Use of real-world evidence in pharmacoeconomic analysis
Huang, Yunyu

DOI:
10.33612/diss.95669767

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Using primary care electronic health record data for comparative effectiveness research: experience of data quality assessment and preprocessing in The Netherlands

Yunyu Huang* 1,2
Jaco Voorham1,
Flora M. Haaijer-Ruskamp1

1Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, the Netherlands;
2School of Public Health, Fudan University, Shanghai, China
*Corresponding author

Chapter 3

ABSTRACT

Background:
Details of data quality and how quality issues were solved have not been reported in published comparative effectiveness studies using electronic health record data.

Methods:
We developed a conceptual framework of data quality assessment and pre-processing and apply it to a study comparing ACEis with ARBs on renal function decline in diabetes patients.

Results:
The framework establishes a line of thought to identify and act on data issues. The core concept is to evaluate whether data is fit-for-use for research tasks. Possible quality problems are listed through specific signal detections, and verified whether they are true problems. Optimal solutions are selected for the identified problems.

Conclusions:
This framework can be used in observational studies to improve validity of results.

Keywords: comparative effectiveness research; electronic health record data; data quality; conceptual framework; fit-for-use
BACKGROUND

Comparative effectiveness research (CER) is the generation and synthesis of evidence that compares the benefits and harms of alternative methods to prevent, diagnose, treat, and monitor a clinical condition or to improve the delivery of care [1]. In recent years, the interest in CER, with growing demand for observational data to support critical decision-making, has increased the exploration of information sources other than randomized clinical trials [2]. Although observational data have limitations such as potential for biases [3], it has long been recognized for offering useful information on real-world interventions and health outcomes [4]. With the development of health information technology, an increasing number of health care systems have implemented electronic health record (EHR) systems in support of health care delivery and health services research [5]. Compared to the widely used administrative data or insurance claims, EHR data provide a more detailed picture of patient-level treatments and outcomes [6,7]. This provides additional opportunities for comparative effectiveness research [8].

Although the increasing availability of EHR represents opportunities to study drug use patterns or drug effects in routine clinical practice, CER using EHR data is methodologically complex and still faced with challenges. This brings forward a request of high-quality data and open data processing approaches to answer the most important CER questions [9].

In data quality we can distinguish several dimensions. Accuracy and completeness have been mentioned as the two most important dimensions [10,11]. Recent clinical and health services research have adopted the ‘fit-for-use’ concept proposed in the information sciences literature [12]. This concept entails that the dimensions of data quality do not have objective definitions, but are task-dependent [12,13]. Thus, accuracy should be considered not only as the extent to which data are in conformity to the truth [14], but also as the extent to which the data are suitable for a specific study’s requirements. Analogously, completeness is not only the extent to which all necessary data that could have been registered have actually been registered [14], but also whether all required data are available. When EHR data are used in CER, an underlying assumption is that they are of sufficient quality [15], i.e. accurate and complete. Both dimensions have been shown to be relevant problems in some American EHR datasets [16-18], and should receive attention in any CER study.

To date, the literature on data quality in CER focuses primarily on the infrastructure for carrying out studies, such as developing transparent policies and practices, clarifying
data control ownership, and much less on using EHRs in different research questions at a methodological level [9, 19-22]. Published CER studies using EHRs seem to concentrate on thoroughly reporting design and analytical approaches to enable causal inferences in the absence of randomization, with very limited reporting or discussion of data quality issues. To our knowledge, details of data quality issues and these were solved have not been reported in published CER studies. Although reported guidelines of CER [23-25] state clearly the importance of ensuring quality data, those recommendations remain general and abstract. Because of the lack of 'hands on' information, it is difficult to build a standardization of data quality assurance on others’ experiences.

Although solutions for data quality issues will vary between individual studies using different databases, detailed description of data quality assessment and actions to ensure high quality datasets for research should be available. Transparency of addressing data quality issues for EHR data will help to improve the consistency in computing quality measures and to facilitate best practices and trust in the clinical evidence based on use of EHR data [26,27].

OBJECTIVE

In this paper we apply a general framework to illustrate the problems and solutions of data quality assessment and pre-processing. The framework helps to establish a line of thought to identify and act on data issues, following systematic checking of assumptions underlying the use of the EHR data. We use a CER study that compares effectiveness of Angiotensin Converting Enzyme inhibitors (ACEi) with Angiotensin Receptor Blockers (ARB) on deterioration of renal function in diabetes using primary care EHR data in the Netherlands to explain and illustrate the application of the framework.

CONCEPTUAL FRAMEWORK OF DATA QUALITY ASSESSMENT AND PRE-PROCESSING

Our proposed framework, based on the ‘fit-for-use’ concept, consists of the following four steps (**Table 1**):

1. Define the general assumptions: data are sufficiently accurate and complete;

2. Define requirements for the data based on the research task;
3. Generate listings of observations with possible quality problems and verify whether the general assumptions (step 1) are NOT true for those observations;

4. Select the best strategies to handle the data with verified quality problems (e.g. correct data or adopt an analytical approach).

Table 1. Conceptual framework of data quality assessment and pre-processing steps.

<table>
<thead>
<tr>
<th>Steps</th>
<th>Key procedures in the steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assumptions</td>
<td>Assume data are accurate and complete enough to provide accurate findings</td>
</tr>
<tr>
<td>Requirements</td>
<td>Define what information is needed to answer the research question with the chosen design</td>
</tr>
<tr>
<td></td>
<td>Define what granularity (level of detail) of information is required</td>
</tr>
<tr>
<td>Assumption falsification</td>
<td>Establish prior knowledge of the data</td>
</tr>
<tr>
<td></td>
<td>- known mechanisms that could cause data quality problems</td>
</tr>
<tr>
<td></td>
<td>- how these problems are presented in the datasets</td>
</tr>
<tr>
<td></td>
<td>Generate signals</td>
</tr>
<tr>
<td></td>
<td>- signals are observations with possible quality problems</td>
</tr>
<tr>
<td></td>
<td>- desired sensitivity of signals should be decided based on the expected impact of residual quality problems on the outcomes of the analyses</td>
</tr>
<tr>
<td></td>
<td>Verify signals</td>
</tr>
<tr>
<td></td>
<td>- consider likely causal mechanisms to identify problems</td>
</tr>
<tr>
<td></td>
<td>- prove that assumptions are NOT true</td>
</tr>
<tr>
<td>Problems correction</td>
<td>Select the optimal solution for true problems</td>
</tr>
<tr>
<td></td>
<td>- use other information from database</td>
</tr>
<tr>
<td></td>
<td>- make decision based on the necessity of information for the analysis</td>
</tr>
</tbody>
</table>

Assumptions

The assumption prior to data quality assessment is that the data are fit for the research purpose. With the study setting at hand, the data are believed to be accurate and complete enough to provide accurate findings.

Requirements

The concept of “fit-for-use” emphasizes that different research task may have different criteria for data features [27]. Before data quality can be assessed, we need to define the data features, i.e. the information required to answer the research questions with the chosen design (examples in Box 1). The next step is to define the granularity, i.e. the level of detail, required for each piece of information (examples in Box 1).
Box 1. Examples of defining data requirements.

Define the required information
- If the study needs a fixed outcome to answer the question, e.g. the first blood pressure (BP) measure in a period, a single observation is sufficient. If the study uses a time-to-event design, e.g. the occurrence of a BP measure above 150 mmHg, all available BP observations and their dates are required.

Define the required granularity
- Taking BP as example again, the outcome could be defined as having hypertension or not (Yes/No for BP above 140/90 mmHg), the exact BP value, an averaged BP in a period or even a trajectory of BP observations.

Assumption falsification
The purpose of this step is to identify required data that do not meet the general assumptions. This is done by collecting evidence of inaccurate and/or incomplete information.

Data in EHR are registered to document and support clinical care, and generally do not have a research purpose. Therefore, uniformity of information may be problematic. Even using a highly structured data entry interface does not guarantee unambiguously structured data [28]. Also, information often resides in unstructured parts of the EHR like text notes [10], which requires specific extraction techniques that by themselves can cause inaccuracy.

Prior knowledge of the origin of the data, i.e. specifics of its use and how it was registered and collected can be very useful in this. Knowledge of known mechanisms that could cause data quality problems and how these problems are presented in the datasets, can be used to identify specific problems.

Important in this step is that observations with possible quality problems are listed: signals. A signal can be generated by a simple check for impossible values (e.g. a BP of over 400 mmHg), or through more complex pattern analyses (e.g. an impossible change in body mass over time). Such a signal is the first indication that the general assumptions may not be true, but in many cases additional proof is needed to judge the information invalid. Efficiency of signal detection should be considered as well, meaning that signals need to be sensitive but also specific enough to avoid spending too much time evaluating false positive ones. The decision of desired sensitivity of signals should be made based on the expected impact of residual quality problems on the outcomes of the analyses (examples in Box 2).
Box 2. Example of the decision of desired sensitivity of signals.
We have BP after 4 months as the outcome to compare two drugs, and we adjust for body mass index (BMI) and BP at baseline. Since BP is used twice and is used as the outcome measure, we expect inaccuracies in BP to have more impact than those in BMI. Therefore, it would be a good idea to use more sensitive signals to detect BP inaccuracies than to detect BMI accuracy problems.

For the verification of signals (is it a true problem, or a false one?), it is helpful to consider likely causal mechanisms. For example, an unlikely value (e.g. a systolic BP of 14) could be caused by a typing error, or a different unit of measure (cmHg instead of mmHg). Realizing such mechanisms can help in looking for additional evidence to confirm the problem, and come to a valid solution. Such evidence can come from additional data not in the datasets (e.g. the source data, by e.g. confirming that the healthcare provider of this patient is known to use a different unit sometimes), or from associations with other information in the datasets (e.g. the corresponding diastolic BP also appearing as a very low number).

It should be clear that the purpose of this exercise is not collecting evidence that an observation is valid (because that was the assumption we started with), but to prove that it is a true quality problem that needs to be handled.

Problems correction
In this step the optimal solution for each confirmed problem is chosen. The decision tree (Figure 1) consists of several possible options to solve a problem (examples in Box 3).

Box 3. Examples of problems correction.
For dealing with an inaccurate or incomplete prescription dosage:
1. Correct dosage value using textual information in the drug’s label text;
2. If drug’s label text is not available, dosage could also be deduced from neighboring prescriptions of the same drug in case of a stable trajectory of prescribed dosages;
3. In case such imputation cannot be done reliably, the consequence will be either exclusion of the prescription or dropping the patient from the dataset, each having their cost:
 - Maybe imputing a less reliable dosage is considered to be less harmful than removing the prescription, which would underestimate the patient’s exposure to the medication;
 - On the other hand, the researcher may prefer not to accept a possible exposure misclassification (e.g. in case it is the study drug) and excludes the patient.
DATA QUALITY PREPROCESSING IN A CASE STUDY

We use a case study to describe how the conceptual framework can be used in CER. The study compares ACEis with ARBs on renal function decline in patients with type 2 diabetes mellitus (DM2) in primary care in The Netherlands [29]. Included are initial users of either drug class between 2007 and 2012. Renal function decline was measured by combining estimated glomerular filtration rate (eGFR) and urinary albumin secretion into five renal function stages.

Patients were followed from the initiation of ACEi/ARB until the first occurrence of: (a) reaching the outcome: confirmed renal function decline, defined by two consecutive stage
observations worse than baseline; (b) switching to the other drug; (c) moving out of the general practice; (d) death; (e) end of data availability.

To minimize confounding by indication, patients starting on ACEi and ARB treatment were matched on a propensity score (PS). The time to renal function decline was analyzed using an extended Cox model adjusted for time-varying covariates in the matched cohort.

Data source

We used data from the GIANTT (Groningen Initiative to Analyse Type 2 diabetes Treatment) database, which contains anonymized data retrieved from EHRs of general practitioners (GPs) in the Netherlands using an automated and validated method [30].

We used data on demographic characteristics (age, gender, time since diabetes diagnosis), risk factor measurements (blood pressure, HbA1c, lipid profile, serum creatinine, urinary albumin secretion, body mass index (BMI) and smoking status), cardiovascular comorbidities, as well as prescriptions of all antihypertensive medications.

During the regular data management activities at the central level of GIANTT, several quality issues have been handled already. Completeness of comorbidity codes is increased by semi-automatic coding of verbal diagnosis information. Lab test results registered in free text parts of the EHR are extracted. Correctness of measurement outcomes are verified and corrected using an advanced data validation process, using a set of signal-generating data pattern analyses to identify possible problems that are handled manually. Missing prescription attributes (e.g. ATC codes, numerical daily use information, drug dosage) are partly supplemented using, amongst others, available national medication databases. Correctness of prescription attributes are verified using a set of signals-generating pattern analyses, and possible problems are handled manually.

Application of conceptual framework

Assumptions

We assume the data obtained from the general practices in the GIANTT database are accurate and complete for the case study.

Requirements

First we determine what kind of information is needed to answer the research question with the chosen design.

We need all renal function observations and medication exposure to ACEis/ARBs and co-medications during follow-up for the time-to-event outcome. Since the study design
includes adjustment for time-varying covariates, all observations during follow-up of these covariates are required. As for the PS-matching design, we need baseline values of renal function, a set of demographic and biomarker values, comorbidities and co-medication use (Table 2).

Table 2. Data requirements for the case study.

<table>
<thead>
<tr>
<th>Designed data analyses</th>
<th>Required information</th>
<th>Required data granularities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survival analysis to compare ACEis with ARBs on renal function decline in patients with DM2</td>
<td>- Outcome measurements (renal function)</td>
<td>- Outcome: eGFR and albuminuria values from a set of laboratory tests with their dates;</td>
</tr>
<tr>
<td></td>
<td>- Drug exposure (ACEis/ARBs and co-medications)</td>
<td>- Drug exposure: daily dosage, duration and start date of all ACEi/ARB and co-medication prescriptions;</td>
</tr>
<tr>
<td></td>
<td>- Other covariates (biomarkers, comorbidities) measurements during follow-up</td>
<td>- Covariates: biomarker values and dates, new comorbidities diagnoses and dates</td>
</tr>
<tr>
<td>Propensity score matching to minimize confounding by indication</td>
<td>Baseline values of renal function, demographic and biomarker values, comorbidities and co-medication history</td>
<td>- last observation of renal function, biomarkers measurements in the year before ACEi/ARB initiation;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- comorbidities and co-medication history</td>
</tr>
</tbody>
</table>

ACEi: Angiotensin-converting enzyme inhibitor; ARB: Angiotensin receptor blocker.

The second step is to define the needed granularities of the required data. For the longitudinal analysis, we require all eGFR and albuminuria values and dates during follow-up obtained from a set of laboratory test results, i.e. serum creatinine, proteinuria spot or per 24-hours or albumin/creatinine ratio. The exposure of medication requires that we know on what day the patient was exposed to how much medication. Thus, we required information on daily dosage, duration and start date of all ACEi/ARB and co-medication. For the time-varying covariates we need result and dates of all measurements and new diagnoses. For the propensity score estimation, we require the last observation of renal function and biomarker values during the year before ACEi/ARB initiation as well as comorbidities and co-medication history as binary indicators.

Assumption falsification

For both assumptions of accuracy and completeness, we followed the framework through three sub-steps: (a) summarize probable causal mechanisms of data quality issues based on prior knowledge; (b) generate signals to identify possible problems; (c) verify that the
signals are true problems or not. For this source data in the GIANTT database was available through visualization software, providing quick insight into contextual information or additional attributes (e.g. unit of measurement), but may also other clinical conditions of a patient.

We identified 3 important mechanisms that affect data accuracy: typing errors, date misclassification due to registering older observations in recent narratives (historical records), and inconsistent use of measurement units.

We generated signals to identify observations with unreasonable values, rapid value change in time, impossible dates and repetitive prescriptions. We used source data to verify the accuracy assumption violation. For example, HbA1c observations with values above 20 are listed as signals. A signal would be verified as a true problem if additional evidence is available, e.g. the use of mmol/mol as unit instead of %, or the value represents an impossible peak compared to the neighboring values.

As for the assumption of completeness, we know that many patients temporarily move out of the GP practice due to an institutionalization. This can present itself as 'concomitant missingness': sets of observations missing simultaneously in a period. Signals designed to detect these patterns were used as well.

Problems correction

We followed the procedure of the decision tree previously mentioned to solve true problems verified after assumption falsification.

For example, if reliable contextual information from source data showed that HbA1c observations with values above 20 were registered using mmol/mol as the unit, we converted them to the correct unit used in the study dataset. Missing dosages of study medication were imputed from neighboring prescriptions in case of stable dosage trajectories. In case this was not possible, and the prescription was within the follow-up period, we excluded the patient from the analysis, since we did not accept possible misclassification in drug exposure. For co-medication we accepted some misclassification, by also imputing missing dosages from neighboring prescriptions in case of an instable trajectory, since excluding a prescription altogether would result in more exposure misclassification than a deviation from the true dosage.

Biomarkers with accuracy problem that could not be reliably solved were made missing, because we judged removing individual observations to have limited effect on the results,
since the analysis partly solved eventual bias introduced. Baseline missing values were imputed using multiple imputation during the analysis, and removed time-varying biomarker information was by design imputed by carrying the last observation forward.

Confirmed concomitant missingness resulted in exclusion of the patient from the cohort, since serious misclassification of both study drug and renal function assessments could be expected. Also, such periods of data absence could easily lead to erroneous identification of a new user, in case the concomitant missingness period is at least as long as the defined washout period to consider a patient an initial user.

To quantify medication exposure over time, we need the prescription information to reflect actual drug use. However, prescription patterns are a result of usage, early refills, stockpiling, dosage changes as well as artifacts. Therefore, extensive pre-processing of the prescription data was done, following a previously described method [31].

The entire data quality pre-processing procedures applying the conceptual framework are summarized in Table 3. Based on those procedures, the initial cohort extracted for the case study which included 6,800 patients was adjusted to the analysis cohort that included 3,633 patients with improved data quality in accuracy and completeness (Figure 2).
Table 3. Summary of data quality pre-processing steps in the case study.

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Requirements</th>
<th>Assumption falsification</th>
<th>Generating signals</th>
<th>Evaluate Signals</th>
<th>Decisions for true problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>True value and true dates of measurements of renal function, biomarkers, comorbidity diagnoses and all prescription information (dosage/duration/start date)</td>
<td></td>
<td>Accuracy problems of values and dates - Typing error - Date misclassification due to historical records - Inconsistent use of measurement units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data are accurate and complete</td>
<td></td>
<td>Accuracy problem of actual drug use - Early refilling, stockpiling, dosage switching, duplicate artifact prescriptions</td>
<td>Duration of one prescription did not equal to the gap between two prescription issuing dates</td>
<td>Need extra solutions to approximate actual prescription start date</td>
<td>- Correct stockpiled prescriptions - Correct for dosage change</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Missing information of an existing prescription - Missing data input - Typing error</td>
<td>Missing date, duration or dosage for an existing prescription</td>
<td>Verified as true problems</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Missing baseline value - Absence of measurement of particular biomarker for a certain period</td>
<td>Missing baseline value of renal function and biomarkers</td>
<td>Verified as true problems</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>‘Concomitant missingness’ - Patients temporary moving out from GP practice</td>
<td>Sets of observations missing simultaneously in a period</td>
<td>Data visualization techniques of source data</td>
<td></td>
</tr>
</tbody>
</table>

eGFR: Estimated glomerular filtration rate; GP: General practitioner.
Figure 2. Data pre-processing flow in the case study.
DISCUSSION

With the growing adoption of EHRs in CER, concern about the quality of EHR data has increased. By providing ‘hands on’ information on the application of a general framework, we showed the usefulness of the ‘fit-for-use’ approach in describing data quality issues and their solutions. Such detailed information on data quality assessment provides the information that guidelines’ [23-25] stress is needed to ensure the validity of study results and improve the appropriateness of the use of EHR data in different settings.

For large-scale CERs, especially multisite studies or studies in distributed data networks, some frameworks and recommendations were published to support the improvement of assessing and reporting the data quality issues [27,32,33]. Those recommendations provide useful key rules which aim at different data quality dimensions. But still, there is a need to develop a generalized data quality assessment and pre-processing toolkit for CER or other observational data using EHRs. Instead of categorizing data quality issues into different specific dimensions, our framework emphasizes the suitability (accuracy) and the availability (completeness) of the data for a specific research purpose. The framework builds step-by-step procedures from deciding what data to extract to solving verified quality problems. These procedures encourage researchers to understand their data, verify quality problems based on potential mechanisms and use other information as much as possible to solve quality problems. The framework was applied to our case study and proved useful to a research setting with laboratory test data, diagnosis data and prescription data. Considering the commonality of EHRs, we believe the framework could serve for other research settings to assess and report on data quality. We would like to stress that applying the framework and report on data quality assessment is relevant in general, and not only in case of (expected) major significant impact on outcome. The relevance is in the transparency and trust the data are valid to answer the research questions at hand.

However, there are still questions that need to be answered. It should be noticed that the rapid advances in medical technology have given rise to a variety of high-dimensional data [28]. Data quality assessment using our framework for all required information in a high-dimensional dataset would result in thousands of data quality measures and be time-consuming. Thus, it is important to adapt the framework for high-dimensional dataset. The rule for desired sensitivity of signals in our framework should be adapted for high-dimensional data. Decisions need to be made to optimize the resource distribution for data.
quality assurance in a setting of limited resources, e.g. quality assessment and processing may be applied for those covariates with important expected impact on outcomes instead of all covariates. A further effort is needed to develop the appropriate data quality assessment methods for high-dimensional data.

In addition, our framework focuses on how to assess and process data quality problems. Although the procedures in the framework creates a set of descriptive methods and other quality identification and processing methods, how it still needs to be further integrated in guidelines for reporting the results from data quality analyses [27]. Reporting data quality assurance for EHR data in published studies should be brought to the attention to improve practices and trust in the clinical evidence.

FINANCIAL & COMPETING INTERESTS DISCLOSURE

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

No writing assistance was utilized in the production of this manuscript.
Quality assessment of EHR data for CER

REFERENCE

**The original research of the case study.

*The article that described the pre-processing of the prescription data.

