Observation of an Excited B_c^+ State

R. Aaij et al.
(LHCb Collaboration)

Using pp collision data corresponding to an integrated luminosity of 8.5 fb$^{-1}$ recorded by the LHCb experiment at center-of-mass energies of $\sqrt{s} = 7$, 8, and 13 TeV, the observation of an excited B_c^+ state in the $B_c^+\pi^+\pi^-$ invariant-mass spectrum is reported. The observed peak has a mass of $6841.2 \pm 0.6{(\text{stat})} \pm 0.1{(\text{syst})} \pm 0.8{(B_c^+)}$ MeV/c^2, where the last uncertainty is due to the limited knowledge of the B_c^+ mass. It is consistent with expectations of the $B_c^+(2S1)^+$ state reconstructed without the low-energy photon from the $B_c^+(13S1)^+ \rightarrow B_c^+\gamma$ decay following $B_c^+(2S1)^+ \rightarrow B_c^+(13S1)^+\pi^+\pi^-$. A second state is seen with a global (local) statistical significance of 2.2σ (3.2σ) and a mass of $6872.1 \pm 1.3{(\text{stat})} \pm 0.1{(\text{syst})} \pm 0.8{(B_c^+)}$ MeV/c^2, and is consistent with the $B_c(2S0)^+$ state. These mass measurements are the most precise to date.

DOI: 10.1103/PhysRevLett.122.232001

The B_c meson family is unique in the standard model as its states are formed from two heavy quarks of different flavors. The spectrum of masses of B_c mesons can reveal information on heavy-quark dynamics and improve the understanding of the strong interaction. Specifically, it provides tests of nonrelativistic quark-potential models [1–13], which have been successfully applied to quarkonium, since the B_c family shares properties with both the charmonium and bottomonium systems. The B_c family is predicted to have a rich spectroscopy by various potential models [1–13] and lattice quantum chromodynamics [12]. However, the B_c mesons are much less explored compared to quarkonia due to the small production rate, since their predominant production mechanism requires the production of both $c\bar{c}$ and $b\bar{b}$ pairs. The ground state meson B_c^+ was first observed by the CDF experiment [14] at the Tevatron collider. Knowledge of the properties of the B_c^+ meson has been greatly advanced by the LHCb experiment with the measurement of the B_c^+ mass, lifetime, and production rate [15–20], and the discovery and precise measurement of the branching fractions of several new decay channels [16,21–30]. Charge conjugation is implied throughout this Letter.

Excited B_c^+ states that lie below the threshold for decay into a beauty and charm meson pair are expected to have decay widths smaller than a few hundred keV [3,4]. Depending on its mass, an excited B_c^+ resonance may undergo either cascade radiative or pionic decays to the B_c^+ state, which decays weakly. The second S-wave B_c^+ state occurs as either a pseudoscalar (0^-) or a vector (1^-) spin state, i.e., the singlet $B_c(2S0)^+$ or the triplet $B_c^+(2S1)^+$. The $B_c(2S0)^+$ and $B_c^+(2S1)^+$ states are denoted as $B_c^+(2S)^+$ and $B_c^+(2S)^+$, respectively. The $B_c^+(2S)^+$ state decays directly to $B_c^+\pi^+\pi^-$, while the $B_c^+(2S)^+$ state decays to $B_c^+(13S1)^+\pi^+\pi^-$, followed by the $B_c^+(13S1)^+ \rightarrow B_c^+\gamma$ electromagnetic transition. The low-energy photon produced in this decay is not considered in this analysis, since the reconstruction efficiency for such photons is too low to be useful with the current data sample. The $B_c^+(13S1)^+$ state is denoted as B_c^{++} hereafter. The transitions among the $B_c^+(2S)^+$ and B_c^{++} states are illustrated in Fig. 1. Decays of both $B_c^+(2S)^+$ states produce a narrow peak in the $B_c^+\pi^+\pi^-$ invariant-mass spectrum [31,32]; however, the $B_c^+(2S)^+$ state peaks at $M(B_c^+(2S)^+)_{rec} = M(B_c^+(2S)^+) - \Delta M(B_c^{++})$ due to the missing photon, where $\Delta M(B_c^{++})$ is the mass difference between the intermediate state B_c^{++} and

![FIG. 1. Transitions among the $B_c^+(2S)^+$ and B_c^{++} states.](image-url)
the B_c^+ meson. Since the $B_c^{π^+}$ state has not been observed yet, the quantity $ΔM(B_c^{π^+})$ is unknown and the value of $M(B_c^{π^+}(2S^+))$ cannot be determined with this technique at the moment. Taking into account the unreconstructed photon, the mass difference between the two peaks in the $B_c^{π^+π^-}$ mass distribution originating from the two $B_c^{π^+}(2S^+)$ states, $M(B_c^{π^+}(2S^+)) - M(B_c^{π^+}(2S^+))_{	ext{rec}}$, is predicted to be in the range 11 to 53 MeV/c^2 [1–13]. The production cross section of the $B_c^{π^+}(2S^+)$ state is predicted to be twice as large as that of the $B_c^{π^+}(2S^+)$ state [8,31,33,34], while the branching fractions of the decays $B_c^{π^+}(2S^+)$ → $B_c^{π^+π^-}$ and $B_c^{π^+}(2S^+)$ → $B_c^{π^+π^-}$ are expected to be similar [8,34].

With the large samples of B_c^+ mesons produced at the Large Hadron Collider, the ATLAS Collaboration first reported the observation of a signal in the $B_c^{π^+π^-}$ mass distribution peaking at a value of $6842 ± 4(\text{stat}) ± 5(\text{syst})$ MeV/c^2 using pp collision data at $\sqrt{s} = 7$ and 8 TeV corresponding to a luminosity of 24 fb$^{-1}$ [35]. Because of large mass resolution and low signal yield, no determination could be made as to whether the observed peak was either the $B_c(2S^+)$, the $B_c^{π^+}(2S^+)$ state, or a combination of the two states. The LHCb experiment also performed a search for excited B_c^+ states in the $B_c^{π^+π^-}$ mass distribution using pp collision data at center-of-mass energy of $\sqrt{s} = 8$ TeV, corresponding to an integrated luminosity of 2 fb$^{-1}$. No evidence of any signal was found [36]. Recently, the CMS Collaboration reported the observation of the $B_c(2S^+)$ and $B_c^{π^+}(2S^+)$ states [37], in which the mass of the $B_c(2S^+)$ state and the mass difference between the two peaks were measured to be 6871.0 ± 1.2(\text{stat}) ± 0.8(\text{syst}) ± 0.8(B_c^+) and 290.0 ± 1.5(\text{stat}) ± 0.7(\text{syst}) MeV/c^2, respectively. The third uncertainty is due to the limited knowledge of the B_c^+ mass.

This Letter presents an updated search for excited B_c^+ mesons in the $B_c^{π^+π^-}$ mass distribution. The analysis makes use of run 1 and run 2 data collected by the LHCb experiment from 2011 to 2018 at center-of-mass energies of $\sqrt{s} = 7$, 8, and 13 TeV, corresponding to integrated luminosities of about 1.0, 2.0, and 5.5 fb$^{-1}$, respectively.

The LHCb detector [38,39] is a single-arm forward spectrometer covering the pseudorapidity range $2 < η < 5$, designed for the study of particles containing b and/or c quarks. The detector elements that are particularly relevant to this analysis are a silicon-strip vertex detector surrounding the pp interaction region that allows c and b hadrons to be identified from their characteristically long flight distance, a tracking system that provides a measurement of the momentum p of charged particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c, and two ring-imaging Cherenkov detectors that are able to discriminate between different species of charged hadrons. The minimum distance of a track to a primary vertex (PV), the impact parameter (IP), is measured with a resolution of $(15 + 29/p_T) \text{μm}$, where p_T is the component of the momentum transverse to the beam, in GeV/c. The online event selection is performed by a trigger, which consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction. At the hardware stage, events are required to have at least one muon with high transverse momentum p_T or a hadron with high transverse energy. At the software stage, two muon tracks or three charged tracks are required to have high p_T and to form a secondary vertex with a significant displacement from the interaction point. The momentum scale in data is calibrated using the $J/ψ$ and B^+ mesons [40] with well-known masses.

Simulated samples are used to model the signal behavior. In the simulation, pp collisions are generated using PYTHIA 6 [41] with a specific LHCb configuration [42]. The generator BCVECPSY [33] is used to simulate the production of B_c^+ mesons. Decays of unstable particles are described by EVTGEN [43], in which final-state radiation is generated using PHOTOS [44]. The interaction of the generated particles with the detector, and its response, are implemented using the GEANT4 toolkit [45] as described in Ref. [46].

To form the $B_c^{π^+}(2S^+)$ candidates, first the intermediate B_c^+ state is reconstructed from the $B_c^+ \rightarrow J/ψπ^+$ decay. The $J/ψ$ candidates are reconstructed with a pair of oppositely charged particles identified as muons. The muons are required to have $p_T > 550$ MeV/c and good track-fit quality. They are required to form a common decay vertex with an invariant mass in the range [3040, 3140] MeV/c^2, corresponding to approximately 6 times the $J/ψ$ mass resolution. The $J/ψ$ candidate is combined with a charged pion to form the B_c^+ candidate. Each particle is associated with the PV that has the smallest value of χ^2. In the $J/ψ$ hypothesis, the χ^2 is defined as the difference in the vertex fit χ^2 of a given PV reconstructed with and without the particle under consideration. The pions must have $p_T > 1000$ MeV/c, good track-fit quality, and be inconsistent with originating from any PV. The B_c^+ candidate is required to have a good-quality vertex, a trajectory consistent with coming from its associated PV, and a decay time larger than 0.2 ps.

To further suppress background, a boosted decision tree (BDT) [47,48] classifier is used, as done in the B_c^+ production measurement [20]. The input variables of the BDT classifier are taken to be the p_T of each muon, the $J/ψ$ meson and the charged pion, the decay length, decay time and vertex fit χ^2 of the B_c^+ meson, and the χ^2 of the muons, the pion, the $J/ψ$ meson, and the B_c^+ meson with respect to the associated PV. The BDT classifier is trained using signal candidates from simulation and background candidates from the upper sideband of the $J/ψπ^+$ mass distribution in data, corresponding to the range $[6370, 6600]$ MeV/c^2. The BDT threshold is chosen to maximize $S/\sqrt{S + B}$, where S and B are the expected yields of signal and background in the range $M(J/ψπ^+) ∈ [6251, 6301]$ MeV/c^2, respectively.
This mass window corresponds to around 4 times the resolution of $M(J/\psi\pi^+)$. To improve the signal-to-background ratio in the $B_c^{(+)}(2S)^+$ search, the transverse momentum of the B_c^+ meson is required to be larger than 10 GeV/c.

An unbinned maximum-likelihood fit is performed to the $M(J/\psi\pi^+)$ distribution. To improve the mass resolution, the mass $M(J/\psi\pi^+)$ is calculated by constraining the J/ψ mass to its known value [49] and the B_c^+ meson to originate from the associated PV [50]. The signal component is described by a Gaussian function with asymmetric power-law tails [51]. The parameters of this Gaussian function are fixed according to the simulation, while the mean and width of the Gaussian function are left free in the fit. The combinatorial background is modeled by a Gaussian function with asymmetric power-law tails. The parameters of the tails are determined from the simulation, while the mean and width of the Gaussian function are left free in the fit. The combinatorial background is modeled with an exponential function.

The contamination from the Cabibbo-suppressed decay $B_c^+ \to J/\psi K^+$, with the kaon misidentified as a pion, is modeled by a Gaussian function with asymmetric power-law tails. The parameters of this Gaussian function are fixed according to the simulation, except that the mean is constrained relative to that of the $B_c^+ \to J/\psi\pi^+$ signal. The invariant-mass distribution of the $J/\psi\pi^+$ candidates is shown in Fig. 2. The B_c^+ signal yield is 3785 ± 73. The fitted B_c^+ mass and mass resolution are 6273.7 ± 0.3 and 15.1 ± 0.3 MeV/c^2, respectively.

To reconstruct the $B_c^{(+)}(2S)^+$ candidates, B_c^+ candidates with $M(J/\psi\pi^+) \in [6200, 6320]$ MeV/c^2 are combined with a pair of oppositely charged particles identified as pions. These pion candidates are required to originate from the PV, and each have $p_T > 300$ MeV/c, $p > 1500$ MeV/c, and a good track-fit quality. The $B_c^{(+)}(2S)^+$ candidate is required to have a good vertex-fit quality. To improve the mass resolution, a fit [50] is performed in which the J/ψ and B_c^+ masses are constrained to their known values [49] and the daughters of the $B_c^{(+)}(2S)^+$ meson are required to point to the associated PV. The χ^2 per number of degrees of freedom of this fit must be smaller than 9. The value of $M(B_c^{+}\pi^+\pi^-) - M(B_c^+) - M(\pi^+\pi^-)$ is required to be smaller than 200 MeV/c^2. To ensure that the selection does not produce any artificial peaks in the $M(B_c^{+}\pi^+\pi^-)$ spectrum, the same requirements are applied to a same-sign sample, constructed from $B_c^+\pi^+\pi^-$ or $B_c^+\pi^-\pi^-$ combinations. The efficiency of the selections is found to change smoothly with the invariant mass $M(B_c^{+}\pi\pi)$ and no peaks are seen in the same-sign sample.

The $M(B_c^{+}\pi^+\pi^-)$ distribution in the data sample after all the selections are applied is shown in Fig. 3, with those of the same-sign sample and a sample drawn from the B_c^+ sidebands $M(J/\psi\pi^+) \in [6150, 6200] \cup [6320, 6550]$ MeV/c^2 superimposed for comparison. The same-sign and B_c^+ mass sideband distributions are scaled to the opposite-sign distribution in the sideband region, $M(B_c^{+}\pi^+\pi^-) \in [6735, 6825] \cup [6895, 6975]$ MeV/c^2. The $M(B_c^{+}\pi^+\pi^-)$ distribution presents an obvious peak at approximately 6840 MeV/c^2, and a less significant structure at about 6870 MeV/c^2.

The masses and yields of the $B_c^{(+)}(2S)^+$ peaks are determined using an unbinned maximum-likelihood fit to the distribution of the mass difference $\Delta M \equiv M(B_c^{+}\pi^+\pi^-) - M(B_c^+)$ to eliminate the dependence on the reconstructed B_c^+ mass. Here the mass $M(B_c^{+}\pi^+\pi^-)$ is calculated with no constraint on the B_c^+ mass, but only constraining the J/ψ mass to its known value [49] and requiring the $B_c^{(+)}(2S)^+$ meson to come from the associated PV [50]. Each $B_c^{(+)}(2S)^+$ peak is modeled by a Gaussian function with asymmetric power-law tails [51]. The tail parameters are fixed to the values determined from simulation, while the Gaussian mean and width are treated as free parameters. The combinatorial background is described by a second-order polynomial function.

The fit to the ΔM distribution is shown in Fig. 4, and the results are summarized in Table I. The $B_c^{(s)}(2S)^+$ signal yield is determined to be 51 ± 10 (stat), corresponding to a local statistical significance of 6.8σ. The significance is evaluated with a likelihood-based test, in which the
peaks is measured to be negligible. The total systematic uncertainty on the fitted mass values is determined to be 2m_{X+}. The changes in ΔM obtained with the alternative models are found to be negligible. The effect of final-state radiation is also studied with simulated events and the associated uncertainty on the fitted mass values is found to be negligible. The total systematic uncertainty on ΔM for both the Bc(2S)+ and Bc^*(2S)+ states of 0.12 MeV/c^2 is fully correlated, and therefore cancels in the mass difference of the two peaks.

In conclusion, using pp collision data collected by the LHCb experiment at center-of-mass energies of √s = 7, 8, and 13 TeV, corresponding to an integrated luminosity of 8.5 fb^{-1}, a peaking structure consistent with the Bc^*(2S)+ state is observed in the Bc(2S)+ π^±π^- mass spectrum with a global (local) statistical significance of 6.3σ (6.8σ). The mass associated with the Bc^*(2S)+ state, for which the low-energy photon in the intermediate decay Bc^+ → Bc(2S)+γ is not reconstructed, is measured to be 6841.2 ± 0.6(stat) ± 0.1(syst) ± 0.8(Bc^+) MeV/c^2, with negligible uncertainty on the ΔM measurements. The unreconstructed photon emitted in the Bc^*(2S)+ decay chain could be an additional source of systematic uncertainty. Studies on simulated events show that the missing photon introduces a small bias, and a correction of +0.08 MeV/c^2, with negligible uncertainty, is applied to the fitted value of the Bc^*(2S)+ mass peak. All other systematic uncertainties are negligible and are briefly described as follows. The effects of the imperfect modeling of the signal and background components are estimated by using alternative models. The alternative model for the signal peaks uses Hypatia functions [56], while for the background the alternative model consists of a sum of two threshold functions, each of the form (ΔM − m_t)^p x e^{-c(ΔM−m_t)}, where p and c are free parameters, and m_t represents the threshold, which is taken to be 2m_{X+}. The changes in ΔM obtained with the alternative models are found to be negligible.

Several sources of systematic uncertainty on the determination of the mass difference ΔM are studied. The dominant contribution is from the uncertainty on the momentum scale, which is due to imperfections in the description of the magnetic field and the imperfect alignment of the subdetectors. The uncertainty of the momentum calibration is estimated using other particles, such as K^0_s and Υ mesons, and leads to an uncertainty of 0.12 MeV/c^2 on the ΔM measurements.

TABLE I. Results of the fit to the ΔM distribution. Uncertainties are statistical only.

<table>
<thead>
<tr>
<th></th>
<th>Bc(2S)^+</th>
<th>Bc^*(2S)+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal yield</td>
<td>51 ± 10</td>
<td>24 ± 9</td>
</tr>
<tr>
<td>Peak ΔM value (MeV/c^2)</td>
<td>566.2 ± 0.6</td>
<td>597.2 ± 1.3</td>
</tr>
<tr>
<td>Resolution (MeV/c^2)</td>
<td>2.6 ± 0.5</td>
<td>2.5 ± 1.0</td>
</tr>
<tr>
<td>Local significance</td>
<td>6.8σ</td>
<td>3.2σ</td>
</tr>
<tr>
<td>Global significance</td>
<td>6.3σ</td>
<td>2.2σ</td>
</tr>
</tbody>
</table>

FIG. 4. Distribution of ΔM = M(Bc(2S)+→π⁺π⁻) − M(Bc^+), with the fit results overlaid. The same-sign distribution has been normalized to the data in the Bc(2S)+ sideband region.
are the most precise to date, and are consistent with the results from the CMS Collaboration [37]. They are also within the range of the theoretical predictions [1–13].

We thank Chao-Hsi Chang and Xing-Gang Wu for frequent and interesting discussions on the production of the B_s mesons. We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); CBPF (Brazil), PL-GRID (Poland) and OSC (Switzerland); NASU (Ukraine); MinECo (Spain); SNSF and SER (Switzerland); STFC (United Kingdom); NSF (USA). We are indebted to the communities behind the open-source software packages on which we depend. Individual groups or members have received edge support from CERN and from the national agencies: ANR, Labex P2IO and OCEVU, and Région Auvergne-Rhône-Alpes (France); Key Research Program of Frontier Sciences of CAS, CAS PIFI, and the Thousand Talents Program (China); RFBR, RSF and Yandex LLC of Frontier Sciences of CAS, CAS PIFI, and the Thousand Talents Program (China); RFBR, RSF and Yandex LLC (Russia); GV A, XuntaGal and GENCAT (Spain); the Royal Society and the Leverhulme Trust (United Kingdom); NSF (USA). We acknowledge the computing performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We thank Chao-Hsi Chang and Xing-Gang Wu for additional support in this collaboration [113].

27 INFN Sezione di Roma La Sapienza, Roma, Italy
28 Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
29 Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, Netherlands
30 Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
31 ACG—University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
32 National Center for Nuclear Research (NCBJ), Warsaw, Poland
33 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
34 Institute of Theoretical and Experimental Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia, Moscow, Russia
35 Instituto de Física de Partículas Eólicas (IFP), Universidad de Granada, Granada, Spain
36 Institute for Nuclear Research of the Russian Academy of Sciences (INR RAS), Moscow, Russia
37 Yandex School of Data Analysis, Moscow, Russia
38 National Research University Higher School of Economics, Moscow, Russia
39 Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia
40 Institute for High Energy Physics NRC Kurchatov Institute (IHEP NRC KI), Protvino, Russia, Protvino, Russia
41 Petersburg Nuclear Physics Institute NRC Kurchatov Institute (PNPI NRC KI), Gatchina, Russia, St.Petersburg, Russia
42 ICCUB, Universitat de Barcelona, Barcelona, Spain
43 Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
44 European Organization for Nuclear Research (CERN), Geneva, Switzerland
45 Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
46 Physik-Institut, Universität Zürich, Zürich, Switzerland
47 NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
48 Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
49 University of Birmingham, Birmingham, United Kingdom
50 H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
51 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
52 Department of Physics, University of Warwick, Coventry, United Kingdom
53 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
54 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
55 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
56 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
57 Imperial College London, London, United Kingdom
58 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
59 Department of Physics, University of Oxford, Oxford, United Kingdom
60 Massachusetts Institute of Technology, Cambridge, MA, United States
61 University of Cincinnati, Cincinnati, OH, United States
62 University of Maryland, College Park, MD, United States
63 Syracuse University, Syracuse, NY, United States
64 Laboratory of Mathematical and Subatomic Physics, Constantine, Algeria
65 Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
66 University of Chinese Academy of Sciences, Beijing, China
67 South China Normal University, Guangzhou, China (associated with Center for High Energy Physics, Tsinghua University, Beijing, China)
68 School of Physics and Technology, Wuhan University, Wuhan, China (associated with Center for High Energy Physics, Tsinghua University, Beijing, China)
69 Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China
70 Departamento de Física, Universidad Nacional de Colombia, Bogota, Colombia (associated with LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France)
71 Institut für Physik, Universität Rostock, Rostock, Germany (associated with Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany)
72 Van Swinderen Institute, University of Groningen, Groningen, Netherlands (associated with Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands)
73 National Research Centre Kurchatov Institute, Moscow, Russia (associated with Institute of Theoretical and Experimental Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia, Moscow, Russia)
74 National University of Science and Technology “MISIS”, Moscow, Russia (associated with Institute of Theoretical and Experimental Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia, Moscow, Russia)