A comparison of DSM-5 and DSM-IV agoraphobia in the World Mental Health Surveys

Annelieke M. Roest1 | Ymkje Anna de Vries1 | Carmen C. W. Lim2 | Hans-Ulrich Wittchen3,4 | Dan J. Stein5 | Tomasz Adamowski6 | Ali Al-Hamzawi7 | Evelyn J. Bromet8 | Maria Carmen Viana9 | Giovanni de Girolamo10 | Koen Demyttenaere11 | Silvia Florescu12 | Oye Gureje13 | Josep Maria Haro14 | Chiyi Hu15 | Elie G. Karam16,17,18 | José Miguel Caldas-de-Almeida19 | Norito Kawakami20 | Jean Pierre Lépine21 | Daphna Levinson22 | Maria E. Medina-Mora23 | Fernando Navarro-Mateu24,25,26 | Siobhan O'Neill27 | Marina Piazza28 | José A. Posada-Villa29 | Tim Slade30 | Yolanda Torres31 | Ronald C. Kessler32 | Kate M. Scott33 | Peter de Jonge1 | On behalf of the WHO World Mental Health Survey Collaborators

© 2019 The Authors. Depress Anxiety Published by Wiley Periodicals, Inc.
1 | INTRODUCTION

Anxiety disorders are highly prevalent and are major contributors to the burden of disease worldwide (Craske et al., 2017; Murray et al., 2012; Whiteford et al., 2013). Agoraphobia (AG) is one of the least studied anxiety disorders (Asmundson & Asmundson, 2018), and, especially with the introduction of the Diagnostic and Statistical Manual of Mental Disorders, version 5 (DSM-5), there is a lack of research focusing on AG including the cross-national epidemiology of AG.

In the Diagnostic and Statistical Manual of Mental Disorders, version 4 (DSM-IV), unlike the International Classification of Diseases (ICD-10), AG was not defined as an independent disorder with specific diagnostic criteria, but instead was described as a residual group only to be coded in the presence or absence of panic disorder (PD; i.e., PD with AG [300.21], or AG without a history of PD [300.22]; American Psychiatric Association, 2000). AG was defined as anxiety about being in places or situations from which escape might be difficult (or embarrassing) or in which help may not be available in the event of having a panic attack or panic-like symptoms. These situations had to be cued by exposure to agoraphobic situations. As a result, PD (300.01) and AG (300.22) are unlinked (American Psychiatric Association, 2013; Asmundson, Taylor, & Smits, 2014), consistent with the...
ICD-10 criteria for AG (F40.0) and PD (F41.0; World Health Organization, 2016). The decision to classify AG as a disorder that exists separately from PD was based on studies indicating that a substantial proportion of individuals with AG do not have PD (Kessler et al., 2006; Wittchen, Gloster, Beesdo-Baum, Fava, & Craske, 2010), and/or PD or panic attacks do not precede AG (as implied in DSM-IV; Wittchen et al., 2010, 2008; Wittchen, Reed, & Kessler, 1998). As a result, individuals with AG, but without panic-like symptoms, received no formal diagnosis while they showed substantial impairment and disability (Wittchen et al., 2010). Further, DSM-5 criterion A is broadened to a fear or avoidance of situations because of thoughts that escape might be difficult or help might not be available in the event of developing panic-like symptoms or other incapacitating or embarrassing symptoms (e.g., fear of falling in the elderly; fear of incontinence; American Psychiatric Association, 2013). This is in line with the ICD criteria, in which AG is understood to be the consequence of a broader range of fears (Kogan et al., 2016; Stein, 2012; Wittchen et al., 2010). To make a better distinction from specific phobia (SP), endorsement of fears from two or more distinct situational domains is required in DSM-5. Finally, the DSM-5 criteria for AG are extended compared to the DSM-IV criteria to make them more comparable to other (anxiety) disorders, for instance by adding persistence and severity requirements (American Psychiatric Association, 2013; Asmundson et al., 2014).

These changes in DSM-5 call for a re-examination of epidemiological data on AG. The available information is difficult to evaluate because most studies have examined AG only in individuals without a history of PD (Goodwin et al., 2005). As a result, the prevalence of AG (Goodwin et al., 2005) and the impairment due to AG has likely been underestimated. Furthermore, there is a lack of information on age of onset (AOO; Wittchen et al., 2010), sociodemographic correlates, and comorbidity patterns of AG (Goodwin et al., 2005). Therefore, the aim of the current study is to present and compare data on characteristics of AG according to DSM-5 and DSM-IV criteria (AG without a history of PD and PD with AG) from countries in the World Health Organization (WHO) World Mental Health (WMH) Survey Initiative.

2 | METHODS

2.1 | Survey samples

Data came from 27 surveys administered in low/lower-middle income countries, upper-middle income countries, and high-income countries. A total of 136,357 respondents participated. Interviews were conducted face-to-face in respondent homes. Adults were selected based on multistage clustered area probability sampling designs designed to generate samples that were representative of the household populations in the countries. The details of within-country sampling methods are described in detail elsewhere (Heeringa et al., 2008; Pennell et al., 2008).

2.2 | Ethics, consent, and permissions

Informed consent was obtained according to protocols endorsed by local Institutional Review Boards.

2.3 | Measures

2.3.1 | Mental disorders

Mental disorders were assessed with the WHO Composite International Diagnostic Interview (CIDI), a fully structured interview administered by trained lay interviewers, which generates diagnoses according to the criteria of the DSM-IV (Kessler & Ustün, 2004). To reduce respondent burden, interviews were administered in two parts. All respondents completed Part I of the CIDI, assessing core mental disorders. Part II, which assessed other disorders and correlates, was administered to all respondents with any lifetime Part I diagnosis and a probability subsample of other Part I respondents. Part II data were weighted to adjust for the undersampling of Part I noncases so that weighted prevalence estimates in Part II sample are identical to those in Part I sample.

The disorders include anxiety disorders (PD, AG, generalized anxiety disorder [GAD], social anxiety disorder, SP, posttraumatic stress disorder [PTSD], separation anxiety disorder), mood disorders (major depressive episode and/or dysthymia, bipolar disorder [I, II, or subthreshold]), disruptive behavior disorders (intermittent explosive disorder, bulimia nervosa, binge eating disorder, oppositional defiant disorder, conduct disorder, attention deficit disorder), and substance use disorders (alcohol abuse and drug abuse, both with or without dependence). These diagnoses have shown generally good concordance with clinical diagnoses based on blinded Structured Clinical Interview (SCID) reappraisal (Haro et al., 2006). The AOO of AG was assessed using special recall probes that have been shown to yield more plausible distributions of AOO of disorders than conventional recall questions (Knäuper, Cannell, Schwarz, Bruce, & Kessler, 1999).

For purposes of the current analysis, DSM-5 AG diagnoses were generated retrospectively: a series of questions were used to operationalize DSM-5 AG criteria (see Table S1 for the DSM-IV and DSM-5 criteria and corresponding CIDI algorithms). We defined three diagnostic groups: respondents who only met DSM-IV criteria (AG without a history of PD and PD with AG) "DSM-IV only AG," respondents who only met DSM-5 criteria "DSM-5 only AG," and respondents who met both DSM-5 and DSM-IV criteria "DSM-5 with DSM-IV AG.

2.3.2 | Impairment

Severe role impairment in home management, ability to work, ability to form and maintain close relationships, and social life was assessed with a modified version of the Sheehan Disability Scale (SDS) in respondents with 12-month AG (Leon, Offson, Portera, Farber, & Sheehan, 1997). The response scale for each role domain is from 0 to 10. Severe impairment was defined as a score ≥ 7 in at least one specific role domain. Respondents with 12-month AG were also asked how many days in the past year they were totally unable to work or carry out their normal activities due to their AG (Ormel et al., 2008). Additionally, all Part II respondents were asked how many days in the

1 In DSM-5 PTSD is no longer listed as an anxiety disorder but instead falls under "trauma- and stressor-related disorders."
past 30 days they were totally unable to work or carry out their normal activities because of any physical or mental health problems. Finally, all Part I respondents were asked whether they seriously thought about committing suicide in the past 12 months.

2.3.3 | Treatment

Respondents were asked whether they ever saw each of a long list of professionals. Responses were aggregated into treatment in the specialty mental health sector (e.g., psychiatrist/psychologist), general medical sector (e.g., general practitioner), human services sector (e.g., social worker), and complementary and alternative medicine (CAM) sector (e.g., herbalist).

2.3.4 | Sociodemographic correlates

Factors considered include gender, age cohorts (18–34, 35–49, 50–64, 65+), education level (low, low-average, high-average, high), marital status (married, never married, previously married), and employment status (employed, student, homemaker, retired, other).

2.4 | Statistical analysis

The actuarial method was used to generate AOO survival curves, and differences in age of onset between DSM-IV only AG, DSM-5 only AG, and DSM-5 with DSM-IV AG were tested using discrete-time logistic regression in the subsample with DSM-IV or DSM-5 AG. Logistic regression analysis was used to evaluate the significance of differences in role impairment, suicidality, comorbidity, and treatment between DSM-IV only AG, DSM-5 only AG, and DSM-5 with DSM-IV AG cases, and between AG cases and noncases (where applicable). Logistic regression was also used to compare sociodemographic correlates of DSM-IV only AG, DSM-5 only AG, and DSM-5 with DSM-IV AG. All analyses were carried out in SAS (9.4). Because the data were clustered and weighted to account for unequal selection probabilities, standard errors were estimated using the Taylor series linearization method (Wolter, 1985) implemented in SUDAAN (11.0.1; Research Triangle Institute, 2002). Significance tests were evaluated using 0.05-level two-sided tests.

3 | RESULTS

3.1 | Prevalence and course of AG

Lifetime and 12-month prevalence estimates of DSM-IV AG were 1.4% and 0.9%, while those of DSM-5 AG were 1.5% and 1.0% (Table 1). Consistent with DSM-IV criteria, 100% of cases with DSM-IV AG experienced fear of panic attacks, compared to 70.2% of cases with DSM-5 AG. Of all respondents with lifetime PD (prevalence of 1.7%), 19.7% met criteria for DSM-IV AG and 18.2% for DSM-5 AG (Table S2).

Table 1

<table>
<thead>
<tr>
<th></th>
<th>Lifetime</th>
<th>12 months</th>
<th>Persistence (12 months/lifetime)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>SE</td>
<td>%</td>
</tr>
<tr>
<td>DSM-IV AG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With PD</td>
<td>0.3</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Without PD</td>
<td>1.0</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>With PD/total</td>
<td>24.7</td>
<td>1.2</td>
<td>25.3</td>
</tr>
<tr>
<td>With fear of PA/total</td>
<td>100.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>1.4</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>DSM-5 AG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With PD</td>
<td>0.3</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Without PD</td>
<td>1.2</td>
<td>0.8</td>
<td>0.0</td>
</tr>
<tr>
<td>With PD/total</td>
<td>21.4</td>
<td>1.1</td>
<td>21.6</td>
</tr>
<tr>
<td>With fear of PA/total</td>
<td>70.2</td>
<td>1.3</td>
<td>72.4</td>
</tr>
<tr>
<td>Total</td>
<td>1.5</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>DSM-IV only AG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With PD</td>
<td>0.1</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Without PD</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>With PD/total</td>
<td>19.3</td>
<td>2.4</td>
<td>19.8</td>
</tr>
<tr>
<td>With fear of PA/total</td>
<td>100.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>DSM-5 only AG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With PD</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Without PD</td>
<td>0.4</td>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>With PD/total</td>
<td>9.3</td>
<td>1.5</td>
<td>8.3</td>
</tr>
<tr>
<td>With fear of PA/total</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>DSM-5 with DSM-IV AG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With PD</td>
<td>0.3</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Without PD</td>
<td>0.8</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>With PD/total</td>
<td>26.5</td>
<td>1.6</td>
<td>26.6</td>
</tr>
<tr>
<td>With fear of PA/total</td>
<td>100.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>1.0</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>No AG</td>
<td>98.2</td>
<td>0.0</td>
<td>98.8</td>
</tr>
</tbody>
</table>

Note: DSM-IV: Diagnostic and Statistical Manual of Mental Disorders, version 4; DSM-5: Diagnostic and Statistical Manual of Mental Disorders, version 5.

*Significantly different from DSM-5 AG with DSM-IV AG ($\chi^2_1 = 47.1; P < 0.0001$).

*Significantly different from DSM-5 AG with DSM-IV AG ($\chi^2_1 = 54.3; P < 0.0001$).

*Significantly different from DSM-5 AG only AG ($\chi^2_1 = 20.9; P < 0.0001$).

*Significantly different from DSM-5 AG with DSM-IV AG ($\chi^2_1 = 52.8; P < 0.0001$).

*Significantly different from DSM-IV only AG ($\chi^2_1 = 18.6; P < 0.0001$).
Of all respondents with lifetime AG, 57.1% (SE = 1.3) met criteria for both DSM-5 and DSM-IV AG, 18.8% (SE = 1.0) only met criteria for DSM-IV, and 24.2% (SE = 1.1) only met criteria for DSM-5. DSM-5 only lifetime cases had a significantly lower lifetime proportion with PD (9.3%) than DSM-5 with DSM-IV cases (26.5%; \(\chi^2_1 = 54.3; P < 0.001 \)) and DSM-IV only cases (19.3%; \(\chi^2_1 = 20.9; P < 0.001 \)). Respondents with DSM-5 with DSM-IV AG had higher persistence (i.e., 12-month prevalence among lifetime cases; 71.2%) than DSM-IV only (51.9%; \(\chi^2_1 = 47.1; P < 0.001 \)) and DSM-5 only (64.1%; \(\chi^2_1 = 6.2; P = 0.012 \)) cases. DSM-5 only cases also had a significantly higher persistence than DSM-IV only cases (\(\chi^2_1 = 18.6; P < 0.001 \)).

The median AOO of DSM-5 only AG was 14 years old (interquartile range [IQR]= 9–25), which was significantly lower than the median AOO of DSM-IV only AG (median = 23, IQR = 13–41) and of DSM-5 with DSM-IV AG (median = 21, IQR = 13–39; \(\chi^2 = 21.8–24.4; P < 0.001; \) Figure S1). The AOO of DSM-IV only AG and DSM-5 with DSM-IV AG did not differ significantly (\(\chi^2 = 0.3; P = 0.55 \)).

3.2 Impairment

Severe role impairment in the past 12 months was reported by 30.4% of respondents with DSM-IV only AG, 43.3% of respondents with DSM-5 only AG, and 44.0% of respondents with DSM-5 with DSM-IV AG, with a significant difference between DSM-IV only and DSM-5 with DSM-IV AG (\(\chi^2 = 4.7; P = 0.031 \)). Mean number of days out of role in the past year due to AG was also significantly lower among respondents with DSM-5 only AG (29.9) compared with DSM-5 with DSM-IV AG (55.8; \(\chi^2 = 0.80; P = 0.005 \)), while that for DSM-5 only AG (40.2) did not differ from DSM-IV only AG (\(\chi^2 = 2.1; P = 0.147 \)) or DSM-5 with DSM-IV AG (\(\chi^2 = 1.7; P = 0.190 \)). Although suicidal ideation rates were higher for all AG subgroups compared with respondents without AG (1.7%), there were no significant differences in suicidal ideation rates among respondents with DSM-IV only (10.0%), DSM-5 only (15.7%), or DSM-5 with DSM-IV (15.8%) AG (Table 2).

3.3 Comorbidity

Respondents in all AG subgroups reported higher rates of lifetime and 12-month mental disorder comorbidity compared to respondents without AG, except for 12-month substance use disorders in the DSM-IV only AG subgroup (\(\chi^2 = 0.7; P = 0.39; \) Table 3). Comorbidity rates were significantly lower for respondents with DSM-IV only (35.7–78.7%) than for respondents with DSM-5 with DSM-IV AG (8.1–92.9%), except for 12-month disruptive behavior disorders and 12-month and lifetime substance use disorders. Respondents with DSM-5 only AG did not have a significantly lower rate of comorbidity (12.6–88.7%) than respondents with DSM-5 with DSM-IV AG for any disorder category except any lifetime disorder (\(\chi^2 = 4.4; P = 0.036 \)). Also, they reported a significantly higher rate of comorbidity than respondents with DSM-IV only AG for 12-month anxiety disorder (\(\chi^2 = 6.9; P = 0.009 \)) and lifetime anxiety disorders (\(\chi^2 = 7.1; P = 0.008 \)).

3.4 Treatment

Respondents in all AG subgroups were more likely to receive any lifetime treatment (31.0–52.8%) than respondents without AG (8.4%), but respondents with DSM-IV only AG were significantly less likely than respondents with DSM-5 with DSM-IV AG to receive any lifetime treatment (Table 4). They were also less likely than respondents with DSM-5 with DSM-IV AG to receive 12-month specialty mental health care or any 12-month treatment but not less likely to receive 12-month general medical care, human services, or CAM treatment.

Table 2 Sheehan impairment in the worst month in the past year, days out of role in the past year due to agoraphobia (AG), days out of role in the past 30 days for any health reason, and 12-month suicidality

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Among respondents with 12-month AG</th>
<th>Among all respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Any severe impairment due to AG</td>
<td>Number of days out of role due to AG (past year)</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>SE</td>
</tr>
<tr>
<td>DSM-IV only AG</td>
<td>30.4a</td>
<td>4.3</td>
</tr>
<tr>
<td>DSM-5 only AG</td>
<td>43.3</td>
<td>4.0</td>
</tr>
<tr>
<td>DSM-5 with DSM-IV AG</td>
<td>44.0</td>
<td>2.1</td>
</tr>
<tr>
<td>No AG</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

\(\chi^2 \) [P-value] | 4.8 [0.091] | 8.2 [0.016] | 128.5 [<0.001] | 493.1 [<0.001] |

Note. DSM-IV: Diagnostic and Statistical Manual of Mental Disorders, version 4; DSM-5: Diagnostic and Statistical Manual of Mental Disorders, version 5.

\(\text{a} \) Differs significantly from DSM-5 AG with DSM-IV AG (\(\chi^2 = 4.7; P = 0.031 \)).

\(\text{b} \) Differs significantly from DSM-5 AG with DSM-IV AG (\(\chi^2 = 8.0; P = 0.005 \)).

\(\text{c} \) Differs significantly from noncases (\(\chi^2 = 6.1; P = 0.013 \)) and from DSM-5 AG with DSM-IV AG (\(\chi^2 = 5.8; P = 0.016 \)).

\(\text{d} \) Differs significantly from noncases (\(\chi^2 = 44.0; P < 0.001 \)).

\(\text{e} \) Differs significantly from noncases (\(\chi^2 = 19.8; P = 0.001 \)) and from DSM-5 AG with DSM-IV AG (\(\chi^2 = 4.2; P = 0.040 \)).

\(\text{f} \) Differs significantly from noncases (\(\chi^2 = 97.5; P < 0.001 \)).

\(\text{g} \) Differs significantly from noncases (\(\chi^2 = 103.8; P < 0.001 \)).

\(\text{h} \) Differs significantly from noncases (\(\chi^2 = 378.2; P < 0.001 \)).
TABLE 3 Lifetime and 12-month comorbidity of agoraphobia (AG) with other (lifetime and 12-month) mental disorders

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Anxiety disorders</th>
<th>Mood disorders</th>
<th>Disruptive behavior disorders</th>
<th>Substance use disorders</th>
<th>Any disorder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>SE</td>
<td>%</td>
<td>SE</td>
<td>%</td>
</tr>
<tr>
<td>Lifetime diagnoses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSM-IV only AG</td>
<td>63.1<sup>ab</sup></td>
<td>3.3</td>
<td>44.6<sup>b</sup></td>
<td>3.3</td>
<td>20.3<sup>ad</sup></td>
</tr>
<tr>
<td>DSM-5 only AG</td>
<td>78.9<sup>ac</sup></td>
<td>2.7</td>
<td>54.8<sup>a</sup></td>
<td>2.9</td>
<td>26.3<sup>a</sup></td>
</tr>
<tr>
<td>DSM-5 with DSM-IV AG</td>
<td>84.1<sup>a</sup></td>
<td>1.5</td>
<td>59.6<sup>a</sup></td>
<td>1.8</td>
<td>30.1<sup>a</sup></td>
</tr>
<tr>
<td>No AG</td>
<td>14.6</td>
<td>0.2</td>
<td>13.0</td>
<td>0.2</td>
<td>6.1</td>
</tr>
<tr>
<td>χ²<sup>3</sup> [P-value]</td>
<td>1,272.6 [<0.001]</td>
<td>1,172.5 [<0.001]</td>
<td>381.1 [<0.001]</td>
<td>189.5 [<0.001]</td>
<td>677.9 [<0.001]</td>
</tr>
</tbody>
</table>

12-month diagnoses

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Anxiety disorders</th>
<th>Mood disorders</th>
<th>Disruptive behavior disorders</th>
<th>Substance use disorders</th>
<th>Any disorder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>SE</td>
<td>%</td>
<td>SE</td>
<td>%</td>
</tr>
<tr>
<td>DSM-IV only AG</td>
<td>52.6<sup>ab</sup></td>
<td>5.0</td>
<td>30.0<sup>f</sup></td>
<td>4.1</td>
<td>17.3<sup>a</sup></td>
</tr>
<tr>
<td>DSM-5 only AG</td>
<td>74.5<sup>ae</sup></td>
<td>3.8</td>
<td>39.0<sup>a</sup></td>
<td>3.6</td>
<td>15.9<sup>a</sup></td>
</tr>
<tr>
<td>DSM-5 with DSM-IV AG</td>
<td>77.9<sup>a</sup></td>
<td>1.9</td>
<td>47.1<sup>a</sup></td>
<td>2.2</td>
<td>16.8<sup>a</sup></td>
</tr>
<tr>
<td>No AG</td>
<td>8.9</td>
<td>0.1</td>
<td>5.8</td>
<td>0.1</td>
<td>2.7</td>
</tr>
<tr>
<td>χ²<sup>3</sup> [P-value]</td>
<td>1,177.4 [<0.001]</td>
<td>1,049.4 [<0.001]</td>
<td>205.3 [<0.001]</td>
<td>81.6 [<0.001]</td>
<td>777.0 [<0.001]</td>
</tr>
</tbody>
</table>

Note. Anxiety disorders do not include panic disorder, but any disorder does include panic disorder.

DSM-IV: Diagnostic and Statistical Manual of Mental Disorders, version 4; DSM-5: Diagnostic and Statistical Manual of Mental Disorders, version 5.

*Differs significantly from noncases (χ²¹ = 17.7; P = 0.001).
*Differs significantly from DSM-5 AG with DSM-IV AG (χ²² = 11.1–25.3; P < 0.001).
*Differs significantly from DSM-IV only AG (χ²¹ = 7.1; P = 0.008).
*Differs significantly from DSM-5 AG with DSM-IV AG (χ²¹ = 4.4; P = 0.036).
*Differs significantly from DSM-IV only AG (χ²¹ = 6.9; P = 0.009).
*Differs significantly from DSM-5 AG with DSM-IV AG (χ²¹ = 9.0; P = 0.003).

TABLE 4 Lifetime and 12-month treatment rates for people with lifetime and 12-month agoraphobia (AG) or no AG

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Specialty mental health</th>
<th>General medical</th>
<th>Human services</th>
<th>CAM</th>
<th>Any treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>SE</td>
<td>%</td>
<td>SE</td>
<td>%</td>
</tr>
<tr>
<td>Lifetime diagnoses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSM-IV only AG</td>
<td>37.6<sup>ab</sup></td>
<td>2.8</td>
<td>38.7<sup>ac</sup></td>
<td>3.1</td>
<td>5.7<sup>de</sup></td>
</tr>
<tr>
<td>DSM-5 only AG</td>
<td>46.1<sup>ab</sup></td>
<td>2.8</td>
<td>39.4<sup>b</sup></td>
<td>2.5</td>
<td>13.6<sup>ef</sup></td>
</tr>
<tr>
<td>DSM-5 with DSM-IV AG</td>
<td>56.6<sup>a</sup></td>
<td>1.7</td>
<td>54.9<sup>a</sup></td>
<td>1.6</td>
<td>11.7<sup>a</sup></td>
</tr>
<tr>
<td>No AG</td>
<td>14.6</td>
<td>0.2</td>
<td>12.3</td>
<td>0.1</td>
<td>2.6</td>
</tr>
<tr>
<td>χ²<sup>3</sup> [P-value]</td>
<td>945.5 [<0.001]</td>
<td>1,094.7 [<0.001]</td>
<td>200.3 [<0.001]</td>
<td>661.2 [<0.001]</td>
<td>1,089.3 [<0.001]</td>
</tr>
</tbody>
</table>

12-month diagnoses

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Specialty mental health</th>
<th>General medical</th>
<th>Human services</th>
<th>CAM</th>
<th>Any treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>SE</td>
<td>%</td>
<td>SE</td>
<td>%</td>
</tr>
<tr>
<td>DSM-IV only AG</td>
<td>13.5<sup>ae</sup></td>
<td>2.9</td>
<td>20.9<sup>a</sup></td>
<td>3.4</td>
<td>2.1</td>
</tr>
<tr>
<td>DSM-5 only AG</td>
<td>20.5<sup>eh</sup></td>
<td>2.9</td>
<td>21.7<sup>b</sup></td>
<td>2.4</td>
<td>4.8<sup>a</sup></td>
</tr>
<tr>
<td>DSM-5 with DSM-IV AG</td>
<td>30.7<sup>a</sup></td>
<td>1.7</td>
<td>35.7<sup>a</sup></td>
<td>1.8</td>
<td>5.6<sup>a</sup></td>
</tr>
<tr>
<td>No AG</td>
<td>3.9</td>
<td>0.1</td>
<td>4.8</td>
<td>0.1</td>
<td>0.9</td>
</tr>
<tr>
<td>χ²<sup>3</sup> [P-value]</td>
<td>811.2 [<0.001]</td>
<td>779.1 [<0.001]</td>
<td>139.5 [<0.001]</td>
<td>200.5 [<0.001]</td>
<td>1,077.5 [<0.001]</td>
</tr>
</tbody>
</table>

Note. DSM-IV: Diagnostic and Statistical Manual of Mental Disorders, version 4; DSM-5: Diagnostic and Statistical Manual of Mental Disorders, version 5.

*Differs significantly from noncases (χ²¹ = 230.0–865.3; P < 0.001).
*Differs significantly from DSM-5 AG with DSM-IV AG (χ²¹ = 12.1–36.3; P < 0.001).
*Differs significantly from DSM-5 AG with DSM-IV AG (χ²¹ = 7.6; P = 0.006).
*Differs significantly from noncases (χ²¹ = 8.0; P = 0.005).
*Differs significantly from DSM-5 AG with DSM-IV AG (χ²¹ = 5.1; P = 0.024).
*Differs significantly from DSM-IV only AG (χ²¹ = 5.5; P = 0.019).
*Differs significantly from DSM-5 AG with DSM-IV AG (χ²¹ = 9.0; P = 0.003).
*Differs significantly from DSM-5 AG with DSM-IV AG (χ²¹ = 9.2 – 9.4; P = 0.002).
*Differs significantly from DSM-5 AG with DSM-IV AG (χ²¹ = 8.4; P = 0.004).

3.5 Sociodemographic correlates

Younger age, female gender, lower education, not being married, and unemployment were associated with 12-month and lifetime AG, although some associations did not reach statistical significance for one or more of the diagnostic groups (Table 5). As a group, the ORs for age cohort for DSM-5 only AG differed from the ORs for DSM-5...
<table>
<thead>
<tr>
<th>Correlates</th>
<th>Levels</th>
<th>12-month diagnosis</th>
<th></th>
<th></th>
<th></th>
<th>Lifetime diagnosis</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DSM-IV only AG</td>
<td>DSM-5 only AG</td>
<td>DSM-5 with DSM-IV AG</td>
<td></td>
<td>DSM-IV only AG</td>
<td>DSM-5 only AG</td>
<td>DSM-5 with DSM-IV AG</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>Female</td>
<td>2.2</td>
<td>(1.4–3.5)</td>
<td>2.0</td>
<td>(1.4–2.7)</td>
<td>1.7</td>
<td>(1.4–2.1)</td>
<td>2.5</td>
<td>(1.9–3.3)</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>38.2</td>
<td>(1.0001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X^2_1 [P-value]</td>
<td>12.5</td>
<td>(<0.001)</td>
<td>17.0</td>
<td>(<0.001)</td>
<td>31.5</td>
<td>(<0.001)</td>
<td>38.2</td>
</tr>
<tr>
<td>Age cohort</td>
<td>18–34</td>
<td>1.6</td>
<td>(0.7–3.8)</td>
<td>2.6^a</td>
<td>(1.3–5.1)</td>
<td>3.6</td>
<td>(2.2–5.9)</td>
<td>1.8</td>
<td>(0.9–3.6)</td>
</tr>
<tr>
<td></td>
<td>35–49</td>
<td>2.5</td>
<td>(1.2–5.4)</td>
<td>2.6^a</td>
<td>(1.3–5.1)</td>
<td>5.4</td>
<td>(3.3–8.7)</td>
<td>2.5</td>
<td>(1.4–4.5)</td>
</tr>
<tr>
<td></td>
<td>50–64</td>
<td>2.0</td>
<td>(1.0–4.0)</td>
<td>1.9^a</td>
<td>(1.0–3.3)</td>
<td>3.8</td>
<td>(2.4–6.0)</td>
<td>1.8</td>
<td>(1.0–3.1)</td>
</tr>
<tr>
<td></td>
<td>65+</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>11.0</td>
<td>(0.0012)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X^2_3 [P-value]</td>
<td>7.9</td>
<td>(0.049)</td>
<td>7.6</td>
<td>(0.055)</td>
<td>53.4</td>
<td>(<0.001)</td>
<td>11.0</td>
</tr>
<tr>
<td>Education</td>
<td>Low</td>
<td>2.4</td>
<td>(1.3–4.3)</td>
<td>2.7^b</td>
<td>(1.1–2.7)</td>
<td>2.2</td>
<td>(1.6–3.0)</td>
<td>2.5^c</td>
<td>(1.7–3.7)</td>
</tr>
<tr>
<td></td>
<td>Low-average</td>
<td>2.8</td>
<td>(1.4–4.7)</td>
<td>1.4^c</td>
<td>(0.9–2.0)</td>
<td>1.8</td>
<td>(1.4–2.4)</td>
<td>2.3^d</td>
<td>(1.6–3.3)</td>
</tr>
<tr>
<td></td>
<td>High-average</td>
<td>2.3</td>
<td>(1.4–3.8)</td>
<td>1.7^a</td>
<td>(1.2–2.6)</td>
<td>1.3</td>
<td>(1.0–1.6)</td>
<td>2.3^a</td>
<td>(1.6–3.4)</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.5</td>
<td>(0.001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X^2_3 [P-value]</td>
<td>15.9</td>
<td>(0.001)</td>
<td>9.1</td>
<td>(0.027)</td>
<td>32.3</td>
<td>(<0.001)</td>
<td>27.5</td>
</tr>
<tr>
<td>Marriage</td>
<td>Never married</td>
<td>1.7</td>
<td>(1.0–3.0)</td>
<td>1.4</td>
<td>(1.0–1.9)</td>
<td>1.4</td>
<td>(1.1–1.7)</td>
<td>1.3</td>
<td>(0.9–2.0)</td>
</tr>
<tr>
<td></td>
<td>Previously married</td>
<td>1.3</td>
<td>(0.8–2.1)</td>
<td>1.5</td>
<td>(1.1–2.2)</td>
<td>1.6</td>
<td>(1.3–1.9)</td>
<td>1.1</td>
<td>(0.8–1.7)</td>
</tr>
<tr>
<td></td>
<td>Currently married</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X^2_3 [P-value]</td>
<td>4.1</td>
<td>(0.132)</td>
<td>7.3</td>
<td>(0.026)</td>
<td>25.9</td>
<td>(<0.001)</td>
<td>2.5</td>
</tr>
<tr>
<td>Employment status</td>
<td>Student</td>
<td>1.6</td>
<td>(0.6–4.1)</td>
<td>1.2</td>
<td>(0.6–2.3)</td>
<td>1.3</td>
<td>(0.8–1.9)</td>
<td>1.2</td>
<td>(0.6–2.4)</td>
</tr>
<tr>
<td></td>
<td>Homemaker</td>
<td>1.5</td>
<td>(0.9–2.4)</td>
<td>1.5</td>
<td>(1.0–2.3)</td>
<td>1.9</td>
<td>(1.5–2.4)</td>
<td>1.2</td>
<td>(0.8–1.6)</td>
</tr>
<tr>
<td></td>
<td>Retired</td>
<td>2.1</td>
<td>(1.0–4.2)</td>
<td>1.0</td>
<td>(0.5–1.8)</td>
<td>1.4</td>
<td>(0.9–2.2)</td>
<td>1.1</td>
<td>(0.6–2.8)</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>1.6</td>
<td>(0.9–2.7)</td>
<td>2.6</td>
<td>(1.7–3.9)</td>
<td>2.8</td>
<td>(2.3–3.5)</td>
<td>1.4</td>
<td>(0.9–2.1)</td>
</tr>
<tr>
<td></td>
<td>Employed</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X^2_3 [P-value]</td>
<td>6.5</td>
<td>(0.164)</td>
<td>21.0</td>
<td>(<0.001)</td>
<td>104.4</td>
<td>(<0.001)</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Note. DSM-IV: Diagnostic and Statistical Manual of Mental Disorders, version 4; DSM-5: Diagnostic and Statistical Manual of Mental Disorders, version 5.

^aORs are significantly different from ORs for DSM-5 with DSM-IV AG (X^2_1 [P-value] for group =8.6 [0.035], P-value for comparing ORs for age 18–34 =0.44, age 35–49 =0.07, age 50–64 =0.06).

^bORs are significantly different from ORs for DSM-IV only AG (X^2_3 [P-value] for group =8.3 [0.040], P-value for comparing OR for low education =0.06, low-average education =0.007, high-average education =0.35).

^cORs are significantly different from ORs for DSM-5 with DSM-IV AG (X^2_3 [P-value] for group =9.6 [0.022], P-value for comparing OR for low education =0.014, for low-average education =0.012, and for high-average education =0.005).

^dORs are significantly different from ORs for DSM-5 with DSM-IV AG (X^2_3 [P-value] for group =8.9 [0.030], P-value for comparing ORs for age 18–34 =0.85, age 35–49 =0.18 and for age 50–64 =0.11).
with DSM-IV AG, yet P-values for comparing ORs between specific age groups were not statistically significant. Compared to high education, odds for respondents with low, low-average, and high-average education, were particularly high for DSM-IV only AG.

4 | DISCUSSION

This study is the first to present representative data for DSM-5 compared to DSM-IV AG (AG without a history of PD and PD with AG) from countries across the world. Lifetime and 12-month prevalence estimates of DSM-5 AG were 1.5% and 1.0%, while those of DSM-IV AG were 1.4% and 0.9%. Hence, there was no marked shift in AG prevalence from DSM-IV to DSM-5. However, only 57.1% of respondents with AG met criteria in both diagnostic systems, with 18.8% of AG cases meeting criteria only for DSM-IV and 24.2% meeting criteria only for DSM-5. Compared with DSM-IV AG, DSM-5 AG was characterized by a higher persistence of AG and higher rates of severe role impairments, treatment-seeking, and mental disorder comorbidity.

Several sociodemographic correlates of AG were identified, consistent with other studies of AG and PD (Andrews & Slade, 2002; de Jonge et al., 2016). Although some quantitative differences were found for associations between sociodemographic factors and diagnostic subgroups, the general patterns were comparable, with younger age, female gender, lower education, not being married, and unemployment being associated with AG.

Although our prevalence rates are comparable to the reported prevalence of 12-month DSM-IV AG without a history of PD across European countries (1.3%; Goodwin et al., 2005), they are in contrast with the extremely low prevalence rate of 0.05% for 12

... DSM-IV month prevalence of AG met criteria in both diagnostic systems, with 18.8% of AG cases meeting criteria only for DSM-IV and 24.2% meeting criteria only for DSM-5. Compared with DSM-IV AG, DSM-5 AG was characterized by a higher persistence of AG and higher rates of severe role impairments, treatment-seeking, and mental disorder comorbidity.

Several sociodemographic correlates of AG were identified, consistent with other studies of AG and PD (Andrews & Slade, 2002; de Jonge et al., 2016). Although some quantitative differences were found for associations between sociodemographic factors and diagnostic subgroups, the general patterns were comparable, with younger age, female gender, lower education, not being married, and unemployment being associated with AG.

Although our prevalence rates are comparable to the reported prevalence of 12-month DSM-IV AG without a history of PD across European countries (1.3%; Goodwin et al., 2005), they are in contrast with the extremely low prevalence rate of 0.05% for 12-month DSM-IV AG without a history of PD found in a nationally representative study in the United States, which may (partly) result from the exclusion of lifetime PD cases and a clinical significance criterion used in that study (Grant et al., 2006). Although our 12-month prevalence rate of DSM-IV AG increased by including AG with PD, it is interesting to note that 75% of respondents with 12-month DSM-IV AG did not have a history of PD. This percentage is comparable to that found for 12-month AG in an Australian survey, in which 64% did not have a history of PD (Andrews & Slade, 2002), and clearly supports the decision made in DSM-5 to separate AG from PD.

The relatively stable prevalence rates for DSM-IV and DSM-5 AG may result from a broadening of the range of fears beyond a fear of panic attacks or panic-like symptoms in DSM-5 on the one hand, whereas increasing the strictness of the (severity) criteria on the other hand. None of the respondents with DSM-5 only AG reported fear of panic attacks in the feared situations. In addition, the percentage of respondents reporting severe role impairment, and the mean number of days out of role in the past year due to AG, were significantly lower for respondents with DSM-IV only compared with respondents with 12-month DSM-5 with DSM-IV AG. However, the mean number of days out of role in the past 30 days for any health reason, and 12-month suicidal ideation, were increased for all AG subgroups compared with respondents without AG. In addition, respondents with DSM-IV only AG also had increased treatment and mental comorbidity rates compared with respondents without AG. Although these results indicate that individuals who meet DSM-IV but not DSM-5 AG criteria also suffer from clinically significant symptoms including impairment, this suffering may for a large part be the result of comorbid mental disorders. However, we cannot exclude the possibility that a small group of individuals who experience severe distress or impairment are left without a diagnosis as a result of the changes in DSM-5, but the population prevalence rate of lifetime DSM-IV only AG without mental disorder comorbidity is very low, namely 0.08%.

We found a particularly low median AOO for DSM-5 only AG. This result adds to previous studies that showed that AG is not a mere consequence of PD (Wittchen et al., 2008, 1998) and that the median AOO of AG appears to be lower than the AOO of PD (Wittchen et al., 1998). The current study therefore confirms that DSM-5 AG is more comparable to other phobic disorders, which have early onsets as well (Kessler et al., 2005; Stein et al., 2017). Identifying individuals who suffer from AG at a younger age may lead to earlier AG focused treatment and thereby has the potential to prevent disorder progression and development of comorbidity (Jones, 2013; Kessler et al., 2005).

One of the reasons for the controversy whether AG can be regarded as a disorder that is independent of PD (Grant et al., 2006; Wittchen et al., 2008, 1998) is that AG without a history of PD is not typically seen in clinical studies and it has been suggested that many individuals diagnosed with AG in epidemiological studies actually suffer from SP (Horwath, Lish, Johnson, Hornig, & Weissman, 1993). However, another study validated the existence of AG in the absence of panic attacks in a survey through a re-evaluation with structured interviews (Faravelli, Cosci, Rotella, Faravelli, & Dell’Osso, 2008). A better distinction between SP and AG probably reflects better measurements of AG in recent surveys (Andrews & Slade, 2002; Wittchen et al., 2010). For example, to meet criteria for AG in this study, agoraphobic anxiety had to apply to at least two situations. The low percentage of AG cases seen in clinical care might also be the result of these individuals being less likely to seek help (Andrews & Slade, 2002; Wittchen et al., 1998), potentially as a result of avoidance behavior (Andrews & Slade, 2002). Indeed, the percentage of individuals with AG seeking treatment was lower compared with rates for individuals with PD in the WMH surveys (de Jonge, Roest, Lim, Levinson, & Scott, 2018; Roest et al., 2018).

A previous review article concluded that AG should be seen as a disorder independent from PD based on data from community samples on prevalence rates, temporal relationships of AG, panic attacks, and PD, and impairment associated with AG without panic attacks (Wittchen et al., 2010). Greene and Eaton (2016) also argued that AG is a diagnostic entity that should be separated from PD. By examining multivariate comorbidity patterns of PD and AG, the authors showed that AG could be categorized as a fear disorder, whereas PD is more strongly related to distress disorders, such as depression (Greene & Eaton, 2016). Yet, evidence is lacking for specific genetic underpinnings of AG (Wittchen et al., 2010) and for differential treatment effects; the latter may result from a lack of treatment studies focusing on patients with AG without PD (Bandelow, 2017; Wittchen et al., 2010). To our knowledge only one other study examined the effect of changes from
DSM-IV to DSM-5 criteria for AG. This study examined the effect of the more stringent criterion A in DSM-5 (endorsement of fears from multiple distinct situational domains) on the prevalence rate of AG in children and adolescents seeking anxiety treatment (Cornacchio, Chou, Sacks, Pincus, & Comer, 2015). Authors concluded that this adaptation may be too strict for youth, because a substantial proportion (25%) of individuals no longer met criteria for AG, despite being more similar regarding symptomatology and impairment, to individuals who met the new AG criteria than to individuals with SP (Cornacchio et al., 2015). Whether and how the changes in DSM-5 criteria will affect clinical treatment is yet unclear (Bandelow, 2017); however, additional research into DSM-5 AG in general (Wittchen et al., 2010), and specifically the treatment of DSM-5 AG without PD or panic attacks is warranted, especially given the high persistence of DSM-5 AG shown in the current study.

A strength of the current study is the use of data from the WMH surveys. The WHO WMH Survey Initiative provides a unique opportunity to examine the cross-national epidemiology of AG because it included data from countries with different income ranges. The numbers of respondents were large enough to examine both lifetime and 12-month AG and compare diagnostic groups based on DSM-IV and DSM-5 criteria, although not large enough to additionally examine differences between countries. Another strength is that the surveys used a common protocol and instrument to assess AG separately from PD. However, this study also has a number of limitations. First, although we examined AG using both DSM-IV and DSM-5 criteria, the algorithm was modified in retrospect, as was the case in other reports on DSM-5 criteria for GAD, PTSD, and substance use disorder in the WMH surveys (Ruscio et al., 2017; Slade et al., 2016; Stein et al., 2014). As a result, the CIDI questions do not match all DSM-5 criteria perfectly. Although this could have caused misclassification in some cases concerning the DSM-5 diagnosis of AG, we do not expect this to have a large impact on the comparisons between results for the AG subgroups, since the criteria based on the CIDI questions were sometimes less and sometimes more strict than original DSM-5 criteria. Second, because the data are cross-sectional, AOO is reported retrospectively and the indicator of AG persistence is a proxy indicator.

In conclusion, this study is the first to investigate and compare the epidemiology of AG according to the DSM-5 and the DSM-IV. Results show that the DSM-5 criteria may be an improvement over the DSM-IV criteria as the DSM-5 identifies individuals with a higher disorder persistence, severity, and comorbidity and help-seeking rates, whereas the global lifetime and 12-month prevalence rates remained relatively constant.

ACKNOWLEDGMENTS

This study was carried out in conjunction with the World Health Organization World Mental Health (WMH) Survey Initiative which is supported by the National Institute of Mental Health (NIMH; R01 MH070884), the John D. and Catherine T. MacArthur Foundation, the Pfizer Foundation, the US Public Health Service (R13-MH066849, R01-MH069864, and R01 DA016558), the Fogarty International Center (FIRCA R03-TW006481), the Pan American Health Organization, Eli Lilly and Company, Ortho-McNeil Pharmaceutical, GlaxoSmithKline, and Bristol-Myers Squibb. We thank the staff of the WMH Data Collection and Data Analysis Coordination Centres for assistance with instrumentation, fieldwork, and consultation on data analysis. None of the funders had any role in the design, analysis, interpretation of results, or preparation of this paper. A complete list of all within-country and cross-national WMH publications can be found at http://www.hcp.med.harvard.edu/wmh/. The 2007 Australian National Survey of Mental Health and Wellbeing was funded by the Australian Government Department of Health and Ageing. The São Paulo Megacity Mental Health Survey is supported by the State of São Paulo Research Foundation (FAPESP) Thematic Project Grant 03/00204-3. The Colombian National Study of Mental Health (NSMH) is supported by the Ministry of Social Protection. The Mental Health Study Medellín—Colombia was carried out and supported jointly by the Center for Excellence on Research in Mental Health (CES University) and the Secretary of Health of Medellin. The ESEMeD project is funded by the European Commission (Contracts QLG5-1999-01042, SANCO 2004123, and EAHC 20081308), the Piedmont Region (Italy), Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Spain (FIS 00/0028), Ministerio de Ciencia y Tecnología, Spain (SAF 2000-158-CE), Departamento de Salut, Generalitat de Catalunya, Spain, DIUE de la Generalitat de Catalunya (2017 SGR 452; 2014 SGR 748), Instituto de Salud Carlos III (CIBER CB06/02046, RETICS RD06/0011 REM-TAP), and other local agencies and by an unrestricted educational grant from GlaxoSmithKline. Implementation of the Iraqi Mental Health Survey (IMHS) and data entry were carried out by the staff of the Iraqi MOH and MOP with direct support from the Iraqi IMHS team with funding from both the Japanese and European Funds through United Nations Development Group Iraq Trust Fund (UNDG ITF). The Israeli National Health Survey is funded by the Ministry of Health with support from the Israel National Institute for Health Policy and Health Services Research and the National Insurance Institute of Israel. The World Mental Health Japan (WMHJ) Survey is supported by the Grant for Research on Psychiatric and Neurological Diseases and Mental Health (H13-SHOGAI-023, H14-TOKUBETSU-026, H16-KOKORO-013, H20-KOKORO-IPPAN-009, H25-SEISHIN-IPPAN-006) from the Japan Ministry of Health, Labour and Welfare. The Lebanese National Mental Health Survey (L.E.B.A.N.O.) is supported by the Lebanese Ministry of Public Health, the WHO (Lebanon), National Institute of Health/Fogarty International Center (R03 TW006481-01), anonymous private donations to IDRAAC, Lebanon, and unrestricted grants from Algorithm, AstraZeneca, Benta, Bella Pharma, Eli Lilly, GlaxoSmithKline, Lundbeck, Novartis, OmniPharma, Pfizer, Phenicia, Servier, and UPo. The Mexican National Comorbidity Survey (MNCS) is supported by The National Institute of Psychiatry Ramon de la Fuente (INPRFMDIES 4280) and by the National Council on Science and Technology (CONACyT-G305444-H), with supplemental support from the PanAmerican Health Organization (PAHO), Te Rau Hinengaro: The New Zealand Mental Health Survey (NZMHS) is supported by the New Zealand Ministry of Health, Alcohol Advisory Council, and the Health Research Council. The Nigerian Survey of Mental Health and Wellbeing (NSMHW) is supported by the WHO (Geneva), the WHO (Nigeria), and the Federal
Ministry of Health, Abuja, Nigeria. The Northern Ireland Study of Mental Health was funded by the Health & Social Care Research & Development Division of the Public Health Agency. The Shenzhen Mental Health Survey is supported by the Shenzhen Bureau of Health and the Shenzhen Bureau of Science, Technology, and Information. The Peruvian World Mental Health Study was funded by the National Institute of Health of the Ministry of Health of Peru. The Polish project Epidemiology of Mental Health and Access to Care—EZOP Project (PL 0256) was supported by Iceland, Liechtenstein, and Norway through funding from the EEA Financial Mechanism and the Norwegian Financial Mechanism. EZOP project was co-financed by the Polish Ministry of Health. The Portuguese Mental Health Study was carried out by the Department of Mental Health, Faculty of Medical Sciences, NOVA University of Lisbon, with collaboration of the Portuguese Catholic University, and was funded by Champalimaud Foundation, Gulbenkian Foundation, Foundation for Science and Technology (FCT), and Ministry of Health. The Romania WMH study projects “Policies in Mental Health Area” and “National Study regarding Mental Health and Services Use” were carried out by National School of Public Health & Health Services Management (former National Institute for Research & Development in Health, present National School of Public Health, Management & Professional Development, Bucharest), with technical support of Metro Media Transilvania, the National Institute of Statistics—National Centre for Training in Statistics, SC. Cheyenne Services SRL, Statistics Netherlands and were funded by Ministry of Public Health (former and present Ministry of Health) with supplemental support of Eli Lilly Romania SRL. The Psychiatric Enquiry to General Population in Southeast Spain—Murcia (PEGASUS-Murcia) Project has been financed by the Regional Health Authorities of Murcia (Servicio Murciano de Salud and Consejería de Sanidad y Política Social) and Fundación para la Formación e Investigación Sanitarias (FFIS) of Murcia. The Ukraine Comorbid Mental Disorders during Periods of Social Disruption (CMDPSD) study is funded by the US National Institute of Mental Health (RO1-MH61905). The US National Comorbidity Survey Replication (NCS-R) is supported by the National Institute of Mental Health (NIMH; U01-MH60220) with supplemental support from the National Institute of Drug Abuse (NIDA), the Substance Abuse and Mental Health Services Administration (SAMHSA), the Robert Wood Johnson Foundation (RWJF; Grant 044708), and the John W. Alden Trust. “Dr. Stein is supported by the Medical Research Council of South Africa (MRC).”

The WHO World Mental Health Survey collaborators are Sergio Aguilar-Gaxiola, MD, PhD, Ali Al-Hamzawi, MD, Mohammed Salih Al-Kaisy, MD, Jordi Alonso, MD, PhD, Laura Helena Andrade, MD, PhD, Corina Benjet, PhD, Guilherme Borges,ScD, Evelyn J. Bromet, PhD, Ronny Bruffaerts, PhD, Brendan Bunting, PhD, Jose Miguel Caldas de Almeida, MD, PhD, Graça Cardoso, MD, PhD, Somnath Chatterji, MD, Alfredo H. Cia, MD, Louisa Degenhardt, PhD, Koen Demyttenaere, MD, PhD, Silvia Florescu, MD, PhD, Giovanni di Girolamo, MD, Oye Gureje, MD, DSc, FRCPsych, Josep Maria Haro, MD, PhD, Hristo Hinkov, MD, PhD, Chi-yi Hu, MD, PhD, Peter de Jonge, PhD, Aimee Nasser Karam, PhD, Elie G. Karam, MD, Norito Kawakami, MD, DMSc, Ronald C. Kessler, PhD, Andrzej Kiejna, MD, PhD, Viviane Kovess-Masfety, MD, PhD, Sing Lee, MB, BS, Jean-Pierre Lepine, MD, Daphna Levinson, PhD, John McGrath, MD, PhD, Maria Elena Medina-Mora, PhD, Zeina Mneimneh, PhD, Jacek Moskalewicz, PhD, Fernando Navarro-Mateu, MD, PhD, Marina Piazza, MPH, ScD, Jose Posada-Villa, MD, Kate M. Scott, PhD, Tim Slade, PhD, Juan Carlos Stagnaro, MD, PhD, Dan J. Stein, FRCPc, PhD, Margreet ten Have, PhD, Yolanda Torres, MPH, Dra.HC, Maria Carmen Viana, MD, PhD, Harvey Whiteford, MBBS, PhD, David R. Williams, MPH, PhD, Bogdan Wojtyniak, ScD.

CONFLICT OF INTERESTS

In the past 3 years, Dr. Stein has received research grants and/or consultancy honoraria from AMBREF/Foundation for Alcohol Research, Biocodex, Cipla, Lundbeck, National Responsible Gambling Foundation, Novartis, Servier, and Sun. Dr. Demyttenaere has served on advisory boards for Eli Lilly, Lundbeck, Johnson&Johnson, Servier, Boehringer Ingelheim, Livanova and has research grants from Eli Lilly, foundation “ga voor geluk,” Fonds voor Wetenschappelijk Onderzoek Vlaanderen. In the past 3 years, Dr. Kessler received support for his epidemiological studies from Sanofi Aventis; was a consultant for Johnson & Johnson Wellness and Prevention, Sage Pharmaceuticals, Shire, Takeda; and served on an advisory board for the Johnson & Johnson Services Inc. Lake Nona Life Project. Kessler is a co-owner of DataStat, Inc., a market research firm that carries out healthcare research. Dr. Haro reports personal fees from Roche, Lundbeck, Eli Lilly and Otsuka, outside the submitted work.

Authors Roest, de Vries, de Jonge, Wittchen, Lim, Adamowski, Carmen Viana, Florescu, Kawakami, Slade, Torres, Posada-Villa, Lépine, Al-Hamzawi, Levinson, de Girolamo, Karam, Elena Medina Mora, Gureje, O’Neill, Hu, Piazza, Miguel Caldas-de-Almeida, Navarro-Mateu, Bromet, and Scott do not have conflict of interests to report.

ORCID

Annelieke M. Roest http://orcid.org/0000-0002-7997-8559
Ymkje Anna Vries http://orcid.org/0000-0003-4580-4873
Ronald C. Kessler http://orcid.org/0000-0003-4831-2305

REFERENCES

Andrews, G., & Slade, T. (2002). Agoraphobia without a history of panic disorder may be part of the panic disorder syndrome. Journal of Nervous & Mental Disease, 190(9), 624–630.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.