Make-to-order and make-to-stock
in
food processing industries

Chetan Anil Soman
Make-to-order and make-to-stock
in
food processing industries

Proefschrift

ter verkrijging van het doctoraat in de
Bedrijfskunde
aan de Rijksuniversiteit Groningen
op gezag van de
Rector Magnificus, dr. F. Zwarts,
in het openbaar te verdedigen op
donderdag 27 januari 2005
om 16.15 uur

door

Chetan Anil Soman
geboren op 24 augustus 1973
te Akola (India)
Promotor : Prof. dr. ir. G.J.C. Gaalman
Copromotor : Dr. D.P. van Donk

Beoordelingscommissie : Prof. dr. ir. J.C. Fransoo
 Prof. dr. J. Olhager
 Prof. dr. J. Wijngaard
Acknowledgements

First of all, I would like to thank my copromotor Dirk Pieter van Donk, and promotor Gerard Gaalman. They have carefully guided me throughout the period of my PhD. Dirk Pieter with his supportive attitude, open-door policy, coupled with a great sense of humour created the perfect environment to work together. Through regular and fruitful meetings he ensured that my PhD project was on track and on time. Interaction with Gerard has played an important role on my critical thinking. His approach of dwelling on an issue until it is resolved to its core is simply remarkable. I have learned a lot of things from Gerard– the researcher, and Gerard– the person.

I especially appreciate the role of the evaluation committee of the thesis– Prof. dr. ir. Jan Fransoo, Technical University Eindhoven; Prof. dr. Jan Olhager, Linköping Institute of Technology; and Prof. dr. Jacob Wijngaard, University of Groningen. I thank them for their invaluable and constructive comments, both general and specific.

It was a pleasure to be associated with University of Groningen, SOM Research School, Faculty of Management and Organization, and more specifically the Production Systems Design group. Thanks to every member of the research and support staff who willingly or unknowingly helped me during my stay here in Groningen.

A special thank-you to my paranymphs– Peter and Renzo. They were around at every move that I made in the PhD game and I am glad that they are literally there beside me on the final move as well.

Indian friends (desis) in Groningen have made my stay a memorable one. I will preserve the memories of extended movie sessions along with numerous non-stop laughter and gossip sessions provided by all the babas, dadas, kakas, bachhas, families, dakus, raos, and kumars. Many thanks to bhosho-maharaj
Eindhovenkar for the regular *local ka dhakka*.

Finally, I want to express my deep gratitude to my family members. They gave me the freedom to pursue whatever interested me. It is due to their support and encouragement that I am ready to take the right steps on the path of life that lies ahead.

Chetan Anil Soman
Groningen, December 2004
Contents

List of Tables v

List of Figures vii

1 Prologue 1
 1.1 Introduction ... 1
 1.2 Research objectives 4
 1.3 Thesis outline .. 5

2 Combined MTO-MTS food processing 9
 2.1 Introduction ... 9
 2.2 Literature review 11
 2.2.1 MTO-MTS issues in the literature 15
 2.3 Food production system characteristics 15
 2.4 MTO-MTS in food processing industry 17
 2.4.1 MTO versus MTS decision, 18
 2.4.2 Production and inventory policy decisions 19
 2.4.3 Operational decisions 20
 2.4.4 Applicability of MTO-MTS literature in food processing industry ... 20
 2.5 Hierarchical planning framework 21
 2.5.1 Comments ... 24
 2.6 Conclusions and future research 25

3 A decision aid for make-to-order and make-to-stock classification 27
 3.1 Introduction .. 27
 3.2 Literature review 29
 3.3 Decision aid ... 31
 3.3.1 Service considerations 31
 3.3.2 Demand analysis 33
 3.3.3 Economic considerations 35
4 Medium term capacity coordination
 4.1 Introduction .. 41
 4.2 Economic Lot Scheduling Problem 42
 4.3 ELSP in food processing industries 43
 4.4 ELSP with shelf life considerations 46
 4.4.1 Literature overview 46
 4.4.2 Problem Formulation 48
 4.4.3 The basic period approach solution 50
 4.4.4 Computational results 55
 4.4.5 Concluding remarks 58
 4.5 Incorporating MTO in ELSP 61
 4.5.1 Stable MTO demand, no family structure 61
 4.5.2 Unstable MTO demand, no family structure 62
 4.5.3 Family structure setup 63
 4.5.4 High variance in MTS and family structure 64
 4.5.5 High utilisation and controlling setups 65
 4.6 Conclusion and discussion 66
Appendix .. 67
 A.1 Doll and Whybark procedure with power-of-two policy 67
 A.2 Creating a Production schedule 68

5 Operations scheduling and sequencing 69
 5.1 Introduction .. 70
 5.2 Problem description .. 72
 5.3 Scheduling rules for the combined MTO-MTS production situation 73
 5.3.1 EMQ .. 74
 5.3.2 Vergin and Lee ... 74
 5.3.3 Fransoo ... 75
 5.3.4 Dynamic cycle length heuristic 75
 5.4 Simulation model .. 77
 5.4.1 Model dynamics .. 77
 5.4.2 Experimental factors, levels 78
 5.5 Simulation results and analysis 79
 5.5.1 EMQ and Fransoo methods 85
 5.5.2 Vergin and Lee method 86
 5.5.3 The Gascon method .. 86
 5.6 Conclusions and future research 86
Table of Contents

6 Illustrative case study
6.1 Introduction .. 91
6.2 Current planning and scheduling practice 94
6.3 Application of MTO-MTS hierarchical planning 96
 6.3.1 MTO/MTS .. 97
 6.3.2 Medium term capacity-planning 100
 6.3.3 Scheduling ... 101
6.4 Short-term batch scheduling problem 101
6.5 Conclusions and future research 105
Acknowledgements .. 106

7 Summary and discussion
7.1 Main issues in planning and control of MTO-MTS production .. 107
7.2 Models for planning and scheduling in combined MTO-MTS .. 108
 7.2.1 Make-to-order versus make-to-stock 109
 7.2.2 Medium-term capacity coordination 109
 7.2.3 Short-term scheduling and sequencing 110
7.3 Illustration of planning and control models 111
7.4 Discussion (Food for thought) 111
 7.4.1 Assumptions revisited 111
 7.4.2 Related research possibilities 113

References ... 117

Index (references) 124

Samenvatting (Summary in Dutch) 127
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Process industry literature: an overview</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Literature overview: combined MTO/MTS production</td>
<td>12</td>
</tr>
<tr>
<td>2.1</td>
<td>Overview of literature.. continued..</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Typical dynamic events/ activities and their frequency</td>
<td>22</td>
</tr>
<tr>
<td>4.1</td>
<td>Bomberger problem with shelf life of products – 88% utilisation</td>
<td>55</td>
</tr>
<tr>
<td>4.2</td>
<td>Illustration of solution procedure</td>
<td>56</td>
</tr>
<tr>
<td>4.3</td>
<td>Allocation of products to basic periods – 88% utilisation case</td>
<td>57</td>
</tr>
<tr>
<td>4.4</td>
<td>Experiments at various utilisation levels</td>
<td>59</td>
</tr>
<tr>
<td>5.1</td>
<td>Bomberger problem with MTO products (88% MTS utilisation)</td>
<td>78</td>
</tr>
<tr>
<td>5.2</td>
<td>Average inventory levels for products</td>
<td>83</td>
</tr>
<tr>
<td>5.3</td>
<td>Number of setups for products</td>
<td>83</td>
</tr>
<tr>
<td>5.4</td>
<td>Percentage of lost sales for products (x100)</td>
<td>83</td>
</tr>
<tr>
<td>5.5</td>
<td>Cycle time stability for products</td>
<td>84</td>
</tr>
</tbody>
</table>
List of Figures

2.1 A typical food processing process 16
2.2 Hierarchical approach to MTO-MTS problem 23

3.1 Architecture of MTO-MTS decision aid 32
3.2 Input screen: Recipe Master ... 32
3.3 Order book .. 33
3.4 Output report: Demand Variability analysis 34
3.5 Output report: Economic considerations 37

4.1 Example of a feasible solution for ELSP with shelf life 51
4.2 Capacity reservation for MTO products 62
4.3 Additional inventory for MTS items 64

5.1 Impact of MTO addition ... 80
5.2 MTO flow time .. 81
5.3 Line item fill rate for different methods 82

6.1 The production process at the food processing company 92
6.2 Planned production schedule ... 95
6.3 Hierarchical approach to MTO-MTS problem 97
6.4 Example of observed demand for some recipes 98
6.5 Demand variability analysis .. 99
6.6 Flowchart: MTO-MTS short term batch scheduling heuristic 103