Production of Recombinant and Tagged Proteins in the Hyperthermophilic Archaeon Sulfolobus solfataricus

S.-V. Albers,¹ M. Jonuscheit,² S. Dinkelaker,³ T. Urich,⁴ A. Kletzin,⁴ R. Tampé,³ A. J. M. Driessen,¹ and C. Schleper²*

Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN Haren, The Netherlands;² Department of Biology, University of Bergen, Jahnebakken 5, Box 7800, N-5020 Bergen, Norway; Institute for Microbiology and Genetics, Darmstadt University of Technology, Schnittspahnstr. 10, 64287 Darmstadt, Germany; and Institute of Biochemistry, Biozentrum Frankfurt, Johann Wolfgang Goethe University, Marie-Curie-Strasse 9, 60439 Frankfurt am Main, Germany

Received 10 July 2005/Accepted 22 September 2005

The homologous and heterologous expression of genes is a prerequisite for most biochemical studies of protein function. A vast variety of systems have been developed for protein production in bacterial and eukaryotic model organisms, which allow us to study proteins in their native hosts and to identify protein-protein interaction partners. In contrast, only a few transformation systems have been developed for archaea, and no system for high-level gene expression existed for hyperthermophilic organisms. Recently, a virus-based shuttle vector with a reporter gene was developed for the crenarchaeote Sulfolobus solfataricus, a model organism of hyperthermophilic archaea that grows optimally at 80°C (M. Jonuscheit, E. Martusewitsch, K. M. Stedman, and C. Schleper, Mol. Microbiol. 48:1241–1252, 2003). Here we have refined this system for high-level gene expression in S. solfataricus with the help of two different promoters, the heat-inducible promoter of the major chaperonin, thermophilic factor 55, and the arabinose-inducible promoter of the arabinose-binding protein AraS. Functional expression of heterologous and homologous genes was demonstrated, including production of the cytoplasmic sulfur oxygenase reductase from Acidimius ambivalens, an Fe-S protein of the ABC class from S. solfataricus, and two membrane-associated ATPases potentially involved in the secretion of proteins. Single-step purification of the proteins was obtained via fused His or Strep tags. To our knowledge, these are the first examples of the application of an expression vector system to produce large amounts of recombinant and also tagged proteins in a hyperthermophilic archaeon.

The homologous and heterologous expression of genes in a prerequisite for most biochemical studies of protein function. A vast variety of systems have been developed for protein production in members of the Bacteria and Eukarya, using numerous combinations of vector and promoter systems. Members of the Archaea, the third domain of life, are much less amenable to genetic manipulation. Transformation tools for the production of recombinant proteins exist for only a few species (for a review, see reference 2). A shuttle vector has been described for the expression of bacterial and methanococcal genes in Methanococcus maripaludis (12). Heterologous expression of bacterial and eukaryotic genes as well as of homologous genes has been achieved in the genetically most accessible archaea, the mesophilic, salt-dependent Halobacterium spp. (14, 17, 33). However, no such system has existed so far for thermophilic or hyperthermophilic archaea. Mesophiles hosts, in particular Escherichia coli, have been used to produce thermostable proteins for biochemical characterization and crystallographic studies (e.g., see references 22, 23, 29, and 34). However, a considerable number of proteins of hyperthermophiles fold into their native state only under natural conditions of high temperature or in the presence of their native cofactors. Furthermore, the production of recombinant and tagged proteins in native thermophilic hosts allows the identification of associated factors or even larger protein complexes.

The crenarchaeote Sulfolobus solfataricus has developed into an important model organism for molecular and biochemical studies of hyperthermophilic archaea. It grows optimally at 80°C and pH 3 under aerobic and heterotrophic conditions. Since many studies on the transcription, translation, and replication of this extremophile have been performed in vitro (4, 5, 10, 40), it is highly desirable to develop genetic tools for in vivo studies and for high-level production of proteins in this organism. Initial transformation systems and selectable markers have been established for Sulfolobus solfataricus in some laboratories (3, 6, 7, 9, 16, 41). We have recently developed a reporter gene system based on the virus SSV1 as well as the selectable marker genes pyrEF for the complementation of uracil auxotrophic mutants. The latter genes allow stabilization of the propagation of the vector by growing transformants under selective conditions (16). Moreover, strong, heat-inducible expression of the reporter gene lacS, coding for β-galactosidase, was demonstrated when it was placed under the control of the promoter of the major heat shock chaperonin gene tf55a (16).

In this study, we have used and improved this vector system for the heterologous and homologous expression of genes in S. solfataricus. We have constructed a set of entry vectors and introduced a transcriptional terminator and a second inducible promoter. Our system allows for the high-level production of functional and tagged cytoplasmic and membrane-associated proteins.

¹ Corresponding author. Mailing address: Department of Biology, University of Bergen, Jahnebakken 5, Box 7800, N-5020 Bergen, Norway. Phone: 47-555 82665. Fax: 47-555 89671. E-mail: christa.schleper@bio.uib.no.
TABLE 1. Plasmids used for this study

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Description</th>
<th>Purpose of construction</th>
<th>Reference or source</th>
</tr>
</thead>
<tbody>
<tr>
<td>pM02</td>
<td>SSV1 in pUC18 with lacS under control of tf55alpha promoter</td>
<td>Promoter studies in Sulfolobus (heat shock induction)</td>
<td>16</td>
</tr>
<tr>
<td>pM03</td>
<td>pyrEF cassette inserted into pM02</td>
<td>Selectable marker added for stability</td>
<td>16</td>
</tr>
<tr>
<td>pM05</td>
<td>pyrEF cassette, tf55alpha promoter, lacS from pBR05 inserted into pM05, replacing tf55alpha and lacS from pM02</td>
<td>Destination vector for E. coli (heat shock induction)</td>
<td>This study</td>
</tr>
<tr>
<td>pM11</td>
<td>Promoter studies in Sulfolobus (heat shock induction)</td>
<td>S. Albers and M. Jonuscheit, unpublished</td>
<td></td>
</tr>
<tr>
<td>pBR-05</td>
<td>pBR322 containing pyrEF cassette and lacS under control of tf55alpha promoter, with BssHIII site introduced (Fig. 1)</td>
<td>E. coli entry vector with heat shock promoter</td>
<td>This study</td>
</tr>
<tr>
<td>pASK5</td>
<td>pASK75 containing sor gene fused to C-terminal Strep tag</td>
<td>PCR template for amplification of Strep-tagged sor</td>
<td>This study</td>
</tr>
<tr>
<td>pM05-sor</td>
<td>pyrEF cassette, tf55alpha promoter, sor from pBR05-sor inserted into pM02, replacing tf55alpha and lacS from pM02</td>
<td>sor expression in Sulfolobus</td>
<td>This study</td>
</tr>
<tr>
<td>pSVA1</td>
<td>E. coli entry vector with terminator sequence separated</td>
<td>E. coli entry vector with terminator sequence separated</td>
<td>This study</td>
</tr>
<tr>
<td>pSVA2</td>
<td>SO2316-6his inserted into pSVA1 (Fig. 1)</td>
<td>E. coli donor vector for SSO2316</td>
<td>This study</td>
</tr>
<tr>
<td>pSVA5</td>
<td>pSVA1 containing the lacS gene under control of araS promoter (Fig. 1)</td>
<td>E. coli entry vector with ara promoter</td>
<td>This study</td>
</tr>
<tr>
<td>pSVA6</td>
<td>tf55alpha promoter, SO2316 from pSVA2 inserted into pM05, replacing tf55alpha and lacS from pM05</td>
<td>SO2316 expression in Sulfolobus</td>
<td>This study</td>
</tr>
<tr>
<td>pSVA9</td>
<td>araS promoter, lacS from pSVA5 inserted into pM05, replacing tf55alpha promoter and lacS from pM05</td>
<td>Promoter studies in Sulfolobus (arabinose induction)</td>
<td>S. Albers, unpublished</td>
</tr>
<tr>
<td>pSVA14</td>
<td>SS02680-10his inserted into pSVA5</td>
<td>E. coli donor vector for SS02680</td>
<td>This study</td>
</tr>
<tr>
<td>pSVA15</td>
<td>araS promoter, SS02680-10his from pSVA14 inserted into pM05, replacing tf55alpha and lacS from pM05</td>
<td>SS02680 expression in Sulfolobus</td>
<td>This study</td>
</tr>
<tr>
<td>pSVA30</td>
<td>araS promoter, SS0287-Strep-10his inserted into pSVA5</td>
<td>E. coli donor vector for SS0287</td>
<td>This study</td>
</tr>
<tr>
<td>pSVA31</td>
<td>araS promoter, SS0287-Strep-10his from pSVA30 inserted into pM05, replacing tf55alpha and lacS from pM05</td>
<td>E. coli donor vector for SS0287</td>
<td>This study</td>
</tr>
</tbody>
</table>

proteins in *S. solfataricus*, enabling biochemical characterizations and in vivo studies of protein function.

MATERIALS AND METHODS

Strains and culture conditions. An *S. solfataricus* pyrEF mutant (PH1-16) (25) was grown at 80°C and pH 3 in Brock's medium with or without 10 μg ml⁻¹ uracil and with 0.1% tryptone and 0.2% arabinose or as indicated. The optical densities of liquid cultures were monitored at 600 nm (OD₆₀₀).

Plasmid construction. The plasmids used for this study are listed in Table 1. For the construction of pBR05, the genes pyrEF and lacS as well as the promoter region of the *Tf55α* gene were amplified by using the primers pyrEF-f-AviII (CGAATACCCCTAGGGAATAATGC), pyrEF-r-Nhel (GTGGTGCTAGC TTCCTCGTGTAAG), tf55α-f-AviII (GGGATCCCTAAGGGGTAGATTCT), tf55α-r-BssHII (GACTGGCGCGCCCATACCTCA), replaced with the *ara* promoter using the primers *ara* f-AvrII (GCATTATTCCCTAGGGTGATTTCG) and *ara* r-NheI (GTGGTGCTAGC TTCCTCGTGTAAG), thereby fusing a C-terminal six-His tag to the encoded product. The PCR product was cloned into the BssHII and ApaI sites of pM02, yielding the pSVA9 promoter under control of the Strep tag, was used as the DNA template. The PCR product was digested with NheI and EagI and the fragment was purified (using a Qiagen Gene-Clean kit), restricted with Nhel and Eagl and ligated into pBR322 restricted with Nhel and Eagl. The *Sulfolobus-E. coli* shuttle vector pM05 was constructed by ligating the Nhel/Eagl fragment of pBR05 to the XbaI/Eagl-restricted and dephosphorylated SSV1/pUC18 shuttle vector pM02 (16).

The *sor* gene of *Acidianus ambivalens*, including a 10-amino-acid-encoding Strep tag at the C terminus, was PCR amplified by using the primers Sor-Strep-BshIII (CTAGTAAACCGCGCGCAGAAATTGCG) and SorC-Strep-Eagl (CTACCGCGCGAATTTGAATTTCG). The construct pASK5 (37), containing the sor gene fused to a C-terminal Strep tag, was used as the DNA template. The PCR product was digested with BshIII and Eagl and ligated into pBR05, which yielded vector pBR-sor. This plasmid was cleaved with Hwil I and Eagl, and the sor gene with the promoter was ligated to XbaI/Eagl-restricted and dephosphorylated pM02, yielding the *Sulfolobus* expression vector pM05-sor.

An additional restriction site (Apal) was introduced into pBR05 such that other genes could be introduced by leaving the terminator from lacS in the vector. This was done with a quick mutagenesis kit I (Stratagene). A PCR was performed with the primer ApalF (GGCATTAAAGGACTAAGGGGCCACT TTTCAAGTCTC) and its complement ApalR (containing an Apal site), with pBR05 as the template, yielding pSVA1. This vector was used as a template to replace the lacS gene with SO2316 (flu). The latter was amplified by PCR from the *S. solfataricus* genomic DNA using the primer pair 2316F (CGCACGTCGATGATATTCTGAGATG) and 2316R (CCCCCGGC CGACGATGATATTCTGAGATG) and cloned into pM02, yielding the *S. solfataricus* genomic DNA using the primer pair 2316F (CGCACGTCGATGATATTCTGAGATG) and 2316R (CCCCCGGC CGACGATGATATTCTGAGATG) by restriction with Apal and Eagl. The PCR product was cloned into the *Sulfolobus* shuttle vector pASK5 (37), containing the sor gene fused to a C-terminal Strep tag, was used as the DNA template. The PCR product was digested with BshIII and Eagl and ligated into pBR05, which yielded vector pBR-sor. This plasmid was cleaved with Hwil I and Eagl, and the sor gene with the promoter was ligated to XbaI/Eagl-restricted and dephosphorylated pM02, yielding the *Sulfolobus* expression vector pM05-sor.

An additional restriction site (Apal) was introduced into pBR05 such that other genes could be introduced by leaving the terminator from lacS in the vector. This was done with a quick mutagenesis kit I (Stratagene). A PCR was performed with the primer ApalF (GGCATTAAAGGACTAAGGGGCCACT TTTCAAGTCTC) and its complement ApalR (containing an Apal site), with pBR05 as the template, yielding pSVA1. This vector was used as a template to replace the lacS gene with SO2316 (flu). The latter was amplified by PCR from the *S. solfataricus* genomic DNA using the primer pair 2316F (CGCACGTCGATGATATTCTGAGATG) and 2316R (CCCCCGGC CGACGATGATATTCTGAGATG) and cloned into pM02, yielding the *Sulfolobus* expression vector pM05-sor.

An additional restriction site (Apal) was introduced into pBR05 such that other genes could be introduced by leaving the terminator from lacS in the vector. This was done with a quick mutagenesis kit I (Stratagene). A PCR was performed with the primer ApalF (GGCATTAAAGGACTAAGGGGCCACT TTTCAAGTCTC) and its complement ApalR (containing an Apal site), with pBR05 as the template, yielding pSVA1. This vector was used as a template to replace the lacS gene with SO2316 (flu). The latter was amplified by PCR from the *S. solfataricus* genomic DNA using the primer pair 2316F (CGCACGTCGATGATATTCTGAGATG) and 2316R (CCCCCGGC CGACGATGATATTCTGAGATG) and cloned into pM02, yielding the *Sulfolobus* expression vector pM05-sor.

An additional restriction site (Apal) was introduced into pBR05 such that other genes could be introduced by leaving the terminator from lacS in the vector. This was done with a quick mutagenesis kit I (Stratagene). A PCR was performed with the primer ApalF (GGCATTAAAGGACTAAGGGGCCACT TTTCAAGTCTC) and its complement ApalR (containing an Apal site), with pBR05 as the template, yielding pSVA1. This vector was used as a template to replace the lacS gene with SO2316 (flu). The latter was amplified by PCR from the *S. solfataricus* genomic DNA using the primer pair 2316F (CGCACGTCGATGATATTCTGAGATG) and 2316R (CCCCCGGC CGACGATGATATTCTGAGATG) and cloned into pM02, yielding the *Sulfolobus* expression vector pM05-sor.

An additional restriction site (Apal) was introduced into pBR05 such that other genes could be introduced by leaving the terminator from lacS in the vector. This was done with a quick mutagenesis kit I (Stratagene). A PCR was performed with the primer ApalF (GGCATTAAAGGACTAAGGGGCCACT TTTCAAGTCTC) and its complement ApalR (containing an Apal site), with pBR05 as the template, yielding pSVA1. This vector was used as a template to replace the lacS gene with SO2316 (flu). The latter was amplified by PCR from the *S. solfataricus* genomic DNA using the primer pair 2316F (CGCACGTCGATGATATTCTGAGATG) and 2316R (CCCCCGGC CGACGATGATATTCTGAGATG) and cloned into pM02, yielding the *Sulfolobus* expression vector pM05-sor.
with BlnI and ApaI and inserted into pSVA1 to yield pSVA5, which contained the lacS gene under the control of the araS promoter. SSO2680 and SSO0287 were amplified from genomic DNA by PCRs using the primer pairs SSO2680f/SSO2680r and SSO0287f/SSO0287r, respectively. This resulted in the introduction of Neol and Apal restriction sites in the flanking regions of these genes and the presence of a C-terminal 10-His tag in SSO2680 and a StrepII tag and 8-His tag at the C terminus of SSO0287. Both genes were cloned into pSVA5 using the Neol/ApaI sites, yielding pSVA14 and pSVA30, which carried SSO2680 and SSO0287, respectively. To transfer the araS promoter together with the gene to be expressed into the virus-based vector, the BlnI/ApaI inserts from pSVA14 and pSVA30 were ligated into pMI05, resulting in plasmids pSVA15 and pSVA31, respectively.

Transformation of S. solfataricus. Electroporation of S. solfataricus PH1-16 and the isolation of single transformants were done as described previously (16, 31). Integration of the viral vector into the genome was confirmed by Southern analysis using standard procedures.

Expression and purification of Sor. Cells containing the pMI05-ssr construct were grown in 300 ml Brock’s medium supplemented with 0.1% tryptone and 0.2% t-arabinose. After 3 days of cultivation, cells (1g) were harvested by centrifugation and resuspended in 25 ml 10 mM Tris-HCl, pH 8.0. The cells were lysed by sonication, and after centrifugation to remove cell debris and the membrane fraction, the supernatant was used for Streptactin affinity chromatography. Twenty milliliters of supernatant was applied to a Streptactin Superflow column (10 ml; IBA, Göttingen, Germany) connected to a fast-performance liquid chromatography apparatus. Purification was performed according to the manufacturer’s instructions. The peak fractions were pooled and concentrated first by ultrafiltration (Centrex UF-2 [cutoff, 30 kDa]; Schleicher & Schuell, Dassel, Germany) and subsequently with a Speed-Vac machine.

Expression of FuaI. Cells containing pSVa6 were inoculated into 50 ml Brock’s medium supplemented with 0.1% tryptone and 0.2% t-arabinose. At an OD600 of 0.5, the cells were diluted into 400 ml of the same medium and grown to an OD600 of 0.8. Cultures were then shifted to 88°C for 24 to 48 h, and the cells were harvested by centrifugation and resuspended in 10 mM Tris-HCl, pH 8, and 100 mM NaCl. Lysis of the cells and the isolation of membranes were done as described below.

Expression and purification of SSO2680. Cells containing pSVA15 were inoculated into 50 ml Brock’s medium containing 0.1% tryptone and 0.2% t-arabinose. At an OD600 of ~0.5, 10 ml of cells was transferred to 400 ml medium containing 0.1% tryptone and 0.2% t-arabinose to induce the expression of SSO2680. After 2 days of growth (OD600 ~0.8), the cells were harvested and resuspended in buffer A (50 mM NaPip, pH 8.0, 100 mM NaCl, and 5 mM imidazole). Lysis of the cells and the isolation of membranes were done as described below. Membranes were resuspended in buffer A and solubilized with 2% n-dodecyl-β-maltopyranoside (DDM) at a protein concentration of 4 mg/ml for 45 min at room temperature. Nonsolubilized protein was removed by high-speed centrifugation, and the supernatant containing the solubilized membrane protein was applied to a His-Select 1-ml column (Sigma) that was preequilibrated with buffer A. The column was washed with 10 volumes of buffer A and 0.05% DDM and subsequently with 3 volumes of 50 mM NaPip, pH 8.0, 100 mM NaCl, 30 mM imidazole, and 0.05% DDM. Bound protein was eluted with 1.5 column volumes of 50 mM NaPip, pH 8.0, 100 mM NaCl, 250 mM imidazole, and 0.05% DDM. The protein was dialyzed overnight against 20 mM morpholineethanesulfonic acid, pH 6.5, 100 mM NaCl, and 100 mM NaCl. Lysis of the cells and the isolation of membranes were done as described below.

Expression and purification of SSO0287. The growth conditions for cells containing pSVA15 were the same as those described for SSO2680. After 2 days of growth (OD600 ~0.8), the cells were harvested and resuspended in 10 mM Tris-HCl, pH 7.5, 100 mM NaCl. The cytoplasmic fraction was applied to a 1-ml His-Select affinity column, and further purification was performed as described for SSO2680, except that DDM was omitted from the buffers. Streptagged-purified purification was performed with Streptactin columns (IBA Technology) according to the manufacturer’s recommendations. The elution buffer contained 100 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1 mM EDTA, and 2.5 mM diethiothreitol. Gel filtration was performed on a Smart system (Pharmacia), using a Superdex TM 200 PC 3.2/30 column (Amersham Biosciences) with 20 mM Tris-HCl, pH 7.4, and 100 mM NaCl.

Fractionation of cells. Cells were broken by sonication in a Soniprep 150 ultrasonic disintegrator (MSE Scientific Instruments, Crawley, England) (10 cycles of 15 s on and 45 s off), and cell debris was removed by low-speed centrifugation. Membranes were collected by ultracentrifugation for 30 min at 100,000 × g at 4°C.

Activity assays. β-Galactosidase activity was determined as described previously (16). β-Galactosidase activity staining was performed by incubating native gels in a buffer containing 5 mM ONPG (o-nitrophenyl-β-D-galactopyranoside) for 30 min at 75°C. ATPase activity assays were performed with a colorimetric assay (24) as described previously (39).

The Sor activity assay was performed aerobically as previously described (19). Protein aliquots were incubated in 1 ml assay buffer (70 mM Tris-HCl, pH 7.2, 0.1% Tween 20, 2% [w/vol] sulfite [dispersed by sonication]) at 85°C for different time intervals (0, 4, 8, 12, and 16 min), and the reactions were stopped by cooling on ice. After centrifugation, the products thiosulfate and hydrogen sulfide were examined colorimetrically in the supernatant and quantitated using the respective calibration curves. The reaction velocity was calculated from the linear increase in product concentrations. Since sulfite rapidly reacts to form thiosulfate at 85°C (19), the amounts of thiosulfate and sulfite were quantitated. One unit (U) of enzyme activity was defined as the formation of 1 μmol of thiosulfate (oxidase activity) or 1 μmol of H2S (reductase activity) per minute.

Analytical methods. Protein concentrations were determined by the Bradford method (5a), by measuring the OD280 or by using an RC protein determination kit (Bio-Rad). Proteins were separated in 10% sodium dodecyl sulfate (SDS) gels (30%) and visualized with colloidal Coomassie blue (Roti-Blue; Roth, Karlsruhe, Germany). Samples (50 μg) of protein from crude cell extracts of transformants were fractionated in nondenaturing blue native gels (30b). Gels (6.5%: 14 × 14 × 0.15 cm) were prepared and run in a SE400 vertical electrophoresis chamber (Hoefer Scientific Instruments). After activity staining with ONPG, the gels were stained with colloidal Coomassie blue for visualization of the protein bands. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass fingerprints after tryptic digestion of the proteins were done by the Denuch group at the Clemens Schöpf Institute of Organic Chemistry (Darmstadt, Germany).

RESULTS

Entry vectors and introduction of the sugar-inducible araS promoter. In the recently described shuttle vector pMI03 (16), the complete DNA of the virus SSV1 (15 kb) was combined with pUC18 for replication/selection in Escherichia coli, the genes pyrEF of S. solfataricus for complementation of uracil auxotrophic mutants of Sulfobolus, and the reporter gene lacS, coding for β-galactosidase. The system was used to show the expression of the β-galactosidase gene (lacS) under the control of the heat-inducible promoter of the α subunit of the thermosome of S. solfataricus (TSF55α). This promoter has a strong basal activity and is additionally inducible by shifting cultures from 78 to 88°C. In order to improve the pMI03-based vector system for the homologous and heterologous expression of genes in S. solfataricus, entry vectors were constructed with restriction sites that allowed us to replace the lacS gene with other genes of interest by cloning them directly behind the promoter sequence. The putative transcriptional terminator sequences of lacS were left intact (Fig. 1). Moreover, the heat-inducible tf55α promoter was replaced with an arabinose-inducible promoter in order to allow the induction of high-level expression without imposing stress on the host cells. For this purpose, a 241-bp region upstream of the open reading frame of araS, encoding the arabinose-binding protein, a subunit of an ABC sugar transporter in S. solfataricus (11), was selected for cloning. In contrast to the original tf55α-lacS promoter-gene fusion in pMI03, this construct did not contain the five initial codons of the tf55α gene. Instead, the start codon of araS coincided with the start codon of the gene to be expressed (Fig. 1). High-level expression of β-galactosidase, which forms a tetramer of 240 kDa in vivo (28), was demonstrated by the separation of cell extracts of transformants in a nondenaturing blue native protein gel and subsequent activity staining with ONPG (Fig. 2). A quantitative estimation of promoter strengths using the LacS reporter activity showed that the arabinose promoter exhibited a considerably lower basal activ-
ity than the tf55α promoter in the absence of an inducer (Table 2). Upon the addition of arabinose to the medium, the activity levels of β-galactosidase increased about 13-fold. The absolute value of 3.3 U/mg protein was comparable to that obtained with the tf55α promoter after heat shock (Table 2, second column). However, transformants with a tf55α promoter that contained an Ncol site at the translation start site (comparable to the situation in the araS construct) exhibited an even higher activity, at ca. 12 U/μg of protein, in crude extracts (Table 2, construct pMJ11). A more detailed analysis of promoter variants and the effects of mutations on the initiation of transcription and translation is currently in progress.

Heterologous expression and purification of the sulfur oxygenase reductase from *Acidianus ambivalens*. The sulfur oxygenase reductase (Sor) from the chemolithoautotrophic crenarchaeote *A. ambivalens* is a cytoplasmic enzyme that catalyzes the initial step in the dissimilatory sulfur oxidation pathway in this organism (19, 20). Sulfite, thiosulfate, and hydrogen sulfide are simultaneously produced from elemental sulfur in an oxygen-dependent reaction. Sor is an icosatetrameric protein with a molecular mass of 840 kDa that is composed of identical subunits of 35.2 kDa (38) and contains a mononuclear non-heme iron center as a cofactor (37). *S. solfataricus* lacks a sor homolog (32).

The sor gene, including codons for a C-terminally fused Strep tag, was cloned under the control of the tf55α promoter. Single transformants of *S. solfataricus* PH1-16 containing the pMJ05-sor construct were grown at 78°C and subsequently shifted to 88°C to induce the expression of the sor gene. The yield was 0.5 mg of enriched Sor protein per liter of culture after Streptactin affinity chromatography. A band corresponding to a molecular mass of 36 kDa was visible on SDS gels.
containing the purified protein fraction (Fig. 3A). The protein was confirmed to be identical to the *A. ambivalens* Sor protein plus the additional amino acids from the Strep tag by MALDI-TOF analysis. Other bands were visible besides the Sor band. A prominent band with an apparent molecular mass of 55 kDa was identified by MALDI-TOF analysis as the large subunit of the biotinylated *S. solfataricus* acetyl-coenzyme A (acetyl-CoA)/propionyl-CoA carboxylase (also called AccC or SSO2466 [15]). The specific activities in the Sor preparation, measured as the production of thiosulfate and hydrogen sulfide from elemental sulfur, were 4.5 and 1.2 U mg protein⁻¹ (oxy- genase and reductase activities, respectively). These values are comparable to those obtained for the enzyme isolated from its native host (Fig. 3B), indicating the successful assembly of the homomultimeric enzyme and the incorporation of the iron cofactor.

Homologous expression of the ATPase FlaI. flaI (SSO2316) is part of the potential flagellin operon of *S. solfataricus* and encodes a 59-kDa protein with a nucleotide-binding domain. FlaI is homologous to other ATPases present in archaean flagellin operons, which may fulfill a role in the assembly of the archaean flagellum. Gene inactivation experiments with *Halobacterium salinarium* and *Methanococcus voltae* have previously shown that the FlaI protein is essential for flagellum formation (27, 36). In *S. solfataricus*, flaI is expressed only in the stationary growth phase (1). The protein was expressed in *E. coli* earlier, purified to homogeneity, and shown to exhibit divalent cation-dependent ATP-hydrolyzing activity (1). In order to produce FlaI in *Sulfolobus*, the gene, including codons for a six-His tag, was cloned under the control of the tf55α promoter to yield pSVA6. Single transformants containing the vector were isolated and grown at 78°C with a subsequent shift to 88°C. Strain PH1-16 (*pyrEF lacS* double mutant) was grown as a control. Samples were taken from both cultures at the start of heat incubation and after 1 and 2 days. Cells were harvested, separated into membrane and cytoplasmic fractions, and analyzed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting using antibodies directed against purified FlaI (1). While the heterologously expressed FlaI protein in *E. coli* had been isolated from the soluble cytoplasmic fraction

TABLE 2. Comparison of promoter strengths in the reporter gene system

<table>
<thead>
<tr>
<th>Construct</th>
<th>Promoter</th>
<th>Beta-galactosidase sp act (U/mg protein)</th>
<th>Fold induction</th>
<th>Inducing agent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Before induction</td>
<td>After induction</td>
<td></td>
</tr>
<tr>
<td>pMJ03</td>
<td>tf55alpha</td>
<td>1.46 (0.13)</td>
<td>5.09 (0.16)</td>
<td>3.50 (0.33)</td>
</tr>
<tr>
<td>pMJ11<sup>b</sup></td>
<td>tf55alpha (NcoI)<sup>c</sup></td>
<td>1.18 (0.13)</td>
<td>11.83 (0.70)</td>
<td>10.02 (0.67)</td>
</tr>
<tr>
<td>pSVA9</td>
<td>araS (NcoI)<sup>c</sup></td>
<td>0.28 (0.09)</td>
<td>3.31 (0.51)</td>
<td>12.97 (3.84)</td>
</tr>
</tbody>
</table>

^a Data from 5 (pMJ03), 3 (pMJ11), and 10 (pSVA9) independent experiments (numbers in parentheses indicate standard deviations).

^b Unpublished construct.

^c NcoI site introduced at the start codon of *lacS*.

FIG. 3. Purification and activity of *A. ambivalens* Sor isolated from *S. solfataricus* transformed with pMJ05-sor. (A) SDS-PAGE of different fractions (E1 and E2) eluted from the Streptactin column. M, molecular mass marker proteins. Solid arrow, Sor band; dashed arrow, AccC subunit of the acetyl/propionyl-CoA carboxylase (both identified by MALDI-TOF analysis). (B) Sulfur oxygenase and reductase activities of pooled eluate fractions showing time-dependent increases in the amounts of thiosulfate and hydrogen sulfide in the assay mixture (19). Background, nonenzymatic production of thiosulfate and hydrogen sulfide from sulfur disproportionation under the same assay conditions without the enzyme (19).
(1), the protein produced in *Sulfolobus* could only be detected in the membrane fraction of induced cells (Fig. 4). This observation was confirmed using antibodies directed against the C-terminal His tag of FlaI (data not shown).

Homologous expression and purification of SSO2680.

SSO2680 is a hydrophilic nucleotide-binding protein of 59 kDa. It has been shown to be encoded in an operon with five other genes (1) that encode proteins with motifs typically found in subunits of bacterial protein secretion systems. These so-called type II and type IV secretion machineries, as well as type IV pilin assembly systems, are involved in the assembly or secretion of multimeric substrate proteins such as pili. The protein substrate of this putative secretion operon in *Sulfolobus* is unknown. Interestingly, the operon contains a gene for one small protein of 15 kDa, SSO2681, which contains a type IV pilin signal peptide and might therefore be a subunit of a pilus structure (1). SSO2680 shows sequence similarity to bacterial secretion ATPases, such as Virb11 and PilT, which power the secretion process (30, 42). SSO2680 was cloned behind the araS promoter with codons for a C-terminal 10-His tag and transferred to the viral vector, yielding pSVA15. After transformation of *Sulfolobus*, single transformants were grown on 0.1% tryptone and subsequently transferred to the same medium supplemented with 0.2% arabinose. After 2 days of growth, cells were harvested, lysed, and separated into membrane and cytoplasmic fractions. These fractions were analyzed by SDS-PAGE and immunoblotting using antibodies directed against the His tag (Fig. 5). Although SSO2680 is predicted to be a soluble protein, it was recovered with the membrane fraction. In *E. coli*, the protein had been recovered with inclusion bodies, and only a small fraction could be isolated from the soluble fraction (1). SSO2680 was purified from detergent-solubilized membranes of *S. solfataricus* by His-Select Ni affinity chromatography, yielding ~1 mg purified enzyme per liter of cells (Fig. 5A). Immunodetection with His tag-specific antibodies confirmed that the purified protein corresponded to the recombinant tagged protein (lower part of Fig. 5A). SSO2680 showed divalent cation-dependent ATPase activity at a high temperature and a preference for Mn$^{2+}$ over Mg$^{2+}$ (Fig. 5B), in agreement with previous studies using the heterologously expressed protein purified from *E. coli* (1). Interestingly, the specific activity of the protein produced and purified from *S. solfataricus* was six times higher (50 nmol of Pi released mg protein$^{-1}$ min$^{-1}$) than that of the enzyme isolated from *E. coli* (8 nmol of Pi released mg protein$^{-1}$ min$^{-1}$) (1), which indicated a more native conformation of the homologously expressed protein. In order to analyze the effect of medium composition on the expression level, cells were grown with different amounts of tryptone and arabinose, and the membrane and cytoplasmic fractions of lysed cells were analyzed by SDS-PAGE and immunoblotting. The relative yield of recombinant protein did not change when the arabinose concentra-

![FIG. 4. Western analysis of FlaI expression. *S. solfataricus* cells transformed with pSVA6 and control PH1-16 cells were grown for 2 days at 88°C. Samples were taken at the beginning of the temperature shift from 78 to 88°C and after 1 and 2 days of growth at 88°C. Membranes were isolated from the cells and were analyzed by SDS-PAGE and immunoblotting using FlaI-specific antibodies. The arrow indicates the detected expression product.](image1)

![FIG. 5. Overexpression, purification, and activity of SSO2680. (A) Coomassie blue-stained SDS-PAGE gel of His tag-specific affinity chromatography fractions from solubilized membranes derived from *S. solfataricus* cells transformed with pSVA15. In the lower panel, the corresponding Western blot of the same samples, using His tag-specific antibodies, is shown. M, molecular mass marker; St, starting material; FT, flowthrough; W, wash; E, elution fraction. (B) ATPase activity of purified SSO2680 in the presence of EDTA, Mg$^{2+}$, or Mn$^{2+}$. (C) Overexpression of SSO2680. Membranes of a single pSVA15 transformant were separated in a Coomassie blue-stained SDS-PAGE gel before (-) and after (+) induction with 0.4% arabinose. The arrow indicates SSO2680. In the lower panel, the corresponding Western blot of the same samples, using His tag-specific antibodies, is shown.](image2)
tion was varied between 0.2 and 0.4%. Although the amount of tryptone affected the growth rate, it did not affect the expression level (data not shown). We occasionally observed very high expression levels, comparable to those obtained with E. coli expression systems, in different transformants of Sulfolobus. One such example is shown for SSO2680 in Fig. 5C. The conditions which led to these increased expression levels are currently under investigation.

Expression of SSO0287. SSO0287 (or ABCE1) is a cytoplasmic protein of 68 kDa that contains two nucleotide-binding domains and is predicted to harbor two iron-sulfur clusters. It is homologous to eukaryotic ABC proteins that are essential for cell function and involved in ribosome biogenesis and protein translation (18, 43) but whose specific function is unknown.

The gene was cloned behind the araS promoter with codons for a C-terminal tandem tag, including a Strep tag followed by an eight-His tag. Single transformants were grown on 0.1% tryptone and subsequently transferred to medium containing both 0.1% tryptone and 0.2% arabinose. After 2 days, cells were harvested and lysed. The cytosolic fraction was applied to either a Streptactin or His-Select Ni affinity column. Both methods resulted in single-step purification of the tagged protein (Fig. 6). The identity of the protein was verified by means of immunoblotting using antibodies directed against the Strep tag and the His tag and polyclonal antibodies directed against ABCE1 itself. The purified protein exhibited divalent cation-dependent ATPase activity, with a high temperature optimum of 85°C, close to the optimal growth temperature of S. solfataricus (S. Dinkelaker and R. Tampe, manuscript submitted). As described above, SSO0287 contains two putative sites for the binding of iron-sulfur clusters. Previous attempts to obtain correct assembly of these clusters by heterologous expression in E. coli failed (unpublished results), whereas the homologously produced protein in S. solfataricus appeared to contain the iron-sulfur clusters. The protein was subjected to gel filtration chromatography, and elution was monitored at two different wavelengths, 280 and 410 nm (Fig. 6B), to detect the protein and the iron-sulfur clusters, respectively. The isolated protein eluted as a single monodisperse symmetric peak that was devoid of aggregates. The elution profiles recorded at 280 and 410 nm coincided, suggesting that the recombinant SSO0287 protein contained correctly assembled iron-sulfur clusters.

The expression of SSO0287 in S. solfataricus was scaled up from 400-ml cultures to fermentation in 45 liters. A fermentor containing medium with 0.1% tryptone and 0.2% arabinose was inoculated with 1.6 liters of SSO0287-expressing S. solfataricus culture. After 2 days of growth, the cells were collected at an OD₆₀₀ of ~0.8, and the protein was purified. The yields per liter (0.75 to 1 mg) were comparable to those from small cultures, but when the cells were grown to higher densities (ODs of about 1.5), degradation products of the purified protein were observed.

DISCUSSION

We report here the construction of a virus-based shuttle vector for the heterologous and homologous expression of genes in the hyperthermophilic archaeon S. solfataricus. A summary of the expression studies is shown in Table 3. Two promoters were used to drive expression, namely, the heat-inducible promoter of the alpha subunit of the chaperonin TF55 (for Sor, FlaI, and β-galactosidase) and an arabinose-inducible promoter (for SSO2680, SSO0287, and β-galactosidase). Since the TF55α promoter requires a shift of cultures to 88°C, which is close to the maximal growth temperature of S. solfataricus, this procedure might impose highly stressful conditions on the cells. For routine expression purposes, we therefore favor the use of the arabinose promoter, which is more easily induced and results in less stressful conditions. Similarly, the pBAD system is often used in E. coli, which is based on the araBAD operon controlling the arabinose metabolic pathway (13). This is a tightly controlled system that only allows for expression in the presence of arabinose, thereby preventing adverse effects on growth during the stages that are needed to obtain cell mass. In S. solfataricus, several sugar binding proteins that are part of ABC transporters are expressed only in the presence of their respective substrates (11). One of these genes is araS, which encodes an arabinose-binding protein. The expression of araS is induced only when S. solfataricus is grown on arabinose (11). We have therefore chosen the promoter region of araS to drive the expression of genes in S. solfataricus. A thorough characterization of the regulatory elements in this promoter and the construction of minimal in-

![FIG. 6. Purification and gel filtration of SSO0287. (A) Coomassie blue-stained SDS-PAGE gel of Strep tag-specific affinity chromatography fractions of the cytoplasm of SSO0287 transformants. St, starting material; FT, flowthrough; E, elution fraction. (B) Gel filtration of purified SSO0287. Traces were recorded at 280 nm (black line) and 410 nm (dashed line).](image-url)
All tags were positioned at the C terminus.

A protein from native host *Acidianus ambivalens* from nucleotide binding domains and two Fe-S clusters) (anti-Strep, anti-His) and 280/410 nm Strep Sor activity Specific activity as high as tf55 Sulfur oxidation/reduction pASK-SOR.05 SOR (sulfur oxygenase/reductase ABCE1 protein (SSO0287) (two)

TABLE 3. Summary of expression studies

<table>
<thead>
<tr>
<th>Protein</th>
<th>Activity</th>
<th>Cleares beta-galactosidase</th>
<th>PMD5/SVAY5</th>
<th>pSYA6</th>
<th>pmSA5</th>
<th>pmPA6</th>
<th>pmPA5</th>
<th>pmPA4</th>
<th>pmPA4</th>
<th>pmPA3</th>
<th>pmPA3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta-galactosidase (SSO2019)</td>
<td>ATPase (Mn > Mg)</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 3. Summary of expression studies

FlaI (SSO2319) (putative ATPase (type II or IV secretion) binding domain) beta-galactosidase (SSO1561) (two)

TABLE 3. Summary of expression studies

FlaI (SSO2319) (putative ATPase (type II or IV secretion) binding domain) beta-galactosidase (SSO1561) (two)

TABLE 3. Summary of expression studies

FlaI (SSO2319) (putative ATPase (type II or IV secretion) binding domain) beta-galactosidase (SSO1561) (two)

TABLE 3. Summary of expression studies

FlaI (SSO2319) (putative ATPase (type II or IV secretion) binding domain) beta-galactosidase (SSO1561) (two)

TABLE 3. Summary of expression studies

FlaI (SSO2319) (putative ATPase (type II or IV secretion) binding domain) beta-galactosidase (SSO1561) (two)

TABLE 3. Summary of expression studies

FlaI (SSO2319) (putative ATPase (type II or IV secretion) binding domain) beta-galactosidase (SSO1561) (two)

TABLE 3. Summary of expression studies

FlaI (SSO2319) (putative ATPase (type II or IV secretion) binding domain) beta-galactosidase (SSO1561) (two)

TABLE 3. Summary of expression studies

FlaI (SSO2319) (putative ATPase (type II or IV secretion) binding domain) beta-galactosidase (SSO1561) (two)

TABLE 3. Summary of expression studies

FlaI (SSO2319) (putative ATPase (type II or IV secretion) binding domain) beta-galactosidase (SSO1561) (two)

TABLE 3. Summary of expression studies

FlaI (SSO2319) (putative ATPase (type II or IV secretion) binding domain) beta-galactosidase (SSO1561) (two)

TABLE 3. Summary of expression studies

FlaI (SSO2319) (putative ATPase (type II or IV secretion) binding domain) beta-galactosidase (SSO1561) (two)

TABLE 3. Summary of expression studies

FlaI (SSO2319) (putative ATPase (type II or IV secretion) binding domain) beta-galactosidase (SSO1561) (two)

TABLE 3. Summary of expression studies

FlaI (SSO2319) (putative ATPase (type II or IV secretion) binding domain) beta-galactosidase (SSO1561) (two)

TABLE 3. Summary of expression studies

FlaI (SSO2319) (putative ATPase (type II or IV secretion) binding domain) beta-galactosidase (SSO1561) (two)

TABLE 3. Summary of expression studies

FlaI (SSO2319) (putative ATPase (type II or IV secretion) binding domain) beta-galactosidase (SSO1561) (two)

TABLE 3. Summary of expression studies

FlaI (SSO2319) (putative ATPase (type II or IV secretion) binding domain) beta-galactosidase (SSO1561) (two)

TABLE 3. Summary of expression studies

FlaI (SSO2319) (putative ATPase (type II or IV secretion) binding domain) beta-galactosidase (SSO1561) (two)

TABLE 3. Summary of expression studies

FlaI (SSO2319) (putative ATPase (type II or IV secretion) binding domain) beta-galactosidase (SSO1561) (two)

TABLE 3. Summary of expression studies

FlaI (SSO2319) (putative ATPase (type II or IV secretion) binding domain) beta-galactosidase (SSO1561) (two)

TABLE 3. Summary of expression studies

FlaI (SSO2319) (putative ATPase (type II or IV secretion) binding domain) beta-galactosidase (SSO1561) (two)

TABLE 3. Summary of expression studies

FlaI (SSO2319) (putative ATPase (type II or IV secretion) binding domain) beta-galactosidase (SSO1561) (two)

TABLE 3. Summary of expression studies

FlaI (SSO2319) (putative ATPase (type II or IV secretion) binding domain) beta-galactosidase (SSO1561) (two)

TABLE 3. Summary of expression studies

FlaI (SSO2319) (putative ATPase (type II or IV secretion) binding domain) beta-galactosidase (SSO1561) (two)

TABLE 3. Summary of expression studies

FlaI (SSO2319) (putative ATPase (type II or IV secretion) binding domain) beta-galactosidase (SSO1561) (two)

TABLE 3. Summary of expression studies

FlaI (SSO2319) (putative ATPase (type II or IV secretion) binding domain) beta-galactosidase (SSO1561) (two)

TABLE 3. Summary of expression studies

FlaI (SSO2319) (putative ATPase (type II or IV secretion) binding domain) beta-galactosidase (SSO1561) (two)

TABLE 3. Summary of expression studies

FlaI (SSO2319) (putative ATPase (type II or IV secretion) binding domain) beta-galactosidase (SSO1561) (two)

TABLE 3. Summary of expression studies

FlaI (SSO2319) (putative ATPase (type II or IV secretion) binding domain) beta-galactosidase (SSO1561) (two)

TABLE 3. Summary of expression studies

FlaI (SSO2319) (putative ATPase (type II or IV secretion) binding domain) beta-galactosidase (SSO1561) (two)
binant *Sulfolobus* strain can serve as an important tool to address such questions.

Also, in the case of SSO0287, the tagged version can be used for searches for unidentified interacting proteins. The exact function of this protein is unknown, but it contains a unique ABC domain with two iron-sulfur clusters. Strikingly, it appeared that only 50% of these iron-sulfur clusters assembled when the protein was expressed in *E. coli*, whereas in *S. solfataricus* the protein mostly likely followed the endogenous assembly pathway, which ensures the correct incorporation of these iron-sulfur clusters into the protein. The homologous expression of SSO0287 now allows for mutational analysis in *S. solfataricus* in order to assess its in vivo function using interference assays.

In conclusion, we have established a vector system for protein expression in *S. solfataricus*, making use of two different promoters. The versatility of the system was demonstrated by various examples of heterologous or homologous proteins with a cytoplasmic or membrane-associated location, and all recombinant proteins were shown to be functional (except for FlaI). This is the first report of the application of an expression system in a hyperthermophilic archaeon. The expression of tagged proteins in *S. solfataricus* will greatly facilitate the isolation of unknown protein complexes by coprecipitation methods. Moreover, the unique growth conditions of hyperthermophiles and the ability to express proteins at high temperatures enable the expression of natively folded proteins that in mesophilic hosts end up in inclusion bodies. The virus vector allows for the stable production of proteins in large-scale fermentations of *S. solfataricus*, which might be of interest for industrial applications when the system is further improved. While a few studies have recently demonstrated the expression of proteins in hyperthermophilic bacteria, in particular in *Thermus thermophilus* (8, 21), this system will allow the production of unknown protein complexes by directed evolution in hyperthermophilic archaea: selection of a stable genetic marker for DNA transfer into *Sulfolobus solfataricus*. Extremophiles 5:153–159.

acrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 178:201–205.

