suggesting differences in life history adaptations of sympatric species, and highlighting the within-
location variability in environmental conditions in equatorial tropics that may influence differences
in disease risk and hence immune responses. Red-capped Larks had elevated nitric oxide during
breeding (chick-feeding) which coincided with periods of higher Tmax, which raises the possibility
that high Tmax provided conducive environment for growth, development and reproduction of
microorganisms and parasites. Additionally, different immune indices of conspecifics differed
inconsistently among locations with different climates and regardless of breeding phase. Nitric
oxide, agglutination and haptoglobin were associated with higher Tmax and were more robust under
warmer conditions, while lysis was associated with rainy conditions and was enhanced in the low
temperature environment. We interpreted this to be an indication that different immune indices
were differently influenced by environmental conditions.

This thesis places variation in environmental conditions – food availability, rainfall, Tmin and
Tmax – as the central elements around which reproduction, nestling growth and immune function
varies. Although Chapter 2 did not reveal evidence of nesting activities being related to any of
the biotic and abiotic environmental factors in the three environments, we found that nestlings in
chapter 3 had higher body mass at hatching, suggesting conditions for breeding for females were
favorable during this periods, and grew better during periods with more rain. We conclude that for
these larks, breeding is not triggered by any particular biotic or abiotic factor (that we measured)
but that breeding success (i.e., reaching chick feeding or even fledging) is. Whether or not a
breeding attempt is successful is partly determined by a combination of environmental conditions.

This thesis also supports the proposition that equatorial tropical birds, exhibiting a slow pace-of-
life strategy, optimize survival (investment in immune function) over reproduction (small clutch
sizes). Further, our findings contradict the generalized temperate and arctic zone bias concept of
reproduction-induced immunosuppression and justifies why more of such research should be
conducted in the tropics. Future further studies should, 1) investigate and compare factors that
influence the timing of breeding in these two lark species by narrowing the scale of investigation
to the territory level, and by including female body condition, nest-predation pressure and social
factors as possible candidates, 2) investigate whether up-regulation of nitric oxide during breeding
was as a result of breeding activities or of changes in temperature (Tmin and/or Tmax), 3) investigate
how among-and-within-location dynamics of environmental variation influence variation in
pathogen and parasite pressure in these environments and their potential influence on the variation
in immune function, and 4) to test whether equatorial tropical birds optimize survival over
reproduction, a future study should aim to experimentally vary the reproductive workload (e.g.,
increased clutch size) of one of the two sympatric species (Red-capped or Rufous-napped Larks)
and compare the resulting investment in immune function of both.

References

**
References

rainfall variations. Vector-Borne and Zoonotic Diseases 4: 33 – 42.

C

References

D

E

F

G

Goymann, W., Helm, B., Jensen, W., Swabl, I., & Moore I.T. 2012. A tropical bird can use the equatorial change in sunrise and sunset times to synchronize its circannual clock. Proceedings of the Royal Society B 279: 3527 - 3534
References

Jones, P.J., & Ward, P. 1976. The level of reserve protein as the proximate factor controlling the timing of breeding and clutch-size in Red-billed Quelea Quelea quelea. Ibis 118: 547–574.
References

K
Knowles, S.C.L., Nakagawa, S., & Sheldon, B.C. 2009. Elevated reproductive effort increases
blood parasitaemia and decreases immune function in birds: a meta-regression approach.
Molecular epidemiology of malaria prevalence and parasitaemia in a wild bird population.
Molecular Ecology 20: 1062 – 1076.
Komdeur, J. 1996. Seasonal timing of reproduction in a tropical bird, the Seychelles Warbler: a
parasitoid resistance and larval competitive ability in Drosophila melanogaster.
precocial quail chicks in response to low temperatures. Physiological Behaviour 79:311–
319.
Kwon, E., English, W.B., Emily, L. Weiser, E.L., Franks, S.E., Hodkinson, D.J., Lank, D.B., &
Sandercock, B.K. 2017. Delayed egg-laying and shortened incubation duration of Arctic-

L
laying between different populations of birds results from variation in
photoresponsiveness. Proceedings of the Royal Society B - Biological Sciences 263: 19-
22.
Langen, T.A. 2000. Prolonged offspring dependence and cooperative breeding in birds.
Lee, K.A. 2006. Linking immune defenses and life history at the levels of individual and the
adaptive immune defenses and blood parasite prevalence in closely related passer
immune defences correlate with life-history variables in tropical birds. Journal of Animal
Lepage, D., & Lloyd, P. 2004. Avian clutch size in relation to rainfall seasonality and

Mauck, R.A., Matson, K.D., Philipsborn, J., & Ricklefs, R.E. 2005. Increase in the constitutive
innate humoral immune system in Leach’s Storm-Petrel (Oceanodroma leucorhoa) chicks is negatively correlated with growth rate. Functional Ecology 19: 1001 – 1007.

N

Ndithia, H.K., Bakari, S.N., Matson, K.D., Muchai, M., & Tieleman, B.I. 2017b. Geographical
and temporal variation in environmental conditions affects nestling growth but not immune function in a yearround breeding equatorial lark. Frontiers in Zoology 14:28
Ndithia, H.K., Versteegh, M.A., Muchai, M., & Tieleman, B.I. 2019. No downregulation of
immune function during breeding in two year-round breeding bird species in an equatorial
Nelson, R.J., Demas, G.E. 1996. Seasonal changes in immune function. Quarterly Review of
Biology 71: 511-548.
specific immune response and parasite resistance. Proceedings of the Royal Society B-
Biological Sciences. 265: 1291–1298.
function. Philosophical Transaction of the Royal Society B - Biological Sciences 364: 61 –
69.
O
O’Neal, D.M., Ketterman, E.D. 2012. Life-history evolution, hormones and avian immune
York, pp 7 – 44.
Ochsenbein, A.F., Fehr, T., Lutz, C., Suter, M., Brombacher, F., Hengartner, H., & Zinkernagel,
R.M. 1999. Control of early viral and bacterial distribution and disease by natural
Ots, I., & Horak, P. 1996. Great Tits Parus major trade health for reproduction. Proceeding of the
Royal Society B- Biological Sciences 263: 1443-1447.
P
Hematological indices and immune function during the annual cycle in the Great Tit Parus
immune function changes during the annual cycle in house sparrows. Naturwissenschaften
97: 891–901.
Pérez-Sánchez, A.J., Lattke, J.E., & Viloria, A.L. 2013. Patterns of Ant (Hymenoptera:
Formicidae) richness and relative abundance along and aridity gradient in western
mammalian species to a Hong Kong-origin H5N1 High-pathogenicity avian influenza
virus. Avian Disease 47: 956 - 967.
References

Q

R
References

S
Sehgal, R.N.M., Buermann, W., Harrigan, R.J., Bonneaud, C., Loiseau, C., Chasar, A., Sepil, I.,
References

Tieleman, B.I., Williams, J.B., & Bloomer, P. 2003a. Adaptation of metabolism and evaporative

Tieleman, B.I., & Williams, J. 2005. To breed or not to breed: that is the question, decisions facing hoopoe Larks in the Arabian desert. Seeking Nature’s Limits. KNNV publishing, Utrecht.

Y

Z