Objectively measured physical activity and psychosocial functioning in young children
Hartman, Esther; Ketelaar, Dorien; Lu, Congchao; Corpeleijn, Eva

Published in:
Journal of Sports Sciences

DOI:
10.1080/02640414.2019.1626070

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Objectively measured physical activity and psychosocial functioning in young children: The GECKO Drenthe cohort

Esther Hartman, Dorien Ketelaar, Congchao Lu & Eva Corpeleijn

To cite this article: Esther Hartman, Dorien Ketelaar, Congchao Lu & Eva Corpeleijn (2019): Objectively measured physical activity and psychosocial functioning in young children: The GECKO Drenthe cohort, Journal of Sports Sciences, DOI: 10.1080/02640414.2019.1626070

To link to this article: https://doi.org/10.1080/02640414.2019.1626070
Objectively measured physical activity and psychosocial functioning in young children: The GECKO Drenthe cohort

Esther Hartmana, Dorien Ketelaarab,c, Congchao Lab, bc and Eva Corpeleijnb

*Center of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; bDepartment of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; cSchool of Public Health, Tianjin Medical University, Tianjin, China

ABSTRACT
The global trend in inactivity in children may be related to psychosocial problems. We investigated the cross-sectional association between physical activity (PA) levels and psychosocial functioning in 3.4–7.3-year-old children. Children from the Dutch GECKO birth cohort (N = 898; 51.6% boys) had PA levels assessed objectively by accelerometry (ActiGraph GT3X) for at least three days. Linear regression analysis was used for associations with psychosocial functioning (parent report of the Strengths and Difficulties Questionnaire), controlling for gender, age and socio-economic status. Higher total and moderate-to-vigorous PA levels (MVPA) were associated with higher Total Difficulty scores, and sedentary time to lower Total Difficulty scores. More time spent in MVPA was significantly associated to “hyperactivity/inattention” in both boys (Standardized βboys = 0.192) and girls (βgirls = 0.139) whereas for the time in sedentary behaviour, a reverse association was found only in boys (βboys = −0.230). In boys only, more time in MVPA (βboys = 0.154) and less time in sedentary behaviour (βboys = −0.147), were significant determinants for ‘behavioural problems’. When using objectively measured PA, parents report more hyperactivity/inattention and behavioural problems in the more active children, and less in the more sedentary children, most clearly for boys. High levels of PA might be an indicator of psychosocial problems in young children.

Introduction
About 15–26% of children studied in epidemiological research regarding behaviour show notable symptoms of developing psychosocial problems (Fuchs, Klein, Otto, & von Klitzing, 2013). Problems with psychosocial functioning in young children can be defined as behavioural, emotional and social problems which could eventually result in several disorders, like conduct disorder, attention-deficit/hyperactivity disorder (ADHD), major depressive disorder, anxiety disorders or mood disorders in later childhood, adolescence and adulthood (American Psychiatric Association, 2018; Nilsen, Gustavson, Raysamb, Kjeldsen, & Karevold, 2013). In addition, psychosocial problems may affect children’s learning and leisure activities, such as physical activity and participation in sports (Fuchs et al., 2013; Hasson et al., 2017; Lingineni et al., 2012). Nearly half of people display psychosocial disorders at some moment in their lives, with the first onset usually early in life (Kessler et al., 2005). Therefore, early detection of psychosocial problems in young children is important, as it may contribute to the prevention of more severe problems later in life.

In children and youth physical activity (PA) can provide several health benefits, and it has also been associated with psychosocial functioning (Biddle & Asare, 2011; Nijhof et al., 2018; Spruit, Assink, van Vugt, van der Put, & Stams, 2016). It has been shown that physiological effects of PA like norepinephrine and endorphins releases and larger blood supply to the brain can be related to better mental health, as cognitive functioning and mood increases and stress reduces (Spruit et al., 2016). Therefore, PA could serve as a modifiable factor in order to prevent psychosocial problems in children and youth. However, the global trend of increasing levels of physical inactivity and sedentary behaviour affects children as well, and this may result in more severe psychosocial problems during childhood and adolescence (Ahn & Fedewa, 2011; Mitchell & Steele, 2017). In children, sedentary behaviour can be characterized as TV viewing, computer time, playing video games, i.e., screen time (Hamer, Stamatakis, & Mishra, 2009), and it also includes other activities in sitting or lying posture like playing with toys, drawing or reading books (Downing, Janssen, Cliff, Okely, & Reilly, 2019).

A meta-analysis in children and youth from a wide age range (3–18y, mean age = 12.6, SD = 2.9) found that greater physical activity was related to a lesser likelihood of experiencing detrimental mental health outcomes (Ahn & Fedewa, 2011). Unfortunately, the meta-analysis did not describe the results of children from different age groups, so specific results in young children are not clear yet. A review study on early childhood (children younger than 6 years) reported that no clear conclusions could be drawn regarding relationships between physical activity and sedentary behaviour with psychosocial behaviour (Hinkley et al., 2014). The researchers warranted more studies on PA and sedentary behaviour, captured with objective measures such as accelerometry (Hinkley et al., 2014). Possibly, the lack of objective measures could have contributed to the inconsistent
results, in addition to the relatively small number of studies that were found.

Taken together, identifying the unique relationships between objectively measured levels of PA and sedentary behaviour with psychosocial functioning in young children may support early identification of problems, and thereby early intervention or prevention programs to avoid the development of more serious mental health problems later in life.

The aim of the present study is to investigate the association between objectively measured levels of PA and sedentary behaviour with psychosocial functioning in young children. It is hypothesized that in these young children, high levels of PA are associated with lower scores on psychosocial problems and that high levels of sedentary behaviour are associated with more psychosocial problems.

Methods

Study design and participants

Data was derived from the GECKO Drenthe cohort, a large ongoing prospective population-based birth cohort study aimed to investigate the determinants of health in early life (Figure 1). All mothers from children born from April 2006 to April 2007 and living in Drenthe, a northern province of the Netherlands, were invited to participate during the third trimester of their pregnancy. Detailed information has been published elsewhere (L’Abée, Sauer, Damen, Rake, Cats, & Stolk, 2008). The data in the present study should be considered as cross-sectional. Age at time of data collection was defined by the date difference between moment of measurement and birth date (Sijtsma, Koller, Sauer, & Corpeleijn, 2015). Data on physical activity were collected between May 2011 and October 2013; the children were on average 5.6 years of age (5th – 95th age percentile: 4.3–6.9). Data on psychosocial functioning were collected between January 2011 and September 2013; the children were on average 5.8 years of age (5th – 95th age percentile: 5.3–6.3). The average age difference was 0.2 ± 0.8 months, and a 95% confidence interval of −1.3 to 1.6 years indicated that in 5% of children, psychosocial functioning was measured 1.6 years after the physical activity assessment and that in 5% of children psychosocial functioning was measured 1.3 years before the PA assessment.

The study was approved by the Medical Ethics Committee of the University Medical Center Groningen and performed in accordance with the Declaration of Helsinki and all parents gave informed consent.

Measurements

Height, weight, and socio-economic status

At the age of six years, height and weight were measured by trained nurses from the municipal health services. Height and weight were measured by trained Youth Health Care nurses according to a standardized protocol. Weight was measured in light clothing using an electronic scale with digital reading and recorded to the nearest 0.1 kg. Height was assessed using a stadiometer and recorded to the nearest 0.1 cm. Socio-economic status (SES) was assessed by a deprivation score based on postal code. The score has been provided by the Dutch Social and Cultural Planning Office of the Dutch government and is based on mean income, education level and unemployment rates (Dutch Social and Cultural Planning Office, 2018).

Psychosocial functioning

Psychosocial problems were assessed with the Dutch version of the Strengths and Difficulties Questionnaire (SDQ; Goodman, 1997). Parents completed the questionnaires, which were collected and processed by the municipal health services. The SDQ is a short questionnaire (25 items), on positive attributes of the child as well as
difficulties. It has good acceptability by respondents (Goodman, 2001). The items are grouped into five subscales, “prosocial behaviour” (i.e., being helpful), ‘emotional problems’ (i.e., unhappiness), ‘behavioural problems’ (i.e., conduct problems), ‘peer problems’ (i.e., friendless) and “hyperactivity/inattention” (i.e., restless). Every scale consists of five items that are equally weighted and scored on a 3-point scale from “not true”, “somewhat true” to “certainly true”. The prosocial scale is reverse scored and excluded from the total difficulties score (Goodman, 2001). When no more than one of the four subscale scores was missing the Total Difficulties score was prorated by substituting the mean. High scores indicate high symptom levels.

The SDQ is considered to be a valid and reliable instrument for evaluating psychosocial functioning in children and youth. The proposed five-factor structure has a satisfactory fit in children and adolescents (aged 3–16 years) (Björnsdotter, Enebrink, & Ghaderi, 2013; Goodman, 2001; Muris, Meesters, & van Den Berg, 2003). The internal consistency (Cronbach’s alpha) of the SDQ parent report is moderate to high, varying between 0.50 and 0.78 for the subscales and around 0.80 for the Total Difficulties in children and adolescents. Subscales with the lowest scores are ‘peer problems’, ‘emotional problems’ and ‘behavioural problems’ (Björnsdotter et al., 2013; Goodman, 2001; Theunissen, Vogels, de Wolff, Cron, & Reijneveld, 2015). Concurrent validity with the Child Behavior Checklist (CBCL) is moderate to high, around 0.70 (Pearson correlation) (Muris et al., 2003; Theunissen et al., 2015). Retest stability of the SDQ parent report is satisfactory after two months (correlations between 0.75 and 0.91) (Muris et al., 2003) and after four to six months (correlations between 0.61 and 0.72) (Goodman, 2001). In nearly all studies mentioned earlier regarding psychometric properties of the SDQ, representative community samples were used.

Physical activity

PA in children was assessed using the ActiGraph GT3X (ActiGraph, Pensacola, FL). Parents of all children participating in the GECKO Drenthe birth cohort study were contacted to collect PA data of their child. Parents were instructed to let their child wear the ActiGraph on the iliac crest with an elastic belt on the right hip for four days, of which at least one weekend day, during all waking hours except while bathing or swimming. For valid measurements, wearing time had to be at least 600 min/day for at least three days, regardless whether these were week or weekend days. Non-wearing time of the ActiGraph was classified as a minimum length of 90 min without any observed counts. Cut-points were used to calculate time spent in sedentary vs light (240 counts per minute), light vs moderate PA (2120 counts per minute), and moderate vs vigorous PA (4450 counts per minute) (Butte et al., 2014). An epoch time of 15 s was used for analyses. Data were collected using a frequency of 30 Hz. All children with wearing time ≥840 min/day (14 h/day) were checked manually for sleeping time. Sending the accelerometers by post sometimes resulted in a valid wearing day (>10 h/day). These postmen days were identified by low light activity (<100 min/day) and deleted (Sijtsma et al., 2015).

Statistical analysis

Values are presented as numbers (%), means (± standard deviations) and range (minimum-maximum). Skewed or ordinal variables are presented as median (25th and 75th percentile) and were ln-transformed for linear regression analysis. SES scores were used as a continuous variable in the analyses but shown in Tables as three categories: scores below –1 were considered as low SES and scores above +1 as high SES. The remaining scores were considered as “middle SES”. Differences in gender were compared using non-parametric tests (Mann–Whitney U) because most PA variables were not normally distributed. The associations between PA and psychosocial functioning were investigated using Spearman correlations (r). When associations were significant, linear regression analyses were conducted with adjustment for age at psychosocial functioning assessment, age at PA assessment, gender and SES. If necessary, variables were ln-transformed. To investigate gender differences, interaction models for gender were studied. Standardized beta coefficients and unstandardized beta coefficients with 95% confidence intervals were shown for regression analyses. An alpha level lower than 0.05 was considered significant. Statistical analyses were conducted using IBM SPSS Statistics 23 for Windows (SPSS Inc., Chicago, IL).

Results

Descriptives

Of the 2875 children that ever participated, 2203 were seen by Youth Health Care nurses at kindergarten. Of these, 2132 parents filled in the SDQ questionnaires (97%), of which 1991 were valid. From the 1475 children with PA data, 1139 were valid. In total 898 children with valid PA and SDQ data were included in the data analysis (see Figure 1). The age range of the children was between 3.4 and 7.3 years old during the measurements (Table 1). About half (51.6%) of the children were boys, and boys were more active than girls. There was no significant difference in age, BMI and SES between boys and girls. Furthermore, boys had higher scores on SDQ Total Difficulties, and subscores “hyperactivity/inattention” and ‘behavioural problems’. In the study population, an abnormal Total Difficulties score (20–40) was found in 1.3% of the sample and 1.3% was considered borderline (17–19). In boys, 2.6% had an abnormal Total Difficulties score and 1.3% had a borderline score, whereas in girls 1.4% scored borderline, and no abnormal scores were found. Details are shown in Table 1.

Associations between PA levels and psychosocial functioning

The correlations between PA and psychosocial functioning are presented in Table 2. Higher PA levels were associated with higher scores for Total Difficulties and the subscales “hyperactivity/inattention” and ‘behavioural problems’, whereas time spent in sedentary behaviour was associated with lower scores for Total Difficulties and “hyperactivity/inattention”. Since the associations were present for moderate PA, vigorous PA as well as for MVPA, analyses were continued with MVPA only.
Table 1. Descriptive characteristics of the study population.

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Boys</th>
<th>Girls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min – max</td>
<td>Min – max</td>
<td>Min – max</td>
</tr>
<tr>
<td>Age at PA measurement (years)</td>
<td>5.6 ± 0.8</td>
<td>5.6 ± 0.8</td>
<td>5.6 ± 0.8</td>
</tr>
<tr>
<td>Age at SDQ (years)</td>
<td>5.8 ± 0.3</td>
<td>5.8 ± 0.3</td>
<td>5.8 ± 0.3</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>15.9 ± 1.3</td>
<td>15.9 ± 1.2</td>
<td>15.9 ± 1.2</td>
</tr>
<tr>
<td>SES Low</td>
<td>197 (22.3)</td>
<td>105 (22.3)</td>
<td>105 (22.3)</td>
</tr>
<tr>
<td>Middle</td>
<td>566 (64.2)</td>
<td>287 (63.6)</td>
<td>279 (64.7)</td>
</tr>
<tr>
<td>High</td>
<td>119 (13.5)</td>
<td>59 (13.1)</td>
<td>60 (13.9)</td>
</tr>
<tr>
<td>PHYSICAL ACTIVITY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total CPM (counts)</td>
<td>805 ± 220</td>
<td>840 ± 234</td>
<td>767 ± 198</td>
</tr>
<tr>
<td>Sedentary time (min/day)*</td>
<td>373 ± 57</td>
<td>367 ± 57</td>
<td>378 ± 56</td>
</tr>
<tr>
<td>Light PA (min/day)</td>
<td>265 ± 38</td>
<td>265 ± 37</td>
<td>265 ± 39</td>
</tr>
<tr>
<td>Moderate PA (min/day) a</td>
<td>43.8 ± 54.7</td>
<td>47.3 ± 60.1</td>
<td>40.0 ± 31.4</td>
</tr>
<tr>
<td>Vigorous PA (min/day) a</td>
<td>17.0 ± 24.5</td>
<td>19.2 ± 27.0</td>
<td>14.7 ± 22.2</td>
</tr>
<tr>
<td>MVPA (min/day)</td>
<td>61.4 ± 80.1</td>
<td>68.3 ± 85.9</td>
<td>54.8 ± 71.2</td>
</tr>
<tr>
<td>SDQ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Difficulties a</td>
<td>5 (2–7)</td>
<td>6 (3–8)</td>
<td>4 (2–7)</td>
</tr>
<tr>
<td>Hyperactivity/inattention a</td>
<td>2 (1–4)</td>
<td>3 (1–5)</td>
<td>1 (0–3)</td>
</tr>
<tr>
<td>Peer problems</td>
<td>0 (0–1)</td>
<td>0 (0–1)</td>
<td>0 (0–1)</td>
</tr>
<tr>
<td>Emotional problems</td>
<td>1 (0–2)</td>
<td>1 (0–2)</td>
<td>1 (0–2)</td>
</tr>
<tr>
<td>Behavioral problems a</td>
<td>0 (0–2)</td>
<td>1 (0–2)</td>
<td>0 (0–1)</td>
</tr>
<tr>
<td>Prosocial behavior a b</td>
<td>9 (8–10)</td>
<td>9 (7–10)</td>
<td>9 (8–10)</td>
</tr>
</tbody>
</table>

* a p < 0.05 for gender; a the prosocial scale is not included in the total score; and high scores are positive. BMI, Body Mass Index; CPM, counts per minute; MVPA, moderate-to-vigorous physical activity; PA, physical activity; SDQ, Strengths and Difficulties Questionnaire; SES: Socio-economic Status (deprivation score). Data are presented as mean ± SD, N (%) or median (25th – 75th percentile).

Table 2. Correlations between physical activity and psychosocial functioning in young children (n = 898).

<table>
<thead>
<tr>
<th></th>
<th>Total Difficulties</th>
<th>Hyperactivity/inattention</th>
<th>Peer problems</th>
<th>Emotional problems</th>
<th>Behavioral problems</th>
<th>Prosocial behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total CPM</td>
<td>0.080*</td>
<td>0.140*</td>
<td>-0.025</td>
<td>-0.040</td>
<td>0.054*</td>
<td>0.000</td>
</tr>
<tr>
<td>Sedentary behavior</td>
<td>-0.117**</td>
<td>-0.179**</td>
<td>-0.022</td>
<td>-0.030</td>
<td>-0.059</td>
<td>-0.025</td>
</tr>
<tr>
<td>Light PA</td>
<td>0.038</td>
<td>0.100**</td>
<td>-0.025</td>
<td>-0.017</td>
<td>0.000</td>
<td>0.057</td>
</tr>
<tr>
<td>Moderate PA</td>
<td>0.149**</td>
<td>0.224**</td>
<td>-0.014</td>
<td>-0.042</td>
<td>0.117**</td>
<td>-0.032</td>
</tr>
<tr>
<td>Vigorous PA</td>
<td>0.102*</td>
<td>0.170**</td>
<td>-0.018</td>
<td>-0.043</td>
<td>0.076*</td>
<td>-0.063</td>
</tr>
<tr>
<td>MVPA</td>
<td>0.141**</td>
<td>0.218**</td>
<td>-0.014</td>
<td>-0.047</td>
<td>0.107**</td>
<td>-0.049</td>
</tr>
</tbody>
</table>

Spearman correlation coefficients and p-values (between brackets) are given. * the prosocial scale is not included in the total score; and high scores are positive. ** p < 0.05 ** p < 0.01 CPM, Counts per minute; MVPA, moderate to vigorous physical activity; PA, physical activity.

Since boys and girls differed both in PA levels as well as SDQ scores, correlations were investigated for boys and girls separately. In boys, Total counts per minute (CPM) was significantly associated with Total Difficulties ($r_s = 0.115, p = 0.013$) and MVPA was positively associated with Total Difficulties ($r_s = 0.148, p = 0.001$). Time in sedentary behaviour was inversely associated with Total Difficulties ($r_s = -0.169, p = 0.000$). The association between Total CPM and Total difficulties was explained by association with subscale “hyperactivity/inattention” ($r_s = 0.154, p = 0.001$) and subscale “behavioural problems” ($r_s = 0.101, p = 0.030$).

The association between Total CPM and “hyperactivity/inattention” in boys could be explained by an inverse association of sedentary time with “hyperactivity/inattention” ($r_s = -0.233, p = 0.000$) and a positive association of LPA with “hyperactivity/inattention” ($r_s = 0.123, p = 0.008$) and MVPA with “hyperactivity/inattention” ($r_s = 0.194, p = 0.000$). After adjustment for exact age and SES (see Table 3), these associations remained virtually unchanged in boys (sedentary time: Std B = 0.230; LPA: 0.136; MVPA: 0.192). The association between Total CPM and ‘behavioural problems’ in boys could be explained by time in sedentary behaviour ($r_s = -0.132, p = 0.005$) and MVPA ($r_s = 0.157, p = 0.001$) but not by time in LPA. The adjustments for exact age and SES (see Table 4) did not substantially change these findings (sedentary time: Std B = 0.147; MVPA: 0.154).

In girls, only MVPA was associated with “hyperactivity/inattention” ($r_s = 0.139, p = 0.004$), whereas a trend was seen for time in sedentary behaviour and “hyperactivity/inattention” ($r_s = -0.091, p = 0.059$). The adjustment for exact age and SES (see Table 3) did not change the association for MVPA (Std B 0.139) or sedentary behaviour and “hyperactivity/inattention” (Std B = 0.094, p = 0.057).

Discussion

The aim of the present study was to investigate the association between objectively measured levels of PA and sedentary behaviour with psychosocial functioning in young children. The study showed that parents from highly active children reported higher scores on psychosocial problems. In contrast, parents from children who were more sedentary reported fewer psychosocial problems.

The present study showed that more PA was associated with more hyperactivity/inattention and behavioural problems in young children, in particular in boys. Our results were not in accordance with a meta-analysis in children and youth from a wide age range (3–18 years) showing a positive association.
Table 3. Regression analysis for the PA levels and psychosocial functioning “hyperactivity/inattention” in young children for the total population and stratified by gender.

<table>
<thead>
<tr>
<th>Hyperactivity/inattention (ln)</th>
<th>Total</th>
<th></th>
<th></th>
<th>Boys</th>
<th></th>
<th></th>
<th>Girls</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Std. B</td>
<td>B</td>
<td>95% Cl of B</td>
<td>Std. B</td>
<td>B</td>
<td>95% Cl of B</td>
<td>Std. B</td>
<td>B</td>
<td>95% Cl of B</td>
</tr>
<tr>
<td>Sedentary time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1: SED</td>
<td>−0.170</td>
<td>−0.002</td>
<td>(−0.003;−0.001)</td>
<td>−0.206</td>
<td>−0.002</td>
<td>(−0.004;−0.001)</td>
<td>−0.099</td>
<td>−0.001</td>
<td>(−0.002;0.000)</td>
</tr>
<tr>
<td>Model 2: SED</td>
<td>−0.165</td>
<td>−0.002</td>
<td>(−0.003;−0.001)</td>
<td>−0.230</td>
<td>−0.003</td>
<td>(−0.004;−0.002)</td>
<td>−0.094</td>
<td>−0.001</td>
<td>(−0.002;0.000)</td>
</tr>
<tr>
<td>Model 3: SED</td>
<td>−0.316</td>
<td>−0.004</td>
<td>(−0.006;−0.001)</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>SED ×Gender</td>
<td>0.385</td>
<td>0.001</td>
<td>(0.000;0.003)</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Light physical activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1: LPA</td>
<td>0.083</td>
<td>0.002</td>
<td>(0.000;0.003)</td>
<td>0.108</td>
<td>0.002</td>
<td>(0.000;0.004)</td>
<td>0.065</td>
<td>0.001</td>
<td>(−0.001;0.003)</td>
</tr>
<tr>
<td>Model 2: LPA</td>
<td>0.097</td>
<td>0.002</td>
<td>(0.001;0.003)</td>
<td>0.136</td>
<td>0.002</td>
<td>(0.001;0.004)</td>
<td>0.060</td>
<td>0.001</td>
<td>(−0.001;0.003)</td>
</tr>
<tr>
<td>Model 3: LPA</td>
<td>0.187</td>
<td>0.003</td>
<td>(0.000;0.007)</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>LPA ×Gender</td>
<td>−0.228</td>
<td>−0.001</td>
<td>(−0.003;0.001)</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Moderate-to-vigorous physical activity (ln)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1: MVPA</td>
<td>0.217</td>
<td>0.397</td>
<td>(0.280;0.515)</td>
<td>0.196</td>
<td>0.367</td>
<td>(0.198;0.535)</td>
<td>0.136</td>
<td>0.252</td>
<td>(0.079;0.424)</td>
</tr>
<tr>
<td>Model 2: MVPA</td>
<td>0.171</td>
<td>0.312</td>
<td>(0.190;0.433)</td>
<td>0.192</td>
<td>0.358</td>
<td>(0.187;0.530)</td>
<td>0.139</td>
<td>0.257</td>
<td>(0.084;0.430)</td>
</tr>
<tr>
<td>Model 3: MVPA</td>
<td>0.242</td>
<td>0.442</td>
<td>(0.057;0.826)</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>MVPA ×Gender</td>
<td>−0.243</td>
<td>−0.086</td>
<td>(−0.329;0.156)</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

Model 1, crude; model 2, adjusted for SES, age and gender (if applicable), model 3, adjusted for SES, age, gender and interaction with gender. Ln, ln transformation. SED, sedentary time, LPA, light physical activity, MVPA, moderate-to-vigorous activity

Table 4. Regression analysis for the PA levels and psychosocial functioning ‘behavioural problems’ in young children for the total population and stratified by gender.

<table>
<thead>
<tr>
<th>Behavioral problems (ln)</th>
<th>Total</th>
<th></th>
<th></th>
<th>Boys</th>
<th></th>
<th></th>
<th>Girls</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Std. B</td>
<td>B</td>
<td>95% Cl of B</td>
<td>Std. B</td>
<td>B</td>
<td>95% Cl of B</td>
<td>Std. B</td>
<td>B</td>
<td>95% Cl of B</td>
</tr>
<tr>
<td>Sedentary time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1: SED</td>
<td>−0.073</td>
<td>−0.001</td>
<td>(−0.001;0.000)</td>
<td>−0.140</td>
<td>−0.001</td>
<td>(−0.002;0.000)</td>
<td>0.034</td>
<td>0.000</td>
<td>(−0.001;0.001)</td>
</tr>
<tr>
<td>Model 2: SED</td>
<td>−0.055</td>
<td>−0.001</td>
<td>(−0.001;0.000)</td>
<td>−0.147</td>
<td>−0.001</td>
<td>(−0.002;0.001)</td>
<td>0.055</td>
<td>0.000</td>
<td>(0.000;0.001)</td>
</tr>
<tr>
<td>Model 3: SED</td>
<td>−0.308</td>
<td>−0.003</td>
<td>(−0.005;−0.001)</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>SED ×Gender</td>
<td>0.643</td>
<td>0.002</td>
<td>(0.000;0.003)</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Light physical activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1: LPA</td>
<td>−0.007</td>
<td>0.000</td>
<td>(−0.001;0.001)</td>
<td>0.065</td>
<td>0.001</td>
<td>(0.000;0.002)</td>
<td>−0.085</td>
<td>−0.001</td>
<td>(−0.002;0.000)</td>
</tr>
<tr>
<td>Model 2: LPA</td>
<td>−0.015</td>
<td>0.000</td>
<td>(−0.001;0.001)</td>
<td>0.068</td>
<td>0.001</td>
<td>(0.000;0.003)</td>
<td>−0.105</td>
<td>−0.001</td>
<td>(−0.003;0.000)</td>
</tr>
<tr>
<td>Model 3: LPA</td>
<td>0.196</td>
<td>0.003</td>
<td>(0.000;0.006)</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>LPA ×Gender</td>
<td>−0.533</td>
<td>−0.002</td>
<td>(−0.004;0.000)</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Moderate-to-vigorous physical activity (ln)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1: MVPA</td>
<td>0.109</td>
<td>0.155</td>
<td>(0.062;0.248)</td>
<td>0.145</td>
<td>0.225</td>
<td>(0.084;0.366)</td>
<td>−0.012</td>
<td>−0.016</td>
<td>(−0.147;0.115)</td>
</tr>
<tr>
<td>Model 2: MVPA</td>
<td>0.073</td>
<td>0.103</td>
<td>(0.006;0.200)</td>
<td>0.154</td>
<td>0.236</td>
<td>(0.092;0.380)</td>
<td>−0.022</td>
<td>−0.031</td>
<td>(−0.162;0.100)</td>
</tr>
<tr>
<td>Model 3: MVPA</td>
<td>0.350</td>
<td>0.496</td>
<td>(0.189;0.803)</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>MVPA ×Gender</td>
<td>−0.945</td>
<td>−0.261</td>
<td>(−0.456;0.067)</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

Model 1, crude; model 2, adjusted for SES, age and gender (if applicable), model 3, adjusted for SES, age, gender and interaction with gender. Ln, ln transformation. SED, sedentary time, LPA, light physical activity, MVPA, moderate-to-vigorous activity

between PA and psychosocial well-being (Ahn & Fedewa, 2011). The contrasting results from our study with those from Ahn and Fedewa (2011) could be related to the different activity patterns in young children relative to older children. Older children are more engaged in organized activities, like organized sports, whereas young children are more engaged in unorganized activities, like playing. It has been shown that physical activity patterns in younger children are more intermittent than in older children (Bailey et al., 1995; Colley, Harvey, Grattan, & Adamo, 2014). Furthermore, the increased MVPA in our study population of young children could be partly an expression of underlying behavioural problems. The intrinsic need to be active can be strong in children and increased MVPA could be perceived by parents and others as “restless behaviour”. An advantage in our study is that PA was measured using an objective device, so children classified as hyperactive by their parents showed, in reality, higher activity levels than other children, it was not just their perception.

Our results add to the lack of evidence that was shown in a review regarding the relationship between PA and sedentary behaviour with psychosocial functioning in young children (<6 years) (Hinkley et al., 2014). A possible explanation for the contrasting results with Hinkley et al. (2014) could be the lack of objectively measured physical activity in the studies that were reviewed. Only one of the 19 studies used accelerometry for measuring PA and sedentary behaviour (Ebenegger et al., 2012). Although in their study measurements of psychosocial problems were restricted to the subscale “hyperactivity/inattention”, and boys and girls were not considered separately, it is interesting to mention that we also found a negative association between sedentary behaviour and hyperactivity/inattention in our total sample, but only in boys. In addition, our study extends evidence from Ebenegger et al. (2012) to the subscale ‘behavioural problems’, but again the negative
association was only demonstrated in boys. Sedentary beha-
viour might be experienced as calm behaviour when chil-
dren are sitting and watch television for example. Finally,
our results confirmed results from Ebenegger et al. (2012)
that more MVPA was associated with higher scores on
hyperactivity/inattention, and we added similar results on
behavioural problems, but only in boys. In future studies on
young children, the use of accelerometry and identification
of different subdomains of psychosocial functioning is
warranted.

An interesting finding was that the association between PA
levels and psychosocial functioning was stronger in boys
compared to girls. These results are in contradiction with those from
the meta-analysis from Biddle and Asare (2011), showing no
differential effects for gender in cross-sectional studies. Possibly,
in our study, the SDQ was more suitable for investigating
psychosocial problems in boys compared to girls, reflecting
boys’ behaviour better than that of girls. The finding that
boys had higher scores on the SDQ total and the subscales extends results from previous research in older children and
adolescents (Mohammadi et al., 2014; Muris et al., 2003) to
younger children. Similar, the finding that boys were more
physically active than girls are in agreement with earlier studies
in preschoolers (aged 2–5 years) using objective measures
(Hinkley, Crawford, Salmon, Okely, & Hesketh, 2008; Jackson et al., 2003; Pate, Pfeiffer, Trost, Ziegler, & Dowda, 2004).
Based on the gender differences found in our study, boys are
in particular an interesting subgroup for PA-interventions aimed
at improving mental health. Future studies should keep in mind
that differential effects might exist in young children. In addi-
tion, it would be interesting to study possible mechanisms
behind the differences between boys and girls. In summary,
our study provides evidence that in young children, stronger
relations exist in boys than in girls between levels of PA and
sedentary behaviour with psychosocial outcomes.

The findings in our study implicate that high MVPA might
be an indicator of psychosocial problems in young children.
One could argue that objectively measuring PA can help to
identify children who are hyperactive. In that respect, measur-
ing PA as a supportive tool could be relevant for diagnostic
and screening purposes for early identification of psychosocial
problems. It may even be helpful for parental support to
analyse which parts of the day these children are hyperactive
in order to improve coping strategies. Interestingly, this asso-
ciation seemed to cover the whole range of levels of activity,
and not just the extremely active children. Thus, it was also
found that boys with higher levels of sedentary behaviour are
perceived as having very few difficulties in the psychosocial
domain. Because of the cross-sectional nature of the present
study, it is not possible to draw conclusions about the caus-
ality of this relation. In addition, it must be noted that seden-
tary behaviour is associated with negative health effects in
children (Stiglic & Viner, 2019; Wu et al., 2017).

Important strengths of this study were the representative-
ness of the study population with regard to SES, the young
age, the large sample size and the objectively measured PA
levels of the children. Objective measures of PA are hardly
performed in young children, as most previous research used
questionnaires for measuring PA. However, often in PA
questionnaires, people tend to overestimate MVPA and under-
estimate sedentary behaviour (Reilly et al., 2008). Furthermore,
PA levels of young children are highly variable (Pate et al.,
2004) which makes it unlikely that parents can make reliable
estimates. In addition, parents who perceive very active beha-
viour as problematic may be inclined to over report this type
of behaviour.

A limitation of this study is that the associations were based
on cross-sectional data, which prevents us from drawing conclu-
sions about causal relationships. With regard to the SDQ, there is
a possibility of report bias. In this study, we used parent reports,
but no additional teacher reports. Furthermore, although the
validity of the SDQ is considered to be moderate to high
(Goodman, 2001; Muris et al., 2003), the ‘behavioural problems’
subscale was one of the scales with low-moderate internal consis-
tency (Björnsdotter et al., 2013; Goodman, 2001; Theunissen et al., 2015). A possible explanation for this could be that ques-
tions of this subscale reflected better boys’ behaviour than that
of girls. Another point is that using the Actigraph data, we cannot
discriminate between moderate to vigorous activity like running
during playing in the playground and “hyperactivity” as inap-
propriate high activity given the situation.

Our study infers some practical implications. Firstly, sponta-
neous higher levels of PA are related to higher levels of psycho-
social problems as reported by parents, which in turn are
expected to lead to long-term lower physical activity levels or
lower sports participation. Secondly, associations between PA
levels and psychosocial functioning are different for boys and
girls, and associations in young children compared to those in
older children or adults are not the same. These differences must
be taken into account when PA-interventions are developed.
And finally, objective measurements of PA may be helpful to
identify children with hyperactivity/inattention and behavioural
problems at young age.

In conclusion, when using objectively measured PA, par-
ents report more hyperactivity/inattention and behavioural
problems in the more active children, and less in the more
sedentary children, most clearly for boys. Furthermore, very
high PA might be an indicator of less psychosocial functioning
in young children. These findings could be helpful in screen-
ning and diagnostics. Longitudinal research is desired to further
investigate the association between PA and psychosocial func-
tioning in young children.

Acknowledgments

We are grateful to the families who took part in the GECKO Drenthe study, the midwives, gynaecologists, nurses and GPs for their help for recruit-
ment and measurement of participants, the Municipal Medical and Health Care Service Drenthe for their measurements and support, and the whole
team from the GECKO Drenthe study. This study was performed within the
Groningen Expert Center for Kids with Obesity, funded by an unrestricted
grant from Hutchison Whampoa Ltd, Hong Kong and supported by the
University of Groningen, Well Baby Clinic Foundation Icare, Noodlease,
Paediatric Association Of The Netherlands and Youth Health Care Drenthe.
Funding was unrestricted.

Disclosure statement

No potential conflict of interest was reported by the authors.
ORCID
Congchao Lu http://orcid.org/0000-0002-0793-6536

References

