Complementary and Overlapping Selectivity of the Two-Peptide Bacteriocins Plantaricin EF and JK

GERT N. MOLL,1 EMILE VAN DEN AKKER,1 HÅVARD H. HAUGE,2 JON NISSEN-MEYER,2 INGOLF F. NES,3 WIL N. KONINGS,1 AND ARNOLD J. M. DRIESEN1,*

Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN Haren, The Netherlands,1 and Department of Biochemistry, University of Oslo, Oslo,2 and Department of Chemistry and Biotechnology, Agricultural University of Norway, N-1432 As,3 Norway

Received 19 March 1999/Accepted 7 June 1999

Plantaricin EF and JK are both two-peptide bacteriocins produced by Lactobacillus plantarum C11. The mechanism of plantaricin EF and JK action was studied on L. plantarum 965 cells. Both bacteriocins form pores in the membranes of target cells and dissipate the transmembrane electrical potential (Δψ) and pH gradient (ΔpH). The plantaricin EF pores efficiently conduct small monovalent cations, but conductivity for anions is low or absent. Plantaricin JK pores show high conductivity for specific anions but low conductivity for cations. These data indicate that L. plantarum C11 produces bacteriocins with complementary ion selectivity, thereby ensuring efficient killing of target bacteria.

Many lactic acid bacteria produce bacteriocins. Bacteriocins are peptides or proteins that kill bacteria that are related to the producer strain. Bacteriocins are useful to their producer by killing bacteria that compete for the same niche. Plantaricin EF (PlnEF) and plantaricin JK (PlnJK) are both two-peptide bacteriocins that belong to the large group of small, heat-stable nonantibiotics termed class II bacteriocins (10).

Lactobacillus plantarum C11 secretes plantaricin A (PlnA), a small peptide that consists of 26 amino acids and that exhibits both bactericidal (7) and pheromone activity (4, 7). An all-d-amino-acid PlnA was found to be as bactericidal as an all-L-amino-acid PlnA. In contrast, the pheromone activity was found to be stereospecific and only observed with PlnA composed of l-amino acids (7). Therefore, the antimicrobial activity of PlnA appears not to involve chiral interactions and seems to depend only on the strong amphiphilic α-helical structure of this peptide. PlnA induces the transcription of five operons, i.e., plnABCD, plnEFI, plnJKLR, plnMNOP, and plnGHSTUV (5). The first operon contains the structural gene for PlnA itself. plnB, plnC, and plnD encode proteins that are involved in signal transduction, i.e., a two-component regulatory system that consists of the membrane-associated histidine protein kinase, PlnB, and two response regulators, PlnC and PlnD. PlnA is thought to interact with PlnB to trigger expression of the other structural genes (3, 6). The plnEFI and plnJKLR operons encode two-two-peptide bacteriocins, PlnEF and PlnJK. PlnL, PlnM, and PlnP are thought to confer immunity to the bacteriocin-producing cells (5). Based on sequence similarity, plnGH is thought to encode subunits of an ABC transporter that secretes and processes the bacteriocin precursors. The functions of PlnO (a 399-amino-acid [aa] hydrophobic peptide), PlnN (a bacteriocin-like peptide), PlnR (a 50-aa hydrophobic, cationic peptide), and PlnSTUV (hydrophobic peptides of 99, 140, 222, and 44 aa) are not known.

PlnE, PlnF, PlnJ, and PlnK are cationic peptides that consist of 33, 34, 25, and 32 amino acids and have molecular weights of 3,703, 3,545, 2,929, and 3,503, respectively (5). These peptides have the propensity to form an amphiphilic α-helical structure in a membrane-mimicking environment (8). The antimicrobial activity of PlnF is enhanced more than 1,000-fold by the equimolar presence of PlnE and vice versa. Likewise, PlnJ and PlnP are efficient antimicrobials when present together. Strikingly, none of the other combinations of these four peptides enhanced the antimicrobial activity (2, 8). The amphiphilic structure of these peptides is believed to play a role in pore formation (8, 9). The complementary peptides (PlnEF or PlnJK) interact, because the simultaneous addition of both of the peptides synergistically promoted the formation of their α-helical structure in the presence of dioleoylphosphatidylglycerol liposomes (8). In the present study, we show that PlnEF and PlnJK form pores in the target membranes that differ in ion selectivity. These results might explain why some bacteria are more sensitive to PlnEF, while others are more sensitive to PlnJK (2). The combined and complementary action of these bacteriocins warrants efficient killing of target cells.

MATERIALS AND METHODS

Materials. 86Rb⁺ (10 mCi/mg), [14C]choline⁺ (55 mCi/mmol), [14C]glutamic acid (251 mCi/mmol), and 32P (3,000 Ci/mmol) were obtained from Amersham Life Science, Little Chalfont, Buckinghamshire, United Kingdom. The separated components of PlnEF and PlnJK were synthesized and purified as described previously (8). Peptides were suspended in a solution containing 40% (vol/vol) 2-propanol, 0.1% (vol/vol) trifluoroacetic acid (TFA), and 59.9% (vol/vol) H2O. This mixture without peptide was used in control experiments and is indicated as “solvent.” The complementary components were added together in a ratio of 1:1 to give either PlnEF or PlnJK. Gramicidin A (α-helix in the presence of dioleoylphosphatidylglycerol liposomes) and gramicidin D (cylindrical structure in a membrane-mimicking environment) were purchased from Sigma.

Bacterial strains and culture conditions. Lactobacillus plantarum 965 was grown at 30°C in MRS broth (unlabelled P) supplemented with 0.1% (vol/vol) Tween 80, but without sodium acetate and triaminom citrate. Lactococcus lactis was used as a control strain (5). The culture broth was harvested by centrifugation (70 × g for 10 min), washed twice at 4°C, and used directly.

Uptake and efflux experiments. L. plantarum 965 cells were suspended in the buffers indicated in the figure legends, and uptake of radiolabelled compounds was monitored after energization with 0.5% (wt/vol) glucose. At indicated times, the cells were either collected by centrifugation (1000 × g for 5 min) or, in some experiments, the supernatant was collected and used as a control experiment. The uptake of [14C]choline by overnight incubation at 4°C. Subsequently, cells were diluted

* Corresponding author. Mailing address: Department of Microbiology, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands. Phone: (31) (50) 3632164. Fax: (31) (50) 3632154. E-mail: A.J.M.Driessen@BIOL.RUG.NL.
in 4.2 ml of 50 mM sodium phosphate (pH 7.0) were suspended in 50 mM sodium phosphate (pH 7.0). The radioactivity that was retained on the filter was measured by liquid scintillation counting in a Packard Tri-Carb 460 CD counter (Packard Instruments Corp.).

To measure efflux of unlabelled phosphate, cells (1.3 mg of protein/ml) suspended in 50 mM NaOH Mes [2-(N-morpholino)ethanesulfonic acid, pH 7.0] were incubated with solvent; nisin (1.4 μM); valinomycin and nigericin (250 nM each); the individual PlnE (1.4 μM), PlnF (1.4 μM), PlnK (2.8 μM) peptides; PlnEF (0.7 μM each peptide); or PlnJK (1.4 μM each peptide). To avoid cell lysis and/or continued efflux during centrifugation, samples were transferred to the top of a 20% (wt/vol) sucrose layer and directly centrifuged (2 min at 8,000 rpm in an Eppendorf centrifuge). The upper layer, containing the released P_i, was dried, subjected to destruction (30 min, 180°C in a m-pore-size cellulose nitrate filters and washed twice with ice-cold 50 mM sodium phosphate (pH 7.0) (100 mM LiCl). The radioactivity that was retained on the filter was measured by liquid scintillation counting in a Packard Tri-Carb 460 CD counter (Packard Instruments Corp.).

Proton motive force measurements. The transmembrane electrical potential, Δψ, was monitored by means of DiSC₃(5) fluorescence (excitation wavelength, 643 nm; emission wavelength, 666 nm; slit width excitation and emission, 10 nm) (21). The intracellular pH of cells was measured by using 7-[N-(2-carboxyethyl)-7-(N,N-dimethylamino)carbonyl]-3-[2-carboxyethyl]-1,3-dihydro-7-hydroxy-9-carboxyfluorescein (BCECF) as a pH-sensitive dye (excitation, 490 nm; emission, 525 nm; slit width excitation and emission, 10 nm). The data were corrected for the PlnJK-induced BCECF efflux by subtraction of the PlnJK-induced BCECF fluorescence (Fig. 3, arrow 1). The latter is due to decrease in the fluorescence self-quenching caused by efflux of some of the BCECF. Complete efflux of BCECF could be effected by the lantibiotic nisin (Fig. 3, arrow 2). The BCECF released by the cells was recovered in the supernatant after centrifugation of the PlnJK- or nisin-treated cells. On the other hand, neither solvent nor the individual PlnJ and PlnK peptides, PlnEF, the ionophore gramicidin A, or the protonophore CCCP caused BCECF efflux. The PlnJK-induced BCECF efflux was more pronounced at pH 6.5 than at pH 7.0 and was almost completely absent at pH 8.0. These data show erable release of the cellular BCECF (see below), this correction was essential for accurate intracellular pH determinations. PlnEF or PlnJK was added to glucose-energized, BCECF-loaded cells that were incubated with (Fig. 2A and C) or without (Fig. 2B and D) valinomycin to dissipate the Δψ. In the presence of valinomycin, PlnEF (Fig. 2A) and PlnJK (Fig. 2C) caused an immediate dissipation of the ΔpH. In the absence of valinomycin (i.e., in the presence of Δψ), PlnJK induced a direct dissipation of the ΔpH (Fig. 2D), while PlnEF elicited a transient increase in ΔpH followed by its dissipation (Fig. 2B). Dissipation of the ΔpH by PlnJK is faster than that by PlnEF. The individual peptides caused only a marginal loss of the ΔpH (data not shown). These data suggest that PlnJK dissipates the ΔpH directly, whereas dissipation of ΔpH by PlnEF might be indirect.

PlnJK causes efflux of specific anions. Addition of PlnJK to BCECF-loaded, nonenergized cells resulted in an increase in BCECF fluorescence (Fig. 3, arrow 1). The latter is due to decrease in the fluorescence self-quenching caused by efflux of some of the BCECF. Complete efflux of BCECF could be effected by the lantibiotic nisin (Fig. 3, arrow 2). The BCECF released by the cells was recovered in the supernatant after centrifugation of the PlnJK- or nisin-treated cells. On the other hand, neither solvent nor the individual PlnJ and PlnK peptides, PlnEF, the ionophore gramicidin A, or the protonophore CCCP caused BCECF efflux. The PlnJK-induced BCECF efflux was more pronounced at pH 6.5 than at pH 7.0 and was almost completely absent at pH 8.0. These data show
that in contrast to PlnEF, PlnJK is able to allow BCECF efflux from the cells.

To investigate whether other anions can pass through the PlnJK pores, uptake and efflux of glutamate were measured. Although the exact mechanism of glutamate uptake has not been studied in *L. plantarum*, it is likely mediated by a system that resembles the ATP-driven, unidirectional system of *Lactococcus lactis* (19). When cells, after energization, were first allowed to accumulate [14C]glutamate, addition of PlnJK caused a rapid and complete release of the glutamate from the cells (Fig. 4). In contrast, PlnEF and PlnJ caused a slow release of the glutamate, while the other individual components caused no release at all. Glutamate uptake was arrested by the addition of the ionophores valinomycin and nigericin, but the accumulated glutamate was retained by the cell, analogous to previous studies with *L. lactis* (19). This indicates that indeed in *L. plantarum*, glutamate uptake takes place via a unidirectional ATP-driven mechanism. These data demonstrate that PlnJK efficiently conducts efflux of glutamate, whereas PlnEF (and PlnJ) is poorly active.

Since PlnJK caused the efflux of the anions BCECF and glutamate, we also studied whether it can cause the release of cellular phosphate. Uptake of phosphate by *L. lactis* occurs via an ATP-driven, unidirectional system (18), and a similar mechanism is anticipated in *L. plantarum*. Cells that were energized with glucose rapidly accumulated externally added 33Pi, whereas no uptake was observed when the cells were first pretreated with PlnEF or PlnJK (see Fig. 5). On the other hand, once the 33Pi had been accumulated by the cells, addition of PlnEF, PlnJK, or the combination of valinomycin and nigericin did not induce release of the phosphate. In contrast, release was observed after the addition of nisin (Fig. 5). A colorimetric analysis of the release of cellular phosphate using a centrifugation assay to separate the cells from the suspension medium also demonstrated considerable release of phosphate only with nisin and not with PlnEF or PlnJK (data not shown). These data suggest that neither PlnEF nor PlnJK is able to conduct phosphate.

PlnEF causes efflux of cations. Next, the activity of the plantaricins to elicit cation release was investigated. For this purpose, cells were loaded with [14C]choline by overnight incubation. [14C]choline-loaded cells were subsequently challenged with PlnEF or PlnJK. PlnEF appeared to be more efficient in inducing choline release than PlnJK (data not shown). However, both were more effective than single peptides and the combination of valinomycin and nigericin (data not shown). In a control experiment, no plantaricin-induced Pi efflux was observed, precluding plantaricin-induced lysis. In contrast to [14C]choline, 86Rb⁺ ions readily accumulated in glucose-energized cells (Fig. 6). PlnEF elicited the rapid release of accumulated 86Rb⁺, while PlnJK blocked further uptake and caused only a marginal loss of accumulated 86Rb⁺. Only a slight inhibition of uptake was observed with the indi-
dissipation has also been observed for the ionophore gramicidin
A on the plasmic membranes of the target cells. Both plantaricins
dissipate the Δψ more rapidly than PlnJK. In contrast, PlnJK dissipates the Δψ with a fluorescent pH indicator.

ACKNOWLEDGMENTS

We thank Dimitris Mantzilas for help in preparing, purifying, and quantitating the bacteriocins.

REFERENCES