A Selective and Mild Synthetic Route to Dialkyl Phosphates

Johanna M. Kuiper, a Ron Hulst, b Jan B. F. N. Engberts* a

a Physical Organic Chemistry Unit, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
b Kiadis B.V., Niels Bohrweg 11-13, 2333 CA Leiden, The Netherlands
Fax +31(50)3634296; E-mail: J.B.F.N.Engberts@chem.rug.nl

Received 28 October 2002; revised 27 January 2003

Abstract: A very mild synthetic route to dialkyl phosphates is described. Reaction of the appropriate alcohol with PCl3 followed by treatment with pyridine and CCl4 afforded the corresponding trichloromethyl ester. Subsequent reaction with the triethylamine salt of acetic acid followed by hydrolysis of the formed mixed anhydride under very mild conditions afforded the dialkyl phosphates in high yield.

Key words: dialkyl phosphates, lipids, alcohols, dialkyl phosphonates, azobenzene

Important aspects of the chemistry of biological cell membranes can be successfully mimicked by using bilayer vesicles formed from synthetically available amphiphiles. For this purpose, sodium dialkyl phosphates are, among others, often used. A variety of methods have been developed for the preparation of dialkyl phosphates. Most of these are multi-step syntheses, which are either difficult to perform or involve oxidation steps combined with the necessity of elevated temperatures, often excluding the use of alcohols containing functional groups. A frequently applied method is the stepwise preparation of the dialkyl phosphate via the mono-alkyl phosphate from pyrophosphoric acid using tetramethylammonium hydroxide (TMAH) as base. The application of this procedure for the preparation of long-chain lipid phosphates, however, appeared troublesome due to the long reaction times needed and difficult isolation of the product from the reaction mixtures. Another standard procedure employs the reaction of exactly two equivalents of alcohol with POCl3, followed by aggressive (basic) hydrolysis of the intermediate phosphoroxycarbodiimide. Although this procedure allows straightforward preparation of short-chain phosphates, the use of longer chain alcohols leads to less selective bis-esterification and significant saponification during the hydrolysis of the phosphoroxycarbodiimide intermediate. Moreover, isolation of the products from the crude reaction mixtures appeared troublesome and includes preparative TLC or exceedingly long crystallization times to isolate e.g. dioleyl phosphate. In search for improved phosphorylation methods, several routes were proposed using 'exotic' reagent settings. A major drawback, however, is the need for preparation of the reagents, whereas the removal of the protecting groups can also lead to severe problems. Also routes including oxidative steps appeared unsuccessful for the preparation of long-chain dialkyl phosphates and/or the synthesis of dialkyl phosphates with functionalized groups.

Driven by the need for a better synthetic protocol, we report the synthesis of long- and/or functionalized-chain dialkyl phosphates via a new and very mild route. The first step of the procedure (Scheme 1) consists of an Arbuzov reaction at room temperature using 3 equivalents of the appropriate alcohol, 2 equivalents of pyridine and PCl3, yielding dialkyl phosphonates in 53-75% isolated yield. The reaction proceeds smoothly and can be monitored by TLC and 31P NMR (31P NMR δ = ca. 7.5 ppm). If necessary, additional aliquots of pyridine and PCl3 were added in order to ensure complete consumption of the alcohol, since traces of alcohol can cause purification problems. The dialkyl phosphonates are stable and can be purified by crystallization or column chromatography. Subsequently, phosphonates are treated with CCl4 and Et3N, under the Atherton-Openshaw-Todd conditions, yielding quantitatively the trichloromethyl esters (31P NMR δ = ca. -13 ppm), which were not isolated. A catalytic amount of disopropylethylamine may be added to accelerate the reaction rate. After evaporation of the reagents, the trichloromethyl esters were converted into the mixed anhydrides by treatment with acetic acid and Et3N, under the Atherton-Openshaw-Todd conditions, yielding quantitatively the trichloromethyl esters. The mixed anhydrides afforded dialkyl phosphates in 56-73% isolated yield.

In summary, starting from a suitable alcohol a simple and mild synthetic protocol has been developed to obtain long and/or functionalized chained dialkyl phosphates. Moreover, no oxidative or basic hydrolytic steps are involved.

All reactions proceed with total conversion, except for the first step. No work-up, isolation or purification procedures were required for the intermediate compounds and 4-Butylaniline was distilled before use.

1H, 13C and 31P NMR spectra were recorded at 25 °C on a Varian VXR-300 spectrometer operating at 300 MHz for 1H, at 75.43 MHz for 13C, and on a Varian Gemini-200 spectrometer operating at 200 MHz for the 1H, at 80.96 MHz for the 31P and at 50.29 MHz for 13C channels. For compounds 2a, 2d, and 2e no exact mass could be determined, but the parent peak was in accordance with the structure. The residual 1H signals of the deuterated solvents were used as internal chemical shift standard. Melting points (uncorrected) were recorded using a Kofer hot stage apparatus equipped with a microscope. Oleic acid, 9-bromononan-1-ol, 4-butylaniline, 6-bromohex-
9-(4-Phenylazo)-phenoxy]-nonan-1-ol (1a)
To 4-phenyazoephosphol (4.00 g, 20.16 mmol) in acetone (150 mL) was added 9- bromononan-1-ol (4.52 g, 20.16 mmol), K$_2$CO$_3$ (5.56 g, 40.32 mmol) and a catalytic amount of KI (0.3 g, 1.8 mmol). The mixture was refluxed for 5 d. The acetone was removed by evaporation under reduced pressure. CH$_2$Cl$_2$ (300 mL) was added and the organic layer was washed with H$_2$O (3 × 150 mL). The organic layer was dried over Na$_2$SO$_4$, filtered and concentrated under reduced pressure. The resulting yellow solid material was purified by crystallization from EtOAc (ca. 120 mL) affording yellow crystals in 75% yield (5.14 g).

Mp 107-108 °C.

1H NMR (200 MHz, CDCl$_3$): δ = 1.35-1.61 (m, 12 H), 1.75-1.86 (m, 2 H), 3.65 (t, J = 6.5 Hz, 2 H), 4.04 (t, J = 6.5 Hz, 2 H), 6.97-7.04 (m, 2 H), 7.39-7.55 (m, 3 H), 7.57-7.69 (m, 4 H).

13C NMR (50 MHz, CDCl$_3$): δ = 25.7, 26.0, 29.1, 29.3, 29.5, 32.7, 63.0, 68.3, 114.7, 122.5, 124.7, 129.0, 130.3, 145.7, 146.9, 151.0, 161.6.

HRMS: m/z calcd for C$_{23}$H$_{37}$N$_2$O, 340.21506; found, 340.21440.

4-Butyl-4′-hydroxy-azobenzene
4-Butylaniline (12.0 g, 0.08 mol) was dissolved in a mixture of H$_2$O-acetone (200 mL, 1:1) and concd. HCl (20 mL). To the cooled soln, NaN$_3$ (5.6 g, 0.08 mol) in cold H$_2$O (100 mL) was added. The soln was allowed to stand for 20 min in an ice bath. The resulting diazonium soln was added to a cold soln of phenol (7.6 g, 0.08 mol), NaOH (3.2 g, 0.08 mol) and Na$_2$CO$_3$ (14 g, 0.13 mol) in cold H$_2$O (200 mL). The precipitate was filtered off and crystallized from acetone.

Yield: 15.20 g (74%).

1H NMR (200 MHz, CDCl$_3$): δ = 0.95 (t, J = 7.2 Hz, 3 H), 1.29-1.47 (m, 2 H), 1.56-1.71 (m, 2 H), 2.66 (t, J = 7.6 Hz, 2 H), 6.62-6.69 (m, 2 H), 7.24-7.28 (m, 2 H), 7.62-7.70 (m, 2 H).

13C NMR (50 MHz, CDCl$_3$): δ = 14.3, 23.4, 34.9, 36.4, 120.2, 122.7, 126.5, 129.9, 143.7, 145.1, 152.9, 174.0.

5-[(4-Butylphenylazo)-phenoxy]-pentan-1-ol (1d)
An identical protocol as described for 1a was followed. Starting from 4-n-butyl-4′-hydroxy-azobenzene and 5-bromopentan-1-ol, the product was isolated in a 57% yield (1.43 g). The resulting yellow solid material was purified by crystallization from hexane.

Yield: 15.20 g (74%).

1H NMR (200 MHz, CDCl$_3$): δ = 0.94 (t, J = 7.2 Hz, 3 H), 1.30-1.47 (m, 2 H), 1.52-1.72 (m, 6 H), 1.79-1.93 (m, 2 H), 2.68 (t, J = 7.7 Hz, 2 H), 3.70 (m, 2 H), 4.05 (t, J = 6.5 Hz, 2 H), 6.97-7.01 (m, 2 H), 7.28-7.32 (m, 2 H), 7.78-7.82 (m, 2 H), 8.77-8.79 (m, 2 H).

13C NMR (50 MHz, CDCl$_3$): δ = 13.9, 22.3, 28.9, 32.4, 33.5, 35.5, 62.7, 68.1, 114.6, 122.5, 124.5, 129.0, 145.8, 146.9, 151.0, 161.3.

HRMS: m/z calcd for C$_{21}$H$_{26}$N$_2$O$_3$, 340.21506; found, 340.21408.

6-[(4-Butylphenylazo)-phenoxy]-hexan-1-ol (1e)
An identical protocol as described for 1a was followed. Starting from 4-n-butyl-4′-hydroxy-azobenzene and 6-bromohexan-1-ol the product was isolated in a 55% yield (3.07 g). The resulting yellow solid material was purified by crystallization from hexane.

Yield: 15.20 g (74%).

1H NMR (200 MHz, CDCl$_3$): δ = 0.89 (t, J = 7.3 Hz, 3 H), 1.27-1.64 (m, 10 H), 1.74-1.83 (m, 2 H), 2.63 (t, J = 7.7 Hz, 2 H), 3.59-3.65 (m, 2 H), 3.99 (t, J = 6.4 Hz, 2 H), 6.94 (d, J = 8.8 Hz, 2 H), 7.25 (d, J = 8.1 Hz, 2 H), 7.75 (d, J = 8.4 Hz, 2 H), 7.84 (m, 2 H).

13C NMR (50 MHz, CDCl$_3$): δ = 13.9, 22.3, 25.5, 25.8, 29.1, 32.6, 33.4, 35.5, 62.8, 68.1, 114.6, 122.5, 124.5, 129.0, 145.7, 146.9, 151.0, 161.3.

HRMS: m/z calcd for C$_{23}$H$_{39}$N$_2$O$_3$, 354.23071; found, 354.23061.

Di-[9-[(4-phenylazo)-phenoxy]-nonyl] Phosphonate (2a)
To 1a (1.5 g, 4.41 mmol) in anhyd CH$_2$Cl$_2$ (15 mL) under a nitrogen atmosphere, pyridine (2.94 mmol, 238 µL, 232 mg) and PCl$_3$ (1.47 mmol, 128 µL, 202 mg) were slowly added. The reaction was monitored using TLC (Silica, EtOAc) or 31P NMR and additional portions of pyridine and PCl$_3$ (ratio 2:1) were added until all alcohol had reacted. After completion, the mixture was washed with brine (2 × 25 mL), dried over Na$_2$SO$_4$ and concentrated under reduced pressure. The resulting material was stirred overnight in hexane (ca. 30 mL) yielding small crystals. The crystalline material was further purified by crystallization from EtOH (2 ×). Pure yellow crystals were obtained in 53% yield (0.57 g).

Yield: 15.20 g (74%).

1H NMR (300 MHz, CDCl$_3$): δ = 1.30-1.42 (m, 10 H), 1.60-1.67 (m, 2 H), 1.71-1.81 (m, 2 H), 3.96-4.05 (m, 4 H), 6.76 (d, J = 6.92 Hz, 1 H), 6.94 (d, J = 8.8 Hz, 2 H), 7.35-7.47 (m, 3 H), 7.81-7.91 (m, 4 H).

13C NMR (50 MHz, CDCl$_3$): δ = 25.5, 26.0, 29.0, 29.1, 29.2, 29.4, 30.4, 65.7, 68.2, 114.6, 122.5, 125.7, 129.0, 130.3, 146.8, 152.7, 161.6.
An identical protocol as described for 2a was followed starting from oleyl alcohol.39 The product was purified by means of column chromatography (Silica, hexane-EtO, 1:1). Product 2b was obtained as a viscous oil in 75% yield (5.43 g).

Di-(4-[4-(4-phenylazo)-phenoxy]-nonyl) Phosphate (5a)

An identical protocol as described for 2a was followed starting from diethyl phosphate, a different work-up procedure was used. After hydrolysis, the aqueous layer was extracted with CHCl₃ (15 mL) and CH₂Cl₂ (4 mL) and concentrated under reduced pressure. The resulting material was stirred at r.t. for 1-3 d while monitoring the conversion by means of ³¹P NMR. The volatile compounds were removed by evaporation under reduced pressure. To the resulting material, HOAc (10 mmol, 0.60 mL, 6.2 g) and Et₃N (22 mmol, 3 mL, 2.2 g) were added. If necessary, CH₂Cl₂ was added to obtain a clear solution. The mixture was stirred for 1-2 d leading to complete conversion. The mixture was concentrated under reduced pressure. The obtained crude product 4 was, subsequently, hydrolyzed by stirring in acidic H₂O (pH 4-5, 100 mL) for 30 min. The resulting mixture was extracted with CH₂Cl₂ (150 mL). The organic layer was washed with brine (2 × 150 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The solid material was further purified by crystallization from EtOH affording yellow crystals in 66% yield (0.206 g).

Mp 126-131 °C.

Di-(5-[[4-(4-butylphenyl)azo]-phenoxy]-pentyl)-phosphate (5d)

An identical protocol as described for 5a was followed. The resulting yellow crystals were isolated in a 56% yield (0.28 g). Mp 126-131 °C.

Diethyl Phosphate (5c)

A similar method was used as described for 5a, only in second step CHCl₃ was used instead of CH₂Cl₂. However, due to the high H₂O solubility of diethyl phosphate, a different work-up procedure was used. After hydrolysis, the aqueous layer was extracted with CHCl₃ (10 × 50 mL aliquots). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The resulting material was distilled at 80 °C (0.7 mm Hg) (lit. 203 °C, 1 bar) yielding 5c as a colorless oil in 60% yield (3.2 g).

Mp 106-109 °C.

Di-(6-[4-(4-butylphenyl)azo]-hexyl) Phosphate (2e)

An identical protocol as described for 2a was followed. The resulting yellow crystals were isolated in 70% yield (0.26 g).

Di-[4-(4-phenylazo)-phenoxy]-nonyl phosphate (5a)

To 2a (0.42 mmol, 0.305 mg) in CCl₄ (15 mL) was added Et₃N (1.68 mmol, 234 µL, 170 mg) and i-Pr₂EiN (0.42 mmol, 7.3 µL, 5.4 mg). The mixture was stirred at r.t. for 1-3 d while monitoring the conversion by means of ³¹P NMR. The volatile compounds were removed by evaporation under reduced pressure. To the resulting material, HOAc (10 mmol, 0.60 mL, 6.2 g) and Et₃N (22 mmol, 3 mL, 2.2 g) were added. If necessary, CH₂Cl₂ was added to obtain a clear solution. The mixture was stirred for 1-2 d leading to complete conversion. The mixture was concentrated under reduced pressure. The obtained crude product 4 was, subsequently, hydrolyzed by stirring in acidic H₂O (pH 4-5, 100 mL) for 30 min. The resulting mixture was extracted with CH₂Cl₂ (150 mL). The organic layer was washed with brine (2 × 150 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The solid material was further purified by crystallization from EtOH affording yellow crystals in 66% yield (0.206 g).

Mp 124-128 °C.

Di-(5-[[4-(4-butylphenyl)azo]-phenoxy]-pentyl)-phosphate (5d)

An identical protocol as described for 5a was followed. The resulting yellow crystals were isolated in a 73% yield (0.45 g).
Mp 114-120 °C.

1H NMR (200 MHz, CDCl3): δ = 0.94 (t, J = 7.2 Hz, 6 H), 1.32-1.82 (m, 24 H), 2.68 (t, J = 7.6 Hz, 4 H), 3.97-4.11 (m, 8 H), 6.95-6.99 (m, 4 H), 7.27-7.31 (m, 4 H), 7.77-7.81 (m, 4 H), 7.85-7.90 (m, 4 H).

13C NMR (50 MHz, CDCl3): δ = 13.9, 22.3, 25.2, 25.6, 29.1, 30.1 (d, J = 6.9 Hz), 33.4, 35.5, 67.5 (J = 5.7 Hz), 68.0, 114.6, 122.5, 124.5, 129.0, 145.7, 146.9, 151.0, 161.3.

31P NMR (81 MHz, CDCl3): δ = 1.09 (s).

Anal. Calcd for C31H59N3O12P (770.95): C, 68.67; H, 7.71; N, 7.27. Found: C, 68.67; H, 7.71; N, 7.28.

Acknowledgment

We are grateful to MSC for financial support.

References

(9) Bauman, R. A. Synthesis 1974, 870.
(10) Smits, E.; Wagenaar, A. unpublished results.
(19) Stereochemical studies have shown that the initially formed trichloromethylesters can react either with nucleophiles present or alternatively if no other nucleophiles are present with the chloride formed, the latter leading to the formation of phosphoric chlorides with retention of configuration with respect to the phosphonate (double inversion) see:
(20) The smoothness of homomeric anhydride formation (between two phosphate entities) as an undesired side reaction during functionalization has been outlined before, see: Hulst, R.; Visser, J. M.; de Vries, N. K.; Zijlstra, R. W. J.; Kooijman, H.; Smeets, W.; Spek, A. L.; Feringa, B. L. J. Am. Chem. Soc. 2000, 122, 3135.
(21) Due to the high solubility of diethyl phosphate in H2O a lower isolated yield was obtained than expected. Continuous extraction will likely increase the yield considerably.
(23) 5-Bromobutan-1-ol was prepared by a literature procedure:
(a) Due to the high solubility of diethyl phosphate in H2O a lower isolated yield was obtained than expected. Continuous extraction will likely increase the yield considerably.
(25) Due to the high solubility of diethyl phosphate in H2O a lower isolated yield was obtained than expected. Continuous extraction will likely increase the yield considerably.
(29) Due to the high solubility of diethyl phosphate in H2O a lower isolated yield was obtained than expected. Continuous extraction will likely increase the yield considerably.