhang, Z., Sterk, L. M. T., Vermes, I., Poot, A. A., Feijen, J., ... Kamphuis, M. M. J. (2010). Flexible and elastic porous poly(trimethylene carbonate) structures for use in vascular tissue engineering. Acta Biomaterialia, 6(4), 1269-1277. https://doi.org/10.1016/j.actbio.2009.10.002
  19. 2009
  20. Papenburg, B. J., Schueller-Ravoo, S., Bolhuis-Versteeg, L. A. M., Hartsuiker, L., Grijpma, D. W., Feijen, J., ... Stamatialis, D. (2009). Designing porosity and topography of poly(1,3-trimethylene carbonate) scaffolds. Acta Biomaterialia, 5(9), 3281-3294. https://doi.org/10.1016/j.actbio.2009.05.017

ID: 2558178