Performance of Neural Networks in Source Localization using Artificial Lateral Line Sensor Configurations

P. van der Meulen, B.J. Wolf, P. Pirih, S.M. van Netten
University of Groningen

Poster presented at the ICT.OPEX2018 conference, 19-20 March 2018, Amersfoort, Netherlands

INTRODUCTION

Artificial lateral lines (ALLs) are used to detect the movement and locations of sources underwater, and are based on the neuromasts (fig. 1) located in the lateral line organ found in fish and amphibians. ALLs consists of a set of biaxial sensors (fig. 2).

Fig. 1: Superficial neuromasts of a clawed frog. From Görner (1963).
Fig. 2: Biaxial ALL sensor. From Wolf et al. (2018).

RESULTS

EXPERIMENT 1:

A Cramér-Rao lower bound analysis was performed on a subset of sensor configurations (16 sensors, 1m³ basin) to estimate their likely performances and indicate the best and worst configurations.

EXPERIMENT 2:

The best and worst configurations were used to generate simulated datasets to train and test extreme learning machines (ELMs) and convolutional neural networks (CNNs) on their location accuracy. Simulated datasets consisted of 2 sources in a 3D basin (1m³) and the sensor readings of 16 ALL sensors.

CONCLUSION

The optimal configuration improved performance for both sources, compared to other configurations. Therefore, the main research question can be answered positively in that using an optimal configuration can improve source localization performance using CNNs.

With regard to the secondary research question, both neural networks are capable of detecting two sources in three-dimensional environments, if sources are an equal distance removed from the ALL. If not, only the closest source to the array is accurately reconstructed.

The optimal configuration also improved ELM results for all source generation conditions; the use of an ELM leads to a higher performance of the worst estimated source, for the majority of conditions, compared to using a CNN.

REFERENCES
