Performance of Neural Networks in Source Localization using Artificial Lateral Line Sensor Configurations
van der Meulen, Pim; Wolf, Berend; Pirih, Primoz; van Netten, Sietse

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Final author's version (accepted by publisher, after peer review)

Publication date:
2018

Citation for published version (APA):
Performance of Neural Networks in Source Localization using Artificial Lateral Line Sensor Configurations

P. van der Meulen, B.J. Wolf, P. Pirih, S.M. van Netten
University of Groningen

INTRODUCTION

Artificial lateral lines (ALLs) are used to detect the movement and locations of sources underwater, and are based on the neuromasts (fig. 1) located in the lateral line organ found in fish and amphibians. ALLs consist of a set of biaxial sensors (fig. 2).

Fig. 1: Superficial neuromasts of a clawed frog. From Görner (1963). Fig. 2: Biaxial ALL sensor. From Wolf et al. (2018).

RESEARCH QUESTIONS

Can the placement of artificial lateral line sensors be beneficial for improving the accuracy of source localization through the use of convolutional neural networks?

Are convolutional neural networks and extreme learning machines capable of detecting the locations of multiple sources in three-dimensional environments?

SOURCE LOCALIZATION PIPELINE

Data generation:
- source locations:
- sensor locations:

Teacher object:

3D matrix containing 1331 density probability points for source locations

Neural networks:
- convolutional neural network
- extreme learning machine

Sensor readings → 3D matrix

Source prediction process:

3D matrix → source predictions

k-means

METHODS

EXPERIMENT 1
A Cramér-Rao lower bound analysis was performed on a subset of sensor configurations (16 sensors, 1m³ basin) to estimate their likely performances and indicate the best and worst configurations.

EXPERIMENT 2
The best and worst configurations were used to generate simulated datasets to train and test extreme learning machines (ELMs) and convolutional neural networks (CNNs) on their location accuracy. Simulated datasets consisted of 2 sources in a 3D basin (1m³) and the sensor readings of 16 ALL sensors.

REFERENCES


RESULTS

EXPERIMENT 1:

Fig. 3: 2D sensor configurations for 16 sensors. Configurations were applied horizontally (at z:0) and vertically (at y:0). The Cramér-Rao lower bound analysis indicates that 30:HorFours (green) and 22:VertLineMid (blue) performed best horizontally and vertically, respectively. 5:HorLineLow (red) is indicated as the worst performing configuration.

EXPERIMENT 2:

Fig. 4: Bar plots for the normalized worst predicted source location and prediction distributions versus the distance between both source locations (horizontal ALL, using 30:HorFours). (a): CNN; (b): ELM. Colors indicate distributions. With CNNs, the secondary source performance shows a linear relationship with the distance between sources, which is not the case with ELMs.

Fig. 5: Estimated probability curves for the distribution of total source-prediction distances for the best (a) and worst (b) predicted sources. ALLs were placed horizontally at z:0. Curves were averaged over 5 repetitions and 4 dataset conditions.

CONCLUSION

The optimal configuration improved performance for both sources, compared to other configurations. Therefore, the main research question can be answered positively in that using an optimal configuration can improve source localization performance using CNNs.

With regard to the secondary research question, both neural networks are capable of detecting two sources in a 3D environment, if sources are an equal distance removed from the ALL. If not, only the closest source to the array is accurately reconstructed.

The optimal configuration also improved ELM results for all source generation conditions; the use of an ELM leads to a higher performance of the worst estimated source, for the majority of conditions, compared to using a CNN.