Functional recovery of gait after stroke.
Huitema, Rients Bauke

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2004

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
CHAPTER 6

WALKING TRAJECTORY IN NEGLECT PATIENTS

Rients B. Huitema
Wiebo H. Brouwer
At L. Hof
Rienk Dekker
Theo Mulder
Klaas Postema

Submitted for publication
Chapter 6

Abstract

A lateral deviation of the walking trajectory is often observed in stroke patients with unilateral spatial neglect. However, existing research appears to be contradicting regarding the direction of this deviation. The aim of the present study was to gain more insight into the walking trajectory of neglect patients. In the present study twelve right hemisphere stroke patients (6 neglect, 6 no neglect), 8 left hemisphere stroke patients (none neglect) and 10 healthy control subjects were instructed to walk towards a target while a two-dimensional ultrasonic positioning system recorded their walking trajectory. Patients’ recovery of walking ability was assessed and they were tested for the presence of neglect. Neglect patients showed a larger lateral deviation in their walking trajectory compared to stroke patients without neglect or healthy control subjects. Neglect patients with good walking ability showed a deviation to the contralesional side. Neglect patients with limited walking ability showed a deviation to the ipsilesional side. Within the neglect group we found no relation between the severity of neglect and lateral deviation. Differences in walking ability may account for the contradicting results between studies regarding the lateral deviation in neglect patients’ walking trajectory. We argue that when a neglect patient’s walking ability is limited, walking towards a target becomes a dual task: heading control and walking. A limited walking ability will cause a lower task priority of heading control compared to walking, which results in a change of heading control strategy. This change of strategy may be causing the change in walking trajectory deviation.
Walking trajectory in neglect patients

INTRODUCTION

Many studies have shown that the presence of unilateral spatial neglect (USN) is associated with poor outcome after stroke and impedes functional recovery.1-5 Patients with USN perform at a lower level than patient without USN on both cognitive and sensory-motor measures, show poorer recovery of motor function and are more impaired in activities of daily living.6,7 Although the relation between neglect and motor recovery after stroke is still unclear, it does appear that treatment of neglect can facilitate the improvement of patients’ motor and functional capacities.8

A lateral deviation of the walking trajectory is often observed in stroke patients with USN. However, existing research appears to be contradictory regarding the direction of this deviation. Reported deviations of the walking trajectory of stroke patients with a left USN are to the right9,10 but also to both sides11 and further it is reported that neglect patients show a tendency to bump into objects on their neglected side.12,13 In the study in which deviations to both sides were observed11 it appeared that the severity of the USN determined to what side patients deviated: while walking through a doorway patients with a mild left USN bumped into the left side while patients with more severe left USN bumped predominantly into the right side.

In all these experiments, however, the task which the patients had to perform was either walking through a doorway or the task was vaguely described. To our knowledge no experiment has been performed in which patients with USN were asked to walk in a straight line towards a clearly defined target. Furthermore, the above-mentioned studies do not mention the exact shape of the complete walking trajectory in the transverse plane. Deviations are generally measured at one specific point, e.g. the distance that subjects deviate from a doorpost while walking through a doorway.

Karnath et al. demonstrated in a laser pointing task14 that stroke patients with USN systematically displaced their subjective orientation of the sagittal midplane

81
to the ipsilesional side. This finding is supported by the results of prism adaptation studies which also found that neglect patients displaced their subjective body midline to the ipsilesional side.15 It is known that prism adaptation can induce neglect-like behaviour in healthy subjects.16,17 Inducing a shift of the visual field by means of prism glasses, and with that inducing a heading error between the subject’s heading and the correct heading, causes healthy subjects to walk towards a target describing a curved walking trajectory.18,19

In the present study the walking trajectory of patients with USN will be recorded while they walk towards a clearly visible and well defined target. When asked to walk towards a target in a straight line, subjects need to constantly align their subjective body midline with the target. Since the displacement of the subjective body midline in patients with USN is to the ipsilesional side, they will, initially, need to rotate their objective body position to the contralesional side to align their subjective body midline with the target. This rotation towards the contralesional side will introduce a heading error between the patient’s heading and the correct heading. Analogue to the curved walking trajectory of healthy subjects wearing prism glasses, we expect that it will cause patients to walk towards the target describing a curved trajectory to the contralesional side.

Methods

Subjects
We studied 12 right hemisphere stroke patients, 8 left hemisphere stroke patients and 10 healthy age matched control subjects. Patients were included from an inpatient rehabilitation centre and had to be within 20 to 80 years of age, to have suffered a first time single unilateral cerebrovascular accident and to have no pre-morbid disorders that may have interfered with the aims of the present study. None of the healthy control subjects had a history of motor, vestibular or neurological disorders that may have interfered with the aims of the present study. Control subjects were recruited through local newspaper advertisements.
The study was approved by the hospital’s ethics committee and a written informed consent was obtained from each subject.

Procedure
The experiment was carried out in a quiet and “stimulus-poor” room of 7.8 by 4.0 meters. Apart from the targets the room was empty and no salient details were present on the walls. Subjects were instructed to walk towards a ball with a diameter of 10 cm that was positioned at a height just above each subject’s head on each side of the room. The distance between the balls was 6.5 m. Subjects were instructed to constantly focus on the ball and to walk at a self selected comfortable speed towards the ball in a straight line, stand still underneath it, turn around, focus on the ball on the opposite side and walk towards it again in a straight line. If the walking ability of a subject allowed it, this procedure was repeated eight times (resulting in 16 walking trials). A two-dimensional ultrasonic positioning system (adapted version of a motion analysis system20) registered the position of the walking subject. The positioning system was attached to a belt around the waist of the subject, close to the centre of mass. Data from this device were recorded using a 200Hz sampling frequency and further processed on a personal computer using Matlab 5.3. Time related samples were converted to position related X,Y-coordinates with a resolution of 5.0 mm in the X-direction and 4.0 mm in the Y-direction.

Assessments
All patients were tested for the presence of USN by means of the Bells test21, Schenkenberg’s Line Bisection test22, a letter cancellation task and a double simultaneous stimulation test to assess the presence of extinction (the failure to notice stimuli on the neglected side when simultaneously stimulated from both sides). The number of tests on which a patient showed neglect marked the neglect score. A neglect score of 0 was required to be classified as having no neglect. Walking ability was quantified in terms of walking speed, the Rivermead Mobility Index (RMI)23 and the Functional Ambulation Categories (FAC)24. Walking speed was calculated as the mean walking speed over the middle four metres of the walked trajectory.
Chapter 6

Dependent variables and statistic analysis

For each subject the separate walking trajectories were averaged to a single mean walking trajectory. The absolute maximum lateral deviation (AMLD) was used to quantify the amount a subject deviated from a straight walking trajectory. Differences in mean values between groups were tested with one-way analysis of variance (ANOVA) followed by Tukey’s post hoc analysis when a significant between groups effect was found.

To explore possible causes for differences in the walking trajectory within the group of neglect patients, the (signed) maximum lateral deviation (MLD) was calculated. Whereas AMLD only quantifies the amount a subject deviates from a straight walking trajectory, regardless whether this deviation is to the left or the right, MLD also provides information about the direction of the deviation: MLD is negative for deviations to the left and positive for deviations to the right. Scatterplots of MLD vs. comfortable walking speed, RMI, FAC and neglect score were observed and, if appropriate, Pearson’s r correlation coefficient or Spearman’s rank-order correlation coefficients were calculated.

RESULTS

Six of the 12 right hemisphere patients showed neglect on one or more neglect tests, whereas no left hemisphere patients showed signs of neglect. In Table 1 the characteristics of the resulting groups are presented. No significant between groups effect was found for age \[F(3,26)=1.50; \ P=0.237\]. A significant between group effect was found for comfortable walking speed \[F(3,26)=5.44; \ P=0.005\]. Tukey’s post hoc test showed that all patients walked significantly slower than the control group (“stroke left, no neglect”: \(P=0.036\); “stroke right, no neglect”: \(P=0.008\); “stroke right, neglect”: \(P=0.006\)). There were no significant differences in comfortable walking speed between patient groups. For the three patient groups a significant between group effect was found for time post stroke \[F(2,17)=4.10; \ P=0.035\], however, post hoc analysis did not show any significant differences. The RMI and FAC did not show any significant group effects.
Walking trajectory in neglect patients

Table 1. Demographic data, motor ability and absolute maximum lateral deviation

<table>
<thead>
<tr>
<th></th>
<th>Controls (n=10)</th>
<th>Stroke left, no neglect (n=8)</th>
<th>Stroke right, no neglect (n=6)</th>
<th>Stroke right, neglect (n=6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>56.5 (33.2-69.7)</td>
<td>55.9 (35.6-73.2)</td>
<td>59.5 (37.3-73.6)</td>
<td>67.5 (63.5-69.8)</td>
</tr>
<tr>
<td>Sex (M)</td>
<td>5 (50)</td>
<td>4 (50)</td>
<td>2 (33)</td>
<td>6 (100)</td>
</tr>
<tr>
<td>Time post stroke, d</td>
<td>n.a.</td>
<td>447 (202-692)</td>
<td>819 (485-1023)</td>
<td>406 (93-1066)</td>
</tr>
<tr>
<td>Motor ability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed, m/s</td>
<td>1.24 (0.09)</td>
<td>0.85 (0.43)</td>
<td>0.70 (0.33)</td>
<td>0.68 (0.39)</td>
</tr>
<tr>
<td>RMI</td>
<td>n.a.</td>
<td>12.5 (9-14)</td>
<td>11.5 (8-14)</td>
<td>11.5 (8-14)</td>
</tr>
<tr>
<td>FAC</td>
<td>n.a.</td>
<td>4.6 (4-5)</td>
<td>4.3 (3-5)</td>
<td>4.7 (4-5)</td>
</tr>
<tr>
<td>AMLD, m</td>
<td>0.035 (0.011)</td>
<td>0.042 (0.021)</td>
<td>0.055 (0.034)</td>
<td>0.197 (0.136)</td>
</tr>
</tbody>
</table>

Values are mean (range), mean (SD) or n (%) as appropriate.

A significant between group effect was found for AMLD [F(3,26)=9.90; P<0.001]. Tukey’s post hoc test showed that the neglect group significantly differed from all other groups (neglect group compared to: healthy controls: P<0.001; “stroke left, no neglect”: P=0.001; “stroke right, no neglect”: P=0.003). Healthy controls, “stroke left, no neglect” and “stroke right, no neglect” did not significantly differ from each other (healthy controls vs. “stroke left, no neglect”: P=0.996; healthy controls vs. “stroke right, no neglect”: P=0.918; “stroke left, no neglect” vs. “stroke right, no neglect”: P=0.976). Figure 1 shows the mean walking trajectory for each subject per group. The figure clearly illustrates the large lateral deviation in the neglect group. However, the figure also shows that not all neglect patients deviated to the same side.
The scatterplots in Figure 2 show that it is justified to assume a linear relation, within the neglect group, between MLD and comfortable walking speed, RMI and FAC. Pearson’s r correlation coefficient between MLD and comfortable walking speed is -0.898 ($P=0.015$). Spearman’s rank-order correlation coefficient between MLD and RMI is -0.926 ($P=0.008$) and between MLD and FAC -0.828 ($P=0.042$). No relation appears to exist between MLD and neglect score.
Figure 2. Scatterplots of Maximum Lateral Deviation (MLD) vs. Comfortable Walking Speed, Rivermead Mobility Index (RMI), Functional Ambulation Categories (FAC) and Neglect Score for right hemisphere stroke patients with neglect.

Figure 1 shows that there was a subject in the “stroke left, no neglect” group with a somewhat larger MLD to the left and a subject in the “stroke right, no neglect” group with a somewhat larger MLD to the right. The fact that these two subjects were slow walkers made us inspect the scatterplots of MLD vs. comfortable walking speed for these groups and the healthy controls. The scatterplots are presented in Figure 3. The figure does not show a relation between MLD and
comfortable walking speed for the control group but for the “stroke left, no neglect” group a positive linear correlation and for the “stroke right, no neglect” group a negative linear correlation appears to exist. These correlations were moderate to high but just failed to reach significance at the conventional significance level of 5% (“stroke left, no neglect”: $R=0.669; P=0.070$; “stroke right, no neglect”: $R=-0.793; P=0.060$).

Figure 3. Scatterplots of Maximum Lateral Deviation (MLD) vs. Comfortable Walking Speed for Healthy controls, “Stroke left, no neglect” and “Stroke right, no neglect”.

DISCUSSION

Stroke patients with USN showed a larger lateral deviation in their walking trajectory when they walked towards a target compared to stroke patients without USN or healthy control subjects. We expected that this deviation would have been to the contralesional side. However, this was only the case for three neglect patients; three other neglect patients showed a large deviation to the ipsilesional side. It appeared that there was a strong negative correlation between walking ability and lateral deviation. Neglect patients with good walking ability showed a deviation to the contralesional side, as we had expected. The more neglect patients were limited in their walking ability the more their deviation
shifted to the ipsilesional side. Within the neglect group we found no relation between the severity of USN and the lateral deviation of the walking trajectory.

We argue that the shift in lateral deviation due to walking ability can be explained by introducing the concepts dual task and task priority. For patients with unimpaired walking ability, walking towards a target is a rather effortless task. The task consists of walking and heading control, in which walking may be considered to be performed automatically while heading control is the primary task. The displaced subjective midline in neglect patients to the ipsilesional side introduces an error in heading control. Aligning their subjective midline with a target makes these neglect patients walk in a curved trajectory to the contralesional side, as we had expected. However, when walking ability is impaired, walking no longer is performed automatically. It becomes a consciously and actively monitored process that requires attention and the task priority of walking is increased compared to the task priority of heading control. The more walking ability is impaired, the more attentional capacity has to be invested into the walking task, increasing its task priority and eventually walking will become the primary task and heading control the secondary task. Rather than to actively control their heading, patients will now be concentrating on walking straight ahead, using a mental representation of space. This mental representation is distorted in neglect patients. The displacement of the subjective bodyline to the ipsilesional side in neglect patients means that “straight ahead” is shifted to the ipsilesional side. Therefore, walking straight ahead will cause the patient to diverge to the ipsilesional side. Since heading control has become a secondary task patients will only adjust their heading occasionally. The more patients are limited in their walking ability the lower the task priority of heading control will be and the less often patients will adjust their heading. This will result in a larger lateral deviation to the ipsilesional side.

Tromp et al.11 suggested that the severity of the USN determined to what side patients deviated. In their study patients with a mild left USN bumped into the left side of a doorway while patients with more severe left USN bumped predominantly into the right side of the doorway. However, it can be deducted from the data they presented in their article (Table 1, p. 322) that the patients who
deviated to the ipsilesional right also were the slowest walkers. Therefore, the effect they found may in fact be the same effect as found in our study. The apparent contradicting findings from other studies9,10,12,13 may be caused by differences in walking ability between different neglect patients as well. Another cause may be found in the differences between the walking tasks employed. We argued that differences in left- or rightward deviations of the walking trajectory in neglect patients is caused by using different strategies of heading control: walking straight ahead or aligning the subjective body midline with the target. Differences in task circumstances such as the amount of visual stimuli and optic flow or task instructions can cause the use of different strategies for heading control19,25,26 and therefore cause different outcomes in the direction of lateral deviations in neglect patients’ walking trajectory.

A trend appeared to exist between walking speed and lateral deviation in the no-neglect groups: the slower walkers showed a larger deviation to the ipsilesional, non-paretic side. We suspect that it was the attachment of the positioning system around the waist of the subjects together with characteristic hemiparetic gait in some stroke patients that may have caused this trend. Compensations such as a hip hike27,28 and the avoidance to bear weight on the paretic limb,29 cause a shift of the waist to the ipsilesional, non-paretic side. Our positioning system wrongly measured this shift as a deviation of the walking trajectory. This effect may, of course, have been present in the neglect group as well and it would have increased the lateral deviation to the ipsilesional right in the patients whose walking ability was impaired. However, the possible effect of the waist shift in the no-neglect groups was far less than the deviation found in the neglect group and would, therefore, only have increased slightly the effect found. In future research it could be taken into account, however, by measuring the walking trajectory of the feet instead of the waist.

Future research should further investigate the relation between neglect, walking ability and lateral deviations in the walking trajectory, to yield data which can answer the following questions: Does recovery of walking ability in neglect patients change their walking trajectory deviation from the ipsilesional side to the contralesional side? Does neglect training such as prism adaptation, which is
specifically aimed at restoring the displaced subjective midline, also improve the walking trajectory in neglect patients?

ACKNOWLEDGEMENTS

We greatly thank Roy Stewart for his statistical expertise.
REFERENCES

