The determination and distribution of Zn in surface water samples collected in the northeast Atlantic Ocean
Nolting, Rob F.; Heijne, Marleen; Jong, Jeroen T.M. de; Timmermans, Klaas R.; de Baar, Henricus
Published in:
Journal of Environmental Monitoring
DOI:
10.1039/b002779k

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2000

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
The determination and distribution of Zn in surface water samples collected in the northeast Atlantic Ocean†

Rob F. Nolting,* Marleen Heijne, Jeroen T. M. de Jong, Klaas R. Timmermans and Hein J. W. de Baar

Netherlands Institute for Sea Research, P.O. Box 59, NL-1790 AB Den Burg, Texel, The Netherlands. E-mail: nolting@nioz.nl

Received 6th April 2000, Accepted 10th June 2000
First published as an Advance Article on the web 10th August 2000

Dissolved Zn concentrations were determined in surface water samples collected on-line along transects in the eastern North Atlantic in spring (March 1998). Two frontal zones could be identified in the research area by a change in salinity, temperature and nutrient concentrations. One zone was identified at 42°N, separating the North Atlantic central water (NACW) and the Atlantic surface water (ASW) from each other, and another one crossing the continental slope at 12°W and 8°E, respectively. Variability in Zn concentrations was observed near these zones, not only as a result of a change of water mass, but also due to external Zn sources. Surface Zn concentrations were 0.5–1 nM and 2 nM in the NACW and ASW, respectively, increasing to 4 nM over the continental shelf and finally 5–6 nM in the English Channel. Contributions of Zn derived from shelf sediments appear to be the major source for the enriched surface values in the continental zone.

1. Introduction

Notably the very low Zn concentrations existing in seawater and the risk of contamination have made its determination problematic. This has resulted in the availability of very few accurate Zn data in the past. However, reliable Zn data are needed to differentiate between natural processes and anthropogenic inputs. While in the open ocean Zn is strongly involved in the biological cycle, in coastal waters biogeochemical processes and external inputs regulate its concentration. Recently however, progress has been made in the accurate measurement of Zn, giving the opportunity for detailed distribution studies.1–8

From the few surface trace metal data available, some clear observations could be made. Kremling9 for example, observed trace metal fronts in European shelf waters. He explained these fronts as mobilization of the trace metals from partly reduced (organic rich) sediments and a subsequent vertical mixing into the water column. Polli et al.8 presented trace metal data in surface waters of the North Atlantic, including Zn, and observed an increase in Zn concentration from about 0.5 to 1.5 nM passing the west European shelf, confirming the observation made by Kremling9 for other metals. In the northern North Sea, Nolting et al.6 were among the first to report relatively low dissolved Zn concentrations of around 3 nM in the surface waters of this shelf sea. Dissolved Zn concentrations in seawater have usually been determined in our laboratory by APDC/DDDC pre-concentration using organic solvent extraction8 followed by graphite furnace atomic absorption spectrometry.11 A disadvantage of this technique is its unsuitability for immediate shipboard Zn measurements. Samples can be extracted on-board ship in a clean air container, but analysis has to be done in the laboratory. Nowadays, the increased understanding of Zn behaviour in marine systems requires methods that can be performed directly at sea. This can be fulfilled with continuous underway sampling and flow injection analysis with fluorescence (FIA-FL) detection, as developed by Nowicki et al.12

Here we report the results of dissolved Zn distributions in surface waters obtained during a cruise in the northeast Atlantic Ocean including the English Channel. The procedure and methods used are especially useful for sampling with high resolution and for monitoring of trace metals in the marine environment.

2. Sampling and methods

2.1. Surface seawater sampling

Surface samples were collected in the northeast Atlantic Ocean during a cruise with R.V. Pelagia from the 2nd to 27th March 1998. The research area was situated between 37°N and 47°N and 23°W and 0°W. The station positions (n = 154) are presented in Fig. 1, and are divided into four different transects. Transect one (I) started outside the English Channel on the ridge of the continental slope, extended southwards until 38°N, 23°W, and covers samples 1–40. The second transect (II–VI) is a compilation of different tracks, sailing several times north

Fig. 1 Map of the research area with station numbers and the different transects I–VIII.
and south along the 23° W longitude, and covers samples 41–76. The third transect (numbered VII) is a south–north survey along the 23° W meridian (samples 77–103), and the fourth transect (numbered VIII) is a west–east survey, through the English Channel ending in the southern North Sea, samples 104–154.

Samples were collected every hour, from continuously pumped seawater through a PVC tube connected to a towing fish, while the ship was sailing at 8 knots. Contamination from pumped seawater through a PVC tube connected to a towing fish was performed during a day and we used Suprapur HCl as carrier acid. Timing parameters were as follows: load time 120 s, rinse time 120 s and injection time 100 s. The method was completely computer-controlled, and 10 samples could be measured in one run. A proportion of the surface samples were directly measured on-board, the remainder were analyzed at the home laboratory.

Accuracy, precision and sensitivity were checked every day by a four-point standard addition to a low Zn containing reference bulk seawater (Atlantic Ocean water), yielding linear calibrations, and independent validation versus a certified reference material seawater NASS-5 (National Research Council of Canada). Typical additions were: +0, +2.29, +4.58, +6.87 and +9.16 nM Zn. In this way we measured 20 calibration lines in the bulk seawater during the analysis period and calculated a mean Zn value of 2.36 ± 0.32 nM (relative standard deviation (RSD) = 13.7%), (blank corrected), which gave a relative error of ±13.7% (Table 1). A mean slope of 1.72 with a variation of 22.6% was calculated, which makes it very important to make a calibration every day before starting the measurements. For accuracy checks, the reference seawater NASS-5 was regularly measured together with the samples. Over a time period of one month this reference sample was measured 13 times and the results (1.87 ± 0.20 nM, n = 13) were in good agreement with the certified value (1.56 ± 0.56 nM).

Our values were not corrected for any possible Cd interference (≤0%), as reported by Nowicki et al., which may have resulted in an overestimation in our results. We also participated in the QUASIMEME Round 9 “Trace metals in seawater performance studies”, with the same method as described above. Our results were within 5% of the assigned values. Blanks were measured as suggested by Nowicki et al. and ranged between 0.50 and 0.95 nM over the working period. As noted by Nowicki et al. the blank is significant, but our blank was lower than the blanks they reported (1.5–3.0 nM). Possible sources for this blank value could have been an undetectable pH shift, a change in flow, or a pressure change due to valve rotation. It was noticed that even using the cleanest DI water as sample, a very small but reproducible signal was introduced by instrumental sources, that could not

Table 1 Daily prepared calibration lines for the Zn determination with a standard seawater, measured over a time period of six weeks

<table>
<thead>
<tr>
<th>Date</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Oct</td>
<td>0.694</td>
<td>1.215</td>
<td>2.09</td>
<td>0.9870</td>
</tr>
<tr>
<td>21 Oct</td>
<td>0.701</td>
<td>1.690</td>
<td>2.43</td>
<td>0.9991</td>
</tr>
<tr>
<td>22 Oct</td>
<td>0.710</td>
<td>1.650</td>
<td>2.25</td>
<td>0.9995</td>
</tr>
<tr>
<td>23 Oct</td>
<td>0.910</td>
<td>1.870</td>
<td>2.03</td>
<td>0.9995</td>
</tr>
<tr>
<td>24 Oct</td>
<td>0.873</td>
<td>2.000</td>
<td>2.18</td>
<td>0.9996</td>
</tr>
<tr>
<td>25 Oct</td>
<td>0.928</td>
<td>2.010</td>
<td>2.21</td>
<td>0.9997</td>
</tr>
<tr>
<td>26 Oct</td>
<td>0.886</td>
<td>1.850</td>
<td>2.37</td>
<td>0.9942</td>
</tr>
<tr>
<td>27 Oct</td>
<td>0.753</td>
<td>2.650</td>
<td>1.93</td>
<td>0.9997</td>
</tr>
<tr>
<td>28 Oct</td>
<td>0.714</td>
<td>1.450</td>
<td>2.38</td>
<td>0.9985</td>
</tr>
<tr>
<td>29 Oct</td>
<td>0.715</td>
<td>2.208</td>
<td>3.08</td>
<td>1.0000</td>
</tr>
<tr>
<td>30 Oct</td>
<td>0.686</td>
<td>1.860</td>
<td>2.95</td>
<td>0.9999</td>
</tr>
<tr>
<td>31 Oct</td>
<td>0.812</td>
<td>1.440</td>
<td>1.85</td>
<td>0.9999</td>
</tr>
<tr>
<td>01 Nov</td>
<td>0.594</td>
<td>1.600</td>
<td>2.69</td>
<td>0.9993</td>
</tr>
<tr>
<td>02 Nov</td>
<td>0.651</td>
<td>1.770</td>
<td>2.69</td>
<td>0.9993</td>
</tr>
<tr>
<td>03 Nov</td>
<td>0.525</td>
<td>1.320</td>
<td>2.42</td>
<td>0.9992</td>
</tr>
<tr>
<td>04 Nov</td>
<td>0.707</td>
<td>1.740</td>
<td>2.40</td>
<td>0.9999</td>
</tr>
<tr>
<td>05 Nov</td>
<td>0.795</td>
<td>1.470</td>
<td>1.89</td>
<td>0.9998</td>
</tr>
<tr>
<td>06 Nov</td>
<td>0.710</td>
<td>1.850</td>
<td>2.67</td>
<td>0.9993</td>
</tr>
<tr>
<td>07 Nov</td>
<td>0.758</td>
<td>1.660</td>
<td>2.24</td>
<td>0.9997</td>
</tr>
<tr>
<td>08 Nov</td>
<td>0.773</td>
<td>2.085</td>
<td>2.58</td>
<td>0.9994</td>
</tr>
</tbody>
</table>

Mean: 0.75 1.72 2.36 1.00

s = 0.10 0.39 0.32 0.00

RSD (%): 13.25 22.60 13.72 0.30

Concentration (c) = ax + b. Regression r = r

be removed. Consequently the instrumental background signal was measured regularly and corrected for. Thus, all samples were blank-corrected, but without a direct correction for a possible but maybe negligible Cd interference.12

After further experiments it appears that the origin of the blank was a false signal from a salt effect on the column. The salt matrix of seawater affects the density of the column, causing back-pressure, which is also visible as a slight shortening of the column material, about 5% of the column length. This back-pressure resulted in a false peak equivalent to a signal of about 0.7 nM Zn. We corrected our values with the mean of the blank results. The salt effect on the column was a fake signal from a salt effect on the column. This blank was a fake signal from a salt effect on the column. The salt matrix of seawater affects the density of the column, causing back-pressure, which is also visible as a slight shortening of the column material, about 5% of the column length. This back-pressure resulted in a false peak equivalent to a signal of about 0.7 nM Zn. We corrected our values with the mean of the blank pressure resulted in a false peak equivalent to a signal of about 0.7 nM Zn. We corrected our values with the mean of the blank range, i.e., 0.7 nM. After the new information concerning the blank problem this is maybe too low and the upper part of the range should have been used, i.e., 0.95 or 1.00 nM. This implies that the reported surface values “maybe” have to be corrected by another 0.3 nM. For the interpretation of the observed trends this has no influence, but has consequences for the lowest Zn concentrations. If these values have to be corrected by another 0.3 nM they are comparable to the values measured by Ellwood and van den Berg.15

3. Results and discussion

3.1. Hydrography and nutrients

Along transect I salinity increased linearly from 35.6 to 35.8, indicative of NACW (Fig. 2A),16 which indicated conservative mixing between the water masses leaving the English Channel and those of the Atlantic Ocean. At salinity 35.8 a front situated at 14° W and 42° N was observed from where salinity gradually increased from 35.9 to 36.2, representative of ASW.17 In contrast to transect I no strong salinity gradient was observed along transect VIII. Salinity remained constant at 35.6–35.7 until passing the continental slope at 10° W, where a dip in salinity to 35.5 occurred. From here on it increased again to 35.6, and at 4° W sailing into the English Channel salinity decreased gradually to 35.3. By plotting salinity against latitude, the frontal zone at 42° N as observed in transect I, was confirmed by the change in salinity at transect VII.

The separation between the different water masses was confirmed within the temperature pattern, which increased from 12.0 to 16.3°C along transect I. In the gyre, the temperature was between 11.6 and 13.6°C, while this dropped to 8.8°C in the English Channel (Fig. 2B). The homogeneous mixing of the different water bodies is reflected in the salinity temperature plot (Fig. 3). This indicated the presence of three water bodies, NACW, ASW and the English Channel, with several fronts.

Silicate concentrations were higher in the northern part of the research area ~3 μM compared to the ~1 μM found in the southern part. The boundary between the different water masses as discussed above is clearly indicated by the silicate increase at 42° N (Fig. 4A) as also seen by the other nutrients. Nitrate and phosphate concentrations in the northern part of the research area were around 6–7 μM and 0.4–0.5 μM, respectively, and almost depleted in the southern part where plankton blooms were developing (Fig. 4B,C). Nutrient concentration decreased in the direction of the English Channel.

3.2. Zinc distributions

Zinc concentrations from all surface stations are plotted against longitude and are shown in Fig. 5A. The highest Zn concentrations were detected in the coastal waters, the English Channel and southern North Sea, and ranged from 3.5 to 5.9 nM. In both transect I and VIII the Zn concentrations had a similar distribution pattern, with increasing values near the continental shelf. These increases were very pronounced and were situated in transect I at 14° W and in transect VIII at 10° W, just where the continental shelf begins. Away from the continental shelf, Zn concentrations were lower at around 1 nM, with only small variations in transect VIII. The higher Zn values measured in the outflow of the English Channel water were traceable until 12° N in transect I. Zinc concentrations measured along transect VII and during the north and south tracks (II–VI) were of the same order as those found at the arriving and departing transects. Besides the frontal zone observed near the continental slope, a second boundary, as indicated by salinity, temperature and nutrients at 42° N, showed a shift in the Zn concentration from 1 nM to 1.8 nM at higher latitude (Fig. 5B).

Surface distributions of Zn were more or less determined by the three areas described above with, however, local differences (Fig. 6). For instance, below the 42° N latitude at transects I and VII, with a salinity between 35.8 and 36.2, Zn concentrations increased towards the coast to 2 nM, in contrast to concentrations measured more offshore, ~1 nM. The same
A gradient was observed above the 42° N latitude, where at salinity 35.7 and 35.8 roughly between 42° N and 45° N, Zn concentrations differed significantly. Offshore concentrations were between 1 and 2 nM, while the inshore concentrations were between 3 and 4 nM. Because the differences in concentration occurred at the same salinity this coastward increase must be ascribed to external Zn sources. The same observations have been reported for Spanish coastal waters, where an order of magnitude higher Zn concentration was measured than for Atlantic sub-surface water with the same salinity. If the Zn distributions were a result of pure mixing of two end members with different salinity and Zn concentration, a straight mixing line would be obtained. From Fig. 6 it is clear that this is not the case, values above as well as below the mixing curve were detected. Balls used a method to calculate source concentrations to explain trace metal concentrations in Scottish coastal waters. Using this method to calculate end member concentrations, with 1 nM Zn at a salinity of 36.1 as one end member and 4 nM at 35.3 in the English Channel as an intermediate, a zero salinity Zn concentration of 130–140 nM is calculated. This value is very realistic taking into account the dissolved Zn values reported for rivers flowing into the English Channel, which range from 15 to 900 nM. The Zn value of 150 nM reported for the river Seine, is in good agreement with the value calculated from our mixing line. On the other hand, the Zn concentrations of 20 nM measured in the river Gironde are lower and would have minor influence on the Zn values found in the research area. Dissolved Zn concentrations ranging between 5 and 20 nM have been reported for English Channel coastal waters. These values are significantly higher than the ones we have measured. In fact the majority of the Zn data reported for English coastal waters were more in the upper part of the range than in the lower part. This would imply that our calculations, with the 4 nM Zn measured in this study for Channel water, are probably an underestimation of the real fresh water end members.

In summary, we can conclude that part of the observed Zn concentrations can be explained by river inputs, but that other sources, for instance, sediment, are responsible for the higher Zn values observed near the continental shelf. However, despite the very consistent Zn distributions measured in the open northeast Atlantic, atmospheric inputs could not be excluded but are of minor importance in the English Channel.

4. Conclusions

With the method described here, it is possible to collect on-line surface seawater samples with high resolution. The sampling procedure has proven to be contamination-free for trace metals. This has labor and time saving advantages and because results are directly available on-board ship, trends and inadvertent contamination sources can easily be detected and remedied.
The salt matrix of the seawater affects the density of the column, causing back-pressure. This resulted in a significant blank signal and, especially when low concentrations have to be measured, one should be aware of this problem.

Dissolved Zn concentrations in the surface water in the eastern part of the open North Atlantic are low and vary between 0.5 and 2 nM, with increasing concentrations near shore and in the English Channel. The distribution of dissolved Zn in the northeast Atlantic Ocean is regulated by frontal zones and external inputs near the continental shelf.

Acknowledgements

The captain and crew of R.V. Pelagia are thanked for their help and professional support at sea. Jan van Ooijen supplied us with the nutrient data. Wim Helder is thanked for his comments on an earlier version of this paper. This research was partly supported by the project Marine Ecosystem Regulations: Trace Metal and Carbon Limitations (MERLIM) of the European Union within the Marine Science and Technology Program under contract no: Mast-CT95-005. This is NIOZ publication number 3428.

References