Analysis of the Position of EndoAnchor Implants in Therapeutic Use During Endovascular Aneurysm Repair


Seline R. Goudeketting*
Kim van Noort*
Jenske J.M. Vermeulen
Kenneth Ouriel
William D. Jordan Jr
Jean M. Panneton
Cornelis H. Slump
Jean-Paul P.M. de Vries

*Both authors contributed equally
ABSTRACT

Objectives: The aim of this study was to analyze the penetration depth, angles, distribution and location of deployment of individual EndoAnchor implants.

Methods: Eighty-six primary and revision arm patients (procedural success, 53; persistent type IA endoleak, 33) treated for type IA endoleaks with a total of 580 EndoAnchor implants from a subset of the Aneurysm Treatment Using the Heli-FX Aortic Securement System Global Registry (ANCHOR) were included in this study. Procedural success was defined as the absence of a type IA endoleak on the first postprocedural CT scan after the EndoAnchor implantation procedure. Endograft malapposition along the circumference was assessed at the first postoperative computed tomography scans and expressed as clock face range and width (°) and normalized such that the centre was translated to 0°. The position and penetration of each EndoAnchor implant was measured as the clock face orientation. EndoAnchor implant penetration into the aortic wall was categorized as (1) “good penetration”, ≥2 mm, (2) “borderline penetration”, <2 mm or ≥2 mm gap between the endograft and aortic wall or (3) “no penetration”. The orthogonal and longitudinal angles between the EndoAnchor implant and the interface plane of the aortic wall were determined. Location of deployment was investigated for each EndoAnchor implant and classified as maldeployed when (1) above the fabric, or (2) in a gap >2 mm between the endograft and aortic wall due to >2mm thrombus or positioning of the EndoAnchor implant below the aortic neck.

Results: A total of 170 (29%) EndoAnchor implants had maldeployment and were therefore beyond recommended use and not useful. After EndoAnchor implanting, the procedural success and persistent type IA endoleak groups had 3 (1%) and 4 (2%) EndoAnchor implants positioned above the fabric as well as 60 (18%) and 103 (42%) placed in a gap >2 mm, respectively. The amount of good, borderline and nonpenetrating EndoAnchor implants was significantly different between both groups (success vs type IA endoleak) after exclusion of maldeployed EndoAnchor implants (235 [87.4%], 14 [5.2%] and 20 [7.4%] vs 97 [68.8 %], 18 [12.8%] and 26 [18.4%], respectively, \( P < .001 \)). Good penetrating EndoAnchor implants were closer aligned with a 90° orthogonal angle than the borderline and nonpenetrating EndoAnchor implants. The longitudinal angle was more distributed, which was observed through all three penetration groups.

Conclusions: In this subcohort of ANCHOR patients, almost 30% of the EndoAnchor implants had maldeployment, which may be prevented by careful preoperative
planning and measured intra-operative deployment. If endoleaks are due to >2mm gaps, EndoAnchor implants alone may not provide the intended sealing and additional devices should be considered.
INTRODUCTION

The Heli-FX EndoAnchor System (Medtronic Vascular, Santa Rosa, CA, USA) was developed to ensure durable endograft sealing and fixation as an adjunct to endovascular abdominal aortic repair (EVAR). Prophylactic use of EndoAnchor implants can prevent migration and the occurrence of type IA endoleaks post-EVAR. Additionally, EndoAnchor implants can be used therapeutically to prevent persistent migration as well as to treat acute and late type IA endoleaks. The EndoAnchor implant’s helical design allows safe attachment of the endograft to the aortic wall, at the same time minimizing the risk of perforation of adjacent structures. When deployed circumferentially, EndoAnchor implants increase fixation strength to that of a surgical hand-sewn anastomosis. However, this strength can only be achieved if the EndoAnchor implants successfully penetrate the aortic wall at least 2 mm.

A recent publication demonstrated the association between aortic neck characteristics and successful EndoAnchor penetration in patients with type IA endoleaks. The aortic neck diameter and neck calcium thickness were independent predictors for individual EndoAnchor implant maldeployment. Moreover, a larger number of nonpenetrating EndoAnchor implants was associated with an increased risk for type IA endoleaks. However, the reasons for failed EndoAnchor implant penetration in the aortic wall were not investigated. Technical errors affect successful penetration, including placement of EndoAnchor implants above the fabric, deployment at a tangential angle to the aortic wall, or placement at the site of a large gap between the aortic wall and endograft.

The aim of this study was to analyze the relationship between EndoAnchor deployment and successful resolution of type IA endoleaks, including their distribution along the circumference of the neck, penetration depth into the aortic wall, and the angle of penetration. This information is essential to demonstrate and emphasize the importance of pre-operative planning and intra-operative techniques, leading to improved utilization of EndoAnchor implants in resolving type IA endoleaks.

METHODS

Patient selection

A subset of patients from the Aneurysm Treatment Using the Heli-FX Aortic Securement System Global Registry (ANCHOR; NCT01534819) were included in this study. The study was conducted according to the Declaration of Helsinki and informed consent was obtained for every patient.
Patients from ANCHOR were included in this study only if (1) the indication for EndoAnchor use was to treat a type IA endoleak, and (2) the first postprocedural computed tomography (CT) angiography (CTA) was of sufficient quality (arterial phase contrast, no slice thickness >3 mm or artifacts [e.g., bare metal stents, extension cuffs, or glue]). Patients were excluded when aortic extension cuffs were implanted at the time of EndoAnchor implantation, because the sequence of the deployment of the additional material was unknown. As well, the use of an aortic extension cuff precludes the assessment of whether success might be attributable to the cuff or the EndoAnchor implants, or both. Of note, the current results are not representative for the whole ANCHOR cohort because of the strict exclusion criteria. The study cohort comprised a subset of patients from both the primary and revision arm of the ANCHOR cohort. The primary arm consisted of patients treated for an intraoperative type IA endoleak, while the revision arm comprised those with EndoAnchor implant use as a secondary intervention for type IA endoleak or endograft migration after EVAR. The study population was divided into a non-successful and successful cohort based upon persistence of type IA endoleak after treatment of EndoAnchor implants at one month follow-up.

**Imaging studies and measurement protocol**

Measurements were performed on the preprocedural and first postprocedural CT scan, using a 3Mensio vascular workstation V9.0 SP1 (Pie Medical Imaging BV, Maastricht, The Netherlands). Median time between the procedure and first postprocedural CT scan was 36 days [interquartile range (IQR), 25-47 days]. The median slice thickness was 2mm (range, 0.6-3.0mm). A centre lumen line (CLL) was semi-automatically drawn through the lumen of the aorta and adjusted manually if necessary. The location of the orifices of the renal arteries, proximal endograft fabric markers, each EndoAnchor implant, and aortic bifurcation were identified. Neck diameter was measured as the outer to outer diameter at the level of the renal arteries on the preoperative CT scan. The position and width of type IA endoleaks (gap between endograft and aortic wall), penetration depth and penetration angles of the EndoAnchor implants in both the primary and revision arms were measured. Due to the 3.5 mm total penetration length of the EndoAnchor implants, a gap of more than 2mm between the endograft and aortic wall is beyond the recommended use for EndoAnchor implant deployment and could thereby result in maldeployment. Therefore, the eventual gap (≥2mm) between the endograft and aortic wall was measured at the position of every EndoAnchor implant.
Endoleak measurements
The location where the endograft was not opposed to the aortic wall was defined as the endograft malapposition along the circumference of the proximal aortic neck. The endograft malapposition for patients with an endoleak was measured on pre- and postprocedural CT scans for patients of the revision arm and on the postprocedural CT scans for patients in the primary arm. The circumference over which there was endograft malapposition was expressed as the clock face range and width in degrees (Figure 6.1A), normalized such that the centre was translated to 0° (Figure 6.1B).

EndoAnchor implant penetration
EndoAnchor implant penetration measurements were performed on the first postprocedural CT scan after EndoAnchor implant deployment. In previous publication, penetration of the EndoAnchor implants were reviewed as (1) “good penetration” when the EndoAnchor implant penetrated the aortic wall ≥2 mm, (2)

Figure 6.1. Schematic depiction in 360° of the circumference and the normalization of the location of malapposition and EndoAnchor implants. The width (α in degrees) and the center of the malapposition zone (M). Notice that in this example one of the EndoAnchor implants is deployed within the endoleak where there is a gap >2mm; maldeployment due to exceeding the recommended use. (A) The angle measurements (α) are performed on the slice perpendicular to the centreline. The width of the malapposition zone in this example is 110° and thus the center is 55°. (B) The malapposition zone is normalized such that the midpoint is located at 0°. Therefore, the clock face location of the EndoAnchor implants is also normalized to the center of the malapposition zone (i.e., the clock face EndoAnchor implant location minus 55°).
“borderline penetration” because of <2 mm of penetration or a gap between the endograft and aortic wall or (3) “no penetration” when there was no penetration into the aortic wall. Two experienced observers (SG, KN) independently performed these measurements. A third reviewer’s (JPdV) opinion was conclusive if there was a discrepancy in measurements. Maldeployment was investigated for each EndoAnchor implant and defined as EndoAnchor implants deployed (1) above the fabric, or (2) in a gap >2 mm between the endograft and aortic wall (i.e., endograft malapposition) due to thrombus >2 mm in the infrarenal neck or positioning of the EndoAnchor implant below the aortic neck (start of the aneurysm). Examples of properly and maldeployed EndoAnchor implants are shown in Figure 6.2. Analysis of EndoAnchor implant penetration was performed for each EndoAnchor implant. They were subgrouped by whether they were implanted within or outside the recommended use. Of note, one maldeployed EndoAnchor implant does not mean that all EndoAnchors are maldeployed in a patient. The position of the EndoAnchor implants was measured as a clock face orientation (°) on the orthogonal view, where 0° was the 12 o’clock position on the aortic circumference (Figure 6.1A). In subjects with a persistent type IA endoleak, the position of the EndoAnchor implants was translated according to the position of the endoleak, where 0° was the center of the endoleak (Figure 6.1B). The distribution of good, borderline, and nonpenetrating EndoAnchor implants in the successful and non-successful cohort were plotted over the circumference. Additionally, the decrease in width of the endograft malapposition zone over the circumference was plotted for patients of the revision arm without procedural success.

EndoAnchor implant angle analysis
EndoAnchor implant penetration angles were determined as the orthogonal and longitudinal angles between the EndoAnchor implant and the aortic wall. Orthogonal angles were measured on the orthogonal view of the CLL with the angle tool in 3Mensio (Figure 6.3A). The angle was determined at the interface plane of the aortic wall and the EndoAnchor implant. The longitudinal angles were measured by placing two markers on the extremities of the EndoAnchor implants (Figure 6.3B, blue dots) and two markers on the aortic wall parallel to the two markers of the extremities of the EndoAnchor implants (Figure 6.3B, orange dots). Coordinates were exported to MATLAB 2017a (The Mathworks, Natrick, MA, USA) to calculate the directional vectors of the EndoAnchor implants and the directional vector of the aortic wall (Figure 3B, blue and orange lines). The angle between the vectors was calculated for every EndoAnchor implant. To test the intra- and interobserver variability, the orthogonal and longitudinal angles of eighty EndoAnchor implants were measured by two experienced observers (JV, SG).
Statistical analysis

Statistical analyses were performed with SPSS version 24 (IBM Corp, Armonk, NY, USA). P-values were considered significant when two-tailed $\alpha < .05$. Normality of the data was tested with the Shapiro–Wilk test. All variables had a non-normal distribution; therefore, data was represented as median [IQR]. Differences in continuous variables were tested with the Mann-Whitney U test and Wilcoxon Signed Rank Test, categorical variables were calculated with the Fisher’s exact test. The intraclass correlation coefficient (ICC) was used to determine the intra- and inter-observer agreement for the orthogonal and longitudinal angles of the EndoAnchor implants to the CLL. ICC values were categorized into levels of agreement: poor (0-.20), fair (0.21-0.40), moderate (0.41-0.60), good (0.61-0.80), and perfect (0.81-1.00). Pearson correlation coefficient was used to calculate the correlation between neck diameter and longitudinal angles.

Figure 6.2. Examples of properly (A-B) and maldeployed (C-E) EndoAnchor implants. (A-B) EndoAnchor implants deployed within the apposition zone, and penetrating the aortic wall at least 2 mms. (C) EndoAnchor implant (EA1, red arrow) deployed above the fabric (yellow markers represent the endograft fabric markers, and the upper yellow dotted line represents the location of the top of the endograft fabric). (D) EndoAnchor implant (EA7, red arrow) deployed below the apposition zone (lower yellow dotted line). This EndoAnchor implant furthermore does not penetrate the aortic wall (pink dotted line). (E) EndoAnchor implant (EA3, red arrow) deployed within a $>$2 mm gap (aortic wall = pink dotted line).
Figure 6.3. Schematic depiction of the angles between the EndoAnchor implant and aortic wall. (A) Orthogonal angle ($\beta$) measurements performed with the 3Mensio angle tool. (B) The longitudinal angle ($\gamma$) was calculated as follows: markers were placed on the extremities of the EndoAnchor implant (blue dots) and parallel to the extremities of the EndoAnchor implant on the aortic wall (orange dots). The directional vectors were created for the EndoAnchor implant (blue line) and the aortic wall (orange line). The angle between the directional vectors was calculated.

RESULTS

The analysis included a subcohort of 86 patients from ANCHOR treated for type IA endoleaks. Among these, 81.4% were male and 61 (71%) and 25 (29%) patients were treated in the primary (71%) and revision arm (29%) of the registry, respectively. After treatment with EndoAnchor implants, 53 of the endoleaks resolved (62%) and 33 (38%) persisted through the one month CTA. Median preoperative neck diameter was 26.5 mm [IQR, 24.2-28.8 mm].

Endoleak measurements

In the primary arm, 17 patients had a persistent type IA endoleak with a median width of the malapposition zone between endograft and aortic wall of 83° [IQR, 75-120°]. The median preoperative width of the endograft malapposition zone of the 25 patients in the revision arm was 113° [IQR, 98-143°]. Sixteen patients (64%) had a persistent type IA endoleak after EndoAnchor implant treatment in the revision arm. Of note, the decrease in width of malapposition zone was not significant in the cases with persisting endoleaks (preoperative: median 113° [IQR, 77-148°] vs postoperative: median 102° [IQR, 68-133°], $P = .284$).
EndoAnchor implant penetration

A total of 580 EndoAnchor implants were deployed in the 86 subjects; 332 and 248 EndoAnchor implants in the cohorts with and without procedural success, respectively. The median number of EndoAnchor implants was 6 [IQR, 4-8] per patient in the 53 patients with successful resolution of the type IA endoleak and 8 [IQR, 4-10] in the 33 patients with a persistent endoleak (\(P = .060\)). A total of 7 (1%) EndoAnchor implants were deployed above the fabric and a total of 163 (28%) EndoAnchor implants were deployed in a ≥2 mm gap between endograft and aortic wall.

Figure 6.4, Figure 6.5, and Figure 6.6 represent the clock face distribution of EndoAnchor implants. Each dot represents an EndoAnchor implant, and the colour corresponds to one of the three groups of penetration (i.e., good, borderline, or nonpenetration). The histogram corresponds to the percentage of EndoAnchor implants per penetration groups over a range of 30°.

Figure 6.4A and Figure 6.5A show the clock face distribution of all EndoAnchor implants in the procedural success and failure groups, respectively, whereas Figure 6.4B and Figure 6.5B only show the distribution of EndoAnchor implants that were positioned within the recommended use and thus without maldeployment. In Figure 6.4B, 3 (1%) EndoAnchor implants were deployed above the fabric and a total of 60 (18%) EndoAnchor implants (18 [56%] borderline, and 42 [65%] nonpenetrating), were excluded from the cohort with procedural success due to a >2 mm gap.

Four (2%) EndoAnchor implants were located above the fabric and a total of 103 (42%) EndoAnchor implants were deployed in an area with a gap ≥2 mm in the persistent type IA endoleak cohort; 25 (58%) borderline and 78 (73%) nonpenetrating EndoAnchor implants (Figure 6.5B). Of the 248 EndoAnchor implants, 110 (44.4%) were deployed in or nearby the endograft malapposition zone; 25 (23%) good, 19 (17%) borderline, and 66 (60%) nonpenetrating (Figure 6.5A). After exclusion of EndoAnchor implants with maldeployment, only 25 good (64%), 4 borderline (10%), and 10 nonpenetrating (26%) EndoAnchor implants remain within this zone (Figure 6.5B). This means that the majority of EndoAnchor implants deployed within the endograft malapposition zone were maldeployed (i.e., 56 [51%] EndoAnchor implants with no penetration and 15 [17%] with borderline penetration).

In 33 patients of the successful group a median of 1 [IQR, 1-3] EndoAnchor implant was maldeployed. In the 21 patients with a persistent type IA endoleak a median of 4 [IQR, 3-6] EndoAnchor implants were maldeployed. The amount of good, borderline and nonpenetrating EndoAnchor implants was still significantly different between the procedural success and failure groups after exclusion of EndoAnchor implants with maldeployment (success: 235 [87.4%], 14 [5.2%] and 20 [7.4%] vs type IA endoleak: 97 [68.8 %], 18 [12.8%] and 26 [18.4%], respectively, \(P < .001\)).
Figure 6.4. Graphical representation of the clock face EndoAnchor implant distribution and penetration for patients with procedural success after treatment with EndoAnchor implants. Note that 0° corresponds to the anterior position on the orthogonal view. (A) EndoAnchor implants (n=332) deployed in 53 patients that resulted in procedural success. (B) EndoAnchor implants (n=269) of the 53 patients with procedural success where the EndoAnchor implants with maldeployment were excluded.

Figure 6.5. Graphical representation of the clock face EndoAnchor implant distribution and penetration for patients with a persistent type IA endoleak after treatment with EndoAnchor implants. Note that 0° represents the center of the malapposition zone (see also Figure 6.1B). The blue lines represent the median [IQR] of the malapposition zone. (A) Persistent type IA endoleak after EndoAnchor implant deployment (N=248) in 33 patients. (B) Distribution of the EndoAnchor implants (N=141) where EndoAnchor implants with maldeployment were excluded.
Figure 6.6 shows the clock face distribution of 135 EndoAnchor implants of the 16 revision arm patients with a persistent type IA endoleak due to malapposition of the endograft. The endograft malapposition zone did not significantly decrease in width after EndoAnchor implant deployment. A total of 12 (50%) borderline and 43 (75%) nonpenetrating EndoAnchor implants were deployed beyond recommended use. This accounts for 41% of the deployed EndoAnchor implants in this group of persistent type IA endoleak patients from the revision arm. Moreover, the majority of the excluded EndoAnchor implants were in or nearby the endograft malapposition zone.

**EndoAnchor implant angle analysis**

Intra-observer agreement was good for the orthogonal (0.799 (95% confidence interval [CI], 0.623-0.893) and longitudinal 0.659 (95% CI, 0.351-0.820) angle measurements. Inter-observer agreement for the orthogonal and longitudinal angle measurements was perfect with an ICC of 0.881 (95% CI, 0.815-0.924) and 0.914 (95% CI, 0.866-0.945), respectively. Figure 6.7 shows the distribution of orthogonal and longitudinal angles of each EndoAnchor implant. Ideally, EndoAnchor implants should be deployed perpendicular to the aortic wall, meaning a 90° orthogonal and longitudinal angle. The good penetrating EndoAnchor implants were more centred on the 90° orthogonal angle, whereas this angle for borderline and nonpenetrating EndoAnchor implants was more scattered. The distribution on the 90° orthogonal angle for the good penetrating EndoAnchor implants appears to be more consistent than the longitudinal angle, which was observed through all three penetration groups. Note that 43 (57%) and 126 (73%) of the borderline and nonpenetrating EndoAnchor implants were beyond recommended use. After removal of these EndoAnchor implants, a clearer difference appears with regards to the orthogonal angle between the different EndoAnchor implant groups. The borderline and nonpenetrating EndoAnchor implants were widely scattered, whereas the good penetrating EndoAnchor implants are located close to the 90° orthogonal angle. No significant correlation was found between neck diameter and longitudinal angles (R= 0.039, P = .361).
Figure 6.6. Sixteen patients treated for type IA endoleak after previous endograft implantation (revision procedures). The center of the endograft malaposition zone was normalized to 0°. The median [IQR] of the endograft malaposition zone is represented by the solid and dotted purple and blue lines for respectively the pre- and postprocedural malaposition zones. Postoperatively, the median width of endograft malaposition was decreased (blue line), although not significantly. A total of 135 EndoAnchor implants were deployed in this subgroup.
Figure 6.7. The distribution of EndoAnchor implants over the orthogonal (x-axis) and the longitudinal (y-axis) angles. (A) The distribution of angles for all 580 EndoAnchor implants (i.e., good [green], borderline [orange] and no [red] penetration). (B) A similar distribution for the 410 EndoAnchor implants within the recommended use.


**DISCUSSION**

This study characterized the distribution of deployed EndoAnchor implants over the circumferences of the aortic wall as well as penetration depth and angle of each EndoAnchor implant in a selected subcohort of ANCHOR patients. Almost 30% of all EndoAnchor implants did not penetrate the aortic wall and 13% had a borderline penetration. Of these EndoAnchor implants, 170 were deployed beyond recommended use, corresponding to 29% of all EndoAnchor implants deployed in this cohort. After exclusion of these maldeployed EndoAnchor implants, 87.4% vs 68.8% of the EndoAnchor implants had a good penetration in the cohorts with and without procedural success, respectively.

Maldeployment of EndoAnchor implants may be overcome by careful preoperative planning to identify the apposition zone and to prevent deployment in a >2mm gap between the aortic wall and endograft. EndoAnchor implants are not designed to overcome gaps >2 mm, which will likely be the reason why the endograft malapposition zone was not significantly decreased in width after EndoAnchor deployment in the revision group. A large proportion of borderline and nonpenetrating EndoAnchor implants were positioned within this zone. The amount of EndoAnchor implants within the endograft malapposition zone with maldeployment demonstrate the likelihood that the gap in this zone was mostly >2 mm. All EndoAnchor implants positioned beyond the recommended use were therefore not useful but serve as an improvement signal where technical success can be increased through better understanding of these indications and pre-case planning. The reason for the presence of a gap could differ between EndoAnchor implants; for example, deployment within a type IA endoleak with a >2 mm width, a >2 mm thickness thrombus load, or low positioning of the EndoAnchor implant and thus deployment in the aneurysm sac (i.e., >2 mm gap). Deployment of an EndoAnchor within thrombus may furthermore decrease the chance of ≥2 mm penetration into the aortic wall (i.e., good penetration), whereby adequate fixation may be inhibited. Moreover, EndoAnchor implants can encounter calcium, which can result in a fractured or nonpenetrating EndoAnchor implant (Figure 6.8). To overcome these problems, preoperative imaging needs careful evaluation. The clock face locations and width of thrombus and calcium loads in the aortic neck can be calculated and translated to corresponding C-arm angles for optimal EndoAnchor implant positioning.
Figure 6.8. Postoperative CT image after implantation of an EndoAnchor implant in a highly calcified region. The figure shows a nonpenetrating EndoAnchor implant at the calcium load (red arrow).

EndoAnchor implants should be deployed in the preoperative identified apposition zone, free from gaps and calcium load. Other reasons for EndoAnchor implant failure are mostly technical insufficiencies. First, optimal positioning of the C-arm (perpendicular to the endograft and Endoguide markers) is important throughout the intervention. During deployment of the EndoAnchor implants, the tip of the Endoguide should remain perpendicular to the fabric of the endograft. Two radiopaque markers (C-shaped and straight at respectively the distal tip and outer curve of the endoguide) will aid the physician during deployment of the EndoAnchor implants. If the tip is positioned perpendicular to the aortic wall, the two markers will form a 90° angle. Hence, if the correct angle of the markers is created, the EndoAnchor implants will be deployed orthogonal to the aortic wall. Moreover, correct positioning of the C-arm perpendicular to the endograft fabric markers ensure that EndoAnchor implants will not be deployed above the endograft fabric. The good penetrating EndoAnchor implants were predominantly deployed within the range of a 70-110° orthogonal angle, whereas the borderline and nonpenetrating EndoAnchor implants were deployed at an orthogonal angle outside of this range. If the angle between the EndoAnchor implant and the aortic wall deviates greatly from the ideal 90°, the length of the EndoAnchor implant that can penetrate the aortic wall will be limited, which may be the reason for borderline or nonpenetration of the EndoAnchor implant.
The longitudinal angle is another technical challenge and perfect positioning will only work if the size of the Endoguide is chosen based on the aortic diameter. The Endoguide gets its stability from the contralateral aortic wall during deployment of the EndoAnchor. In case of an insufficiently small radius of the Endoguide, the guide cannot get its support from the opposite aortic wall and the tip of the guide will be unstable during deployment of the EndoAnchor. This will increase the risk for wiggling and maldeployment. Conversely, if the radius of the Endoguide is too large, the deflectable tip cannot be positioned perpendicular to the aortic wall and the risk for maldeployment will also increase. Our previous report demonstrated that the aortic neck diameter was an independent risk factor of good EndoAnchor penetration, which may have been of influence as well on the longitudinal angle. Figure 7 shows a larger deviation on the longitudinal angle for all good, borderline and nonpenetrating EndoAnchor implants compared to the orthogonal angles. This implies that there is a greater technical challenge in creating the correct longitudinal angle compared to the orthogonal angle.

The appropriate radius size of the Endoguide is also of importance to be able to apply sufficient pressure on the endograft (and aortic wall) during deployment of the EndoAnchor implants. Lack thereof may result in an EndoAnchor implant sticking out into the aortic lumen, thereby having limited if any penetration into the aortic wall.

To overcome problems with gaps and angles, an increase in the length of EndoAnchor implants could be an option. However, the length of the EndoAnchor implant is designed to limit the risk of penetration of surrounding structures such as the intestine or venous structures. Another limitation is that the EndoAnchor implant does not have the full function of a tension screw and therefore is unable to pull the aortic wall to the endograft on its own. Thus, sufficient pressure on the delivery guide is necessary to create adequate penetration and ensure apposition of the endograft to the aortic wall.

Intra-operative assessment of the aortic wall and appreciation of penetration depth of EndoAnchor implants will increase successful utilization of EndoAnchor implants. In current practice, the physician must rely on haptic feedback of the guide to realize adequate pressure onto the aortic wall to deploy the EndoAnchor implants. Intravascular ultrasound (IVUS) can visualize the aortic wall during EndoAnchor deployment and this could be used to optimize the EndoAnchor penetration and positioning. Alternatively, a cone-beam CT (CBCT) can be created after deployment of the EndoAnchor implants to assess the penetration of each individual EndoAnchor. Because the CBCT can be created intraoperatively, this can help decide if more EndoAnchor implants should be deployed.

The costs of the Heli-FX EndoAnchor System differ per country as well as the
If EndoAnchor implants are correctly deployed and positioned, they can be successfully used to treat type IA endoleaks and, especially in case of small gutters, will be effective.\textsuperscript{5} This effectiveness is related to the amount of pressure that can be applied with the guide to push the endograft to the aortic wall. Importantly, the EndoAnchor implants will only work sufficiently when the endograft is pushed towards the aortic wall by the force of the applier. In other words, the EndoAnchor implants do not pull the aorta towards the endograft fabric. Longer EndoAnchor implants may not overcome this limitation, and will increase the risk of penetration of adjacent structures like the caval vein or duodenum. Moreover, EndoAnchor implants can increase aortic wall apposition and prevent migration during follow-up.\textsuperscript{2,8,9} However, it is important to use the EndoAnchor implants in the same way as one would use a pledgeted suture (endovascular stitching). Thus, where sutures are used in case of a bleeding anastomosis, EndoAnchor implants can be used to resolve a type IA endoleak. However, EndoAnchor implants must be deployed at the location of the problem. If there is a malapposition zone, deployment of the EndoAnchor implants should start from the outer sides of the gap towards the center. This step by step reducing of the gap/endoleak may help overcome large sealing problems and may help to ensure the correct location of deployment is applied for the EndoAnchor implants. If endoleaks have >2mm gaps, EndoAnchor implants alone may not provide the intended sealing and additional devices should be considered.

Moreover, the studied patients were treated solely by EndoAnchor implants, and the results show that some of the patients might have benefited from the use of proximal extension cuffs or more complex revisions like chimney or fenestrated cuffs. This seems particularly true for the patients in the revision group.

**Limitations of the current study**

EndoAnchor implant angle analysis could be challenging due to beam hardening artifacts from the metallic alloy the EndoAnchor is made of, even in high-quality CT scans. Especially in CT scans with greater slice thicknesses (1-3 mm), the extremities of the EndoAnchor implants were more difficult to identify. Moreover, 3Mensio creates reconstructions of 1 mm slice thickness perpendicular to the CLL. The markers were placed on the orthogonal view of these reconstructed slices. However, the extremities of the EndoAnchor implants could be located in between two reconstructed slices. If that was the case, markers were placed either above or below the intended location, whichever was closer to the extremity of the EndoAnchor implant. Even though this might have influenced the longitudinal angle, there was a non-significant difference between the measurements of both observers, and the level of agreement was perfect. A hard cut-off value for each degree deviating from 90° in the orthogonal or longitudinal
axes on the increased risk for bad penetration was not determined, since it is likely that a few degrees more or less will not make the difference between a good, borderline or nonpenetrating EndoAnchor implant.

The presence of a learning curve must also be considered as possible reason for maldeployment of EndoAnchor implants, since the data was derived from the worldwide ANCHOR registry, including experienced but also less experienced physicians (<5 patients treated with EndoAnchor implants before including patients in ANCHOR). Moreover, the current results are based on a subset of patients with strict inclusion and exclusion criteria, and do not represent the entire ANCHOR cohort. Follow-up analysis could provide a greater clarity as to the on-going risk of endoleak persistence after EndoAnchor deployment.

**CONCLUSION**

In this subcohort of ANCHOR patients, almost 30% of the EndoAnchor implants had maldeployment, which may be prevented by careful preoperative planning and measured intra-operative deployment. If endoleaks are due to >2mm gaps, EndoAnchor implants alone may not provide the intended sealing and additional devices should be considered.

**DECLARATION OF CONFLICTING INTERESTS**

JMP, WDJ, and JPdV are consultants and on the Scientific Advisory Board for Medtronic, Inc.

**FUNDING**

This research received a restricted grant from Medtronic, Inc.
REFERENCES


