Atomic many-body effects for the p-shell photoelectron spectra of transition metals
Bagus, Paul S.; Broer, R.; de Jong, W.A.; Nieuwpoort, W.C.; Parmigiani, F.; Sangaletti, L.

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.84.2259

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2000

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Comment on “Atomic Many-Body Effects for the p-Shell Photoelectron Spectra of Transition Metals”

Recently, Bagus et al. [1] reported an ab initio relativistic many-body calculation of $2p$ and $3p$ x-ray photoemission spectra (XPS) for a Mn$^{2+}$ ion, and concluded that their atomic model was able to explain most of the features in the XPS of MnO. In discussing the result, they referred to our previous cluster model (CM) calculations [2,3] with the charge transfer (CT) effect, but they made serious misconceptions on our calculations.

In order to make the point clear, we have calculated the Mn $2p$ and $3p$ XPS with our CM but by disregarding crystal field (CF) and CT effects. The results are shown with solid curves in Figs. 1(a) and 1(a’) and compared with those by Bagus et al. (solid circles). In our calculation, we used the standard atomic multiplet theory [4] and no empirical adjustments were made to the term-averaged Hartree-Fock values of Slater integrals for the $3d^5$, $2p^33d^3$, and $3p^33d^3$ configurations. We used the same Lorentzian and Gaussian broadenings as those of Ref. [1]. It is clear that two calculations give almost the same results. Bagus et al. stressed the importance of the d shell angular momentum (AM) recoupling effect, and stated in the abstract of Ref. [1] that a combined treatment of relativity and electron correlation reveals important physical effects that have been neglected in virtually all previous work. However, essentially the same effects were already taken into account in our previous publications [2,3] by a different method. We note that our result in Fig. 1(a) is almost the same as that in Fig. 3 of the previous paper [2] except for the reduction of Slater integrals.

The main purpose of our previous papers [2,3] is to study the interplay between CT and atomic multiplet effects for various transition metal compounds. The CT effect is small in MnO compared with other compounds, but still important (see Refs. [2,3]). We show in Figs. 1(b) and 1(b’) (dashed curves) the results of our CM calculations with CF (CF effect is very minor in this case). When the CT effect is switched on, the spectral shape of the satellite at about 6 eV of $2p$ XPS is strongly modified, and for the $3p$ XPS the exchange satellites at the high-binding energy side are drastically changed. By this CT effect the agreement with the experimental results is improved (compare them with the experimental data in Ref. [1]). Bagus et al. misunderstood from our previous CM [3] that the second and fourth satellites of $2p$ XPS and the first satellite of $3p$ XPS were caused by the CT mechanism. It is evident from Fig. 1 that they arise mainly from atomic multiplet structures. We stress that the d shell AM recoupling effect was already taken into account in our calculations [2,3].

Finally, we mention that the effects of a reduction of Slater integrals and a term-dependent core hole lifetime are important to obtain a better agreement with the experimental results. These effects were included in our previous CM [2,3], but not taken into account in the ab initio calculation by Bagus et al.

M. Taguchi
The Abdus Salam ICTP
P.O. Box 586
34100, Trieste, Italy

T. Uozumi
Osaka Prefecture University
Osaka 599-8531, Japan

K. Okada
Okayama University
Okayama 700-8530, Japan

H. Ogasawara and A. Kotani
ISSP
University of Tokyo
Kashiwa, Chiba 277-8581, Japan

Received 16 May 2000
DOI: 10.1103/PhysRevLett.86.3692
PACS numbers: 79.60.Bm