Unusual Two-Dimensional Multicomponent Self-Assembly Probed by Scanning Tunneling Microscopy

KEYWORDS:
monolayers • oligomers • scanning tunneling microscopy • self-assembly • sterically interacting

Forming controlled two-dimensional (2D) patterns is an important goal. A very simple but efficient way of preparing ordered films of monolayer thickness is via physisorption at the liquid–solid interface. The formation of 2D crystals leads to a high degree of immobilization, which at the same time allows their study with high resolution imaging techniques such as scanning tunneling microscopy (STM). In order to control the ordering of molecules in the 2D monolayer structure, directional noncovalent modes of interaction, such as hydrogen bonding, are of great help and importance. In addition to their directional properties, they may control intermolecular distances and as a result dictate the molecular conformation and properties.

Several oligothiophene derivatives have been extensively studied by STM. Hydrogen bonding has been exploited only for a few compounds, which are related to the compound studied in this report, an oligo(3,4-ethylenedioxythiophene) (oEDOT) derivative (1, Scheme 1). 1 is a model compound for poly(EDOT), one of the most successful materials among the numerous electrically conductive polymers that have been developed and studied over the past three decades.

In contrast to the formation of single component 2D hydrogen-bonded networks, it remains a challenge to make...
stoichiometric assemblies with two or more components2 or to form molecular clusters of limited size.7

In this contribution, we have used STM at the liquid–solid interface to investigate the hydrogen-bond directed supramolecular ordering of 1, which contains two urea functionalities. Unexpectedly, 1 does not form ordered monolayers by itself. Adding another component, a mono-urea derivative, turned out to be successful in coadsorbing 1, forming two unique types of binary self-assembled monolayers, one of which forms molecular clusters of limited size.

As mentioned, when applying a droplet of a concentrated solution of 1 on the basal plane of highly oriented pyrolytic graphite, to our surprise no 2D ordering of 1 was observed by STM regardless of the solvent (1-octanol, 1-phenyloctane, 1,2,4-trichlorobenzene) used. This lack in ordering is attributed to the bulky nature of the oEDOT group, which prohibits an optimal shape and functionality complementarity. Other urea derivatives studied so far tend to stack in rows, and the intermolecular distance (0.46 nm) reflects the hydrogen-bonding interaction between the urea groups.$^4, 8$

As an alternative approach to promote adsorption and stable monolayer formation, mixed solutions of 1 and mono-urea derivative 2 (Scheme 1) in 1-octanol were investigated. Co-adsorption experiments were previously successfully explored.$^{2a, 6, 9, 10}$ Compound 2 forms monolayers by itself and Figure 1A shows some typical features. Domains consist of parallel lamellae. The urea groups show up in the images as the brighter features and are aligned in rows. The alkyl chains are oriented perpendicularly to the row of urea groups and run parallel with a major symmetry axis of graphite (Figure 1B), illustrating the adsorbate–substrate interaction. The lamella width (ΔL_2), as indicated in Figure 1B, measures 3.5 ± 0.1 nm, which is in agreement with an extended and flattened conformation of the molecules. The intermolecular distance measures 0.46 ± 0.01 nm. Sometimes, the contrast of the urea groups differs within an image, which indicates different orientations of the urea groups (Figure 1C).8

After characterization of the monolayer features of 2, a mixture of 1 and 2 in 1-octanol was applied onto the graphite substrate, which resulted in monolayer formation (Figure 2), which we name Type I. In addition to the characteristic features of the mono-urea adsorbates, individual bright structures are observed, of which the width corresponds to the size of
the oEDOT core (∼1.6 nm for the core and ∼2.3 nm if the urea groups contribute to the bright contrast). The streaky lines parallel to the scan direction suggest that the oEDOT moieties are not lying flat on the surface. The lamella width ΔL_1 measures 5.6 ± 0.2 nm, which suggests that the molecule adapts an extended conformation similar to other bis-urea derivatives studied.[4,8] Some lamellae of 2 are also indicated, ΔL_2. In the mixed monolayer, 1 appears to form stacks (the preferred way of ordering of other bis-urea derivatives),[4,8] which is a surprising observation given the fact that 1 does not form stable monolayers itself. However, the average intermolecular distance between two adjacent oEDOT cores equals 0.84 ± 0.05 nm, which is much larger than expected based upon the “normal” intermolecular distance of urea derivatives (0.46 nm). In addition, close inspection reveals that for each oEDOT core (Figure 2B, red brick), at each side two alkyl chains are visible instead of one (yellow lines). These observations strongly suggest that within a lamella an alternating sequence of 1 and 2 is formed, which releases the strain otherwise imposed by adjacent molecules of 1 (Figure 2C). Both compounds contain terminal dodecylurea groups and hydrogen bonds can be formed by the urea groups stabilizing the co-deposited structures.

For mixtures of 1 and 2, we also found another kind of co-deposition (Figure 3), which we name Type II. At domain boundaries between two domains composed of 2, which are shifted with respect to each other by about half a molecule length, bright structures reflecting the presence of oEDOT cores were observed. Such bright spots correspond only to a few 1 molecules at most and during imaging the size of these nano-assemblies was not observed to change. The formation of these kinds of isolated clusters with a very small size distribution is a unique phenomenon in two dimensions. To the best of our knowledge, a co-deposition pattern as shown in Figure 3 has not yet been reported. What is the origin of the limited size of these nano-assemblies? First, we will consider their location with respect to the adjacent lamellae of 2. The distance between the clusters is smaller than the length of 1. Actually, this distance is determined by the packing of 2 in the adjacent domains and the distance between the bright spots is identical to the length of 2. For the sake of simplicity, we will discuss the case where only one 1 is trapped between domains of 2, as shown in Figures 2A and 3C (white arrow). Based upon the STM images, we can conclude that at one side of the oEDOT core the urea group of 1 is in line with the urea moieties of a 2 lamella in the upper domain, whereas at the other side of the oEDOT core the urea group is in line with the urea moieties of a 2 lamella in the lower domain. This makes hydrogen bonding feasible (see model in Scheme 2A). The 2 lamellae in both domains are indeed shifted in such a way to allow...
this interaction. The small intercluster distance indicates that the alkyl chains of molecules in adjacent clusters are interdigitated. Therefore, hydrogen bonding between molecules of type 1 is not likely, which leads to a decrease in the overall stability (Scheme 2B). This balance between stabilizing (hydrogen bonding) and destabilizing (“steric” hindrance) interactions is believed to be responsible for the limited size of the clusters.

In conclusion, we have illustrated an approach to “immobilize” bulky compounds, which do not form stable monolayers by themselves at the liquid–solid interface, resulting in unique co-deposition patterns. The knowledge gained paves the way for designing molecules for the formation of complex 2D patterns.

The authors would like to thank the DWTC, through IUAP-V-03, and the Royal Academy of the Netherlands for a fellowship. M.L. gratefully acknowledges the Fund for Scientific Research—Flanders. J.v.E.

Received: July 10, 2002 [Z457]

Two-Photon Absorption Spectra of Pyrillum Derivatives

Yu-fang Zhou[a] and Sheng-yu Feng[b]

KEYWORDS:

INDO/CI · pyrillum · sum-over-states · two-photon absorption

Organic dyes with increased two-photon absorption (TPA) cross sections and large upconversion fluorescence yields, have generated considerable interest in the development of highly efficient two-photon materials. New applications include two-photon upconversion lasing,[5–6] two-photon optical power limiting,[7–8] three-dimensional optical data storage[9–10] and two-photon photodynamic therapy.[11] TPA in organic materials involves a direct absorption of two photons through a virtual limiting,[7–8] three-dimensional optical data storage[9–10] and two-photon photodynamic therapy.[11] TPA in organic materials involves a direct absorption of two photons through a virtual state to reach an exited state. The transition probability is

[a] Y.-f. Zhou
School of Physics and Microelectronics
State Key Laboratory of Crystal Materials
Shandong University
Jinan 250100 (P.R. China)
Fax: (+86) 531-836-55167
E-mail: syfeng@sdu.edu.cn

[b] S.-y. Feng
School of Chemistry and Chemical Engineering
Shandong University
Jinan 250100 (P.R. China)