Tumour necrosis as assessed with F-18-FDG PET is a potential prognostic marker in diffuse large B cell lymphoma independent of MYC rearrangements
Kahle, Xaver U; Hovingh, Menno; Noordzij, Walter; Seitz, Annika; Diepstra, Arjan; Visser, Lydia; van den Berg, Anke; van Meerten, Tom; Huls, Gerwin; Boellaard, Ronald

Published in:
European Radiology

DOI:
10.1007/s00330-019-06178-9

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Tumour necrosis as assessed with 18F-FDG PET is a potential prognostic marker in diffuse large B cell lymphoma independent of MYC rearrangements

Xaver U. Kahle 1 - Menno Hovingh 1 - Walter Noordzij 2 - Annika Seitz 3 - Arjan Diepstra 3 - Lydia Visser 3 - Anke van den Berg 3 - Tom van Meerten 1 - Gerwin Huls 1 - Ronald Boellaard 2 - Thomas C. Kwee 4 - Marcel Nijland 1

Received: 28 November 2018 / Revised: 28 February 2019 / Accepted: 18 March 2019
© The Author(s) 2019

Abstract
Objectives MYC gene rearrangements in diffuse large B cell lymphomas (DLBCLs) result in high proliferation rates and are associated with a poor prognosis. Strong proliferation is associated with high metabolic demand and tumour necrosis. The aim of this study was to investigate differences in the presence of necrosis and semiquantitative 18F-FDG PET metrics between DLBCL cases with or without a MYC rearrangement. The prognostic impact of necrosis and semiquantitative 18F-FDG PET parameters was investigated in an explorative survival analysis.

Methods Fluorescence in situ hybridisation analysis for MYC rearrangements, visual assessment, semiquantitative analysis of 18F-FDG PET scans and patient survival analysis were performed in 61 DLBCL patients, treated at a single referral hospital between 2008 and 2015.

Results Of 61 tumours, 21 (34%) had a MYC rearrangement (MYC+). MYC status was neither associated with the presence of necrosis on 18F-FDG PET scans (necrosisPET; \(p = 1.0 \)) nor associated with the investigated semiquantitative parameters maximum standard uptake value (SUV\(_{\text{max}}\); \(p = 0.43 \)), single highest SUV\(_{\text{max}}\) (\(p = 0.49 \)), metabolic active tumour volume (MATV; \(p = 0.68 \)) or total lesion glycolysis (TLG; \(p = 0.62 \)). A multivariate patient survival analysis of the entire cohort showed necrosisPET as an independent prognostic marker for disease-specific survival (DSS) (HR = 13.9; 95% CI 3.0–65; \(p = 0.001 \)).

Conclusions MYC rearrangements in DLBCL have no influence on the visual parameter necrosisPET or the semi-quantitative parameters SUV\(_{\text{max}}\), MATV and TLG. Irrespective of MYC rearrangements, necrosisPET is an independent, adverse prognostic factor for DSS.

Key Points
- Retrospective analysis indicates that MYC rearrangement is not associated with necrosis on 18F-FDG PET (necrosisPET) scans or semiquantitative 18F-FDG PET parameters.
- NecrosisPET is a potential independent adverse prognostic factor for disease-specific survival in patients with DLBCL and is not influenced by the presence of MYC rearrangements.

Keywords Diffuse, large B cell, lymphoma - MYC oncogene - Necrosis - Fluorodeoxyglucose F18 - Positron emission tomography

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s00330-019-06178-9) contains supplementary material, which is available to authorized users.

Xaver U. Kahle
x.kahle@umcg.nl

1 Department of Hematology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands

2 Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands

3 Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands

4 Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands

Published online: 26 April 2019
Abbreviations and acronyms

18F-FDG 18F-fluorodeoxyglucose
B-NHL B cell non-Hodgkin lymphoma
CT Computed tomography
DLBCL Diffuse large B cell lymphoma
DSS Disease-specific survival
FISH Fluorescence in situ hybridisation
LDH Lactate dehydrogenase
MATV Metabolically active tumour volume

(nsum of all lesions within an individual patient)
NCCN-IPI National Comprehensive Cancer Network international prognostic index
necrosisHist Necrosis as assessed by histological scoring
necrosisPET Necrosis as assessed by 18F-FDG PET
OS Overall survival
PET Positron emission tomography
PFS Progression-free survival
SUV Standard uptake value
SUVmax Highest SUV per voxel within 1 lymphoma lesion (reported here as the mean of SUVmax of all lesions within an individual patient)
SUVmax single highest Highest SUVmax of all lesions within an individual patient
TLG Total lesion glycolysis (sum of all lesions within an individual patient)
WHO World Health Organization.

Introduction

Diffuse large B cell lymphoma (DLBCL) accounts for 35% of all B cell non-Hodgkin lymphomas (B-NHL) [1]. Approximately 10–15% of DLBCL cases harbour a MYC gene rearrangement (MYC+), as assessed by fluorescence in situ hybridisation (FISH) [2]. These lymphomas are characterised by a very high proliferation rate. Patients bearing a MYC+ lymphoma experience an aggressive clinical course and have a poor prognosis when treated with the standard regimen of rituximab, cyclophosphamide, doxorubicin, vincristine and prednisolone (R-CHOP) [3]. In 2017, the World Health Organization (WHO) established a new entity for MYC+ DLBCL, called ‘high-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements’ [1, 4].

MYC is an oncogenic transcription factor regulating a vast array of cellular processes and pathways [5, 6]. Tumour cells overexpressing MYC meet their high energy demands by increased glucose uptake, glycolysis, lactate production and amino acid consumption [7, 8]. However, unlike physiological tissues, cancer cells frequently have acquired resistance to apoptosis and cannot regulate their energy expenditure during metabolic stress, resulting in cell death via necrosis when nutrient supply is compromised [9–11].

In B-NHL patients, 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) scans are used for staging and response assessment [12]. Tumour necrosis can be assessed by visual inspection of 18F-FDG PET scans (necrosisPET) [13]. Necrosis can be observed in 14–20% of DLBCL cases and has been associated with an adverse prognosis [14, 15]. Semiquantitative assessment of 18F-FDG PET allows for relative comparison of parameters based on the spatial distribution and degree of 18F-FDG uptake, and is currently being investigated as a tool for therapy monitoring and assessing prognosis in B-NHL [16–18]. Still, data on the prognostic value of the semiquantitative parameters maximum standardised uptake value (SUVmax) and metabolically active tumour volume (MATV) in DLBCL are conflicting [19–21].

MYC rearrangement, tumour necrosis (necrosisPET) and parameters derived from semiquantitative analysis of 18F-FDG PET are fundamentally linked to metabolism, yet the relationship between these factors remains unknown. We hypothesise that the higher metabolic activity mediated by MYC rearrangements might result in a higher incidence of necrosisPET and increased semiquantitative parameters. The previously suggested prognostic impact of necrosisPET [15] and semiquantitative parameters [16–18] in DLBCL might be accredited to their potential association with MYC rearrangements.

Therefore, the aim of this study was to investigate differences in the presence of necrosisPET and semiquantitative 18F-FDG PET metrics between DLBCL cases with or without a MYC rearrangement. The prognostic impact of these factors was explored by means of survival analysis.

Materials and methods

Study design and case selection

For this retrospective single-centre study, consecutive patients with newly diagnosed, histologically confirmed DLBCL between 2008 and 2015 were identified in the electronic healthcare database of the University Medical Center Groningen (UMCG), a reference centre for aggressive B cell lymphomas. Cases of primary cutaneous DLBCL, primary central nervous system lymphoma, primary mediastinal B cell lymphoma and immunodeficiency-associated lymphomas were excluded. The selection of cases for this study is summarised in Fig. 1. Patients were stratified according to the National Comprehensive Cancer Network international prognostic index (NCCN-IPI) [22]. End of treatment response was assessed by 18F-FDG PET/CT scan. Tumour responses were classified

© Springer
according to Lugano criteria [12]. Follow-up was registered until early October 2017. According to Dutch regulations, no medical ethical committee approval was required for this retrospective, non-interventional study. A waiver was obtained from the medical ethics committee of the UMCG on November 13, 2018. The study utilised rest material from patients, the use of which is regulated under the code for good clinical practice in the Netherlands and does not require informed consent in accordance with Dutch regulations.

Pathology review

Pathology review was done using the 2008 WHO classification of haematopoietic and lymphoid tissues (AD) [23]. Histological scoring for necrosis (necrosisHist) was done by microscopic assessment of haematoxylin and eosin–stained slides. Only microscopic areas with definite histopathological signs of necrosis (i.e. karyolysis) were scored as positive for necrosisHist.

MYC fluorescence in situ hybridisation

For evaluation of a MYC rearrangement, formalin-fixed paraffin-embedded tissue blocks of primary tumour samples were used. Interphase fluorescence in situ hybridisation (FISH) was performed on 4-μm-thick whole tissue sections, using Vysis break apart probes (Abbot Technologies) and standard FISH protocols as previously described [24]. Researchers performing MYC FISH analyses were blinded for results from visual scoring, microscopic assessment of necrosis (necrosisHist) and clinical outcome.

18F-FDG PET imaging

All 18F-FDG PET scans were performed prior to therapy. Patients were allowed to continue all medication and fasted for at least 6 h before whole-body (from the skull vertex to mid-thigh level) three-dimensional PET images were acquired. This was done 60 min after intravenous administration of a standard dose of 3 MBq/kg (0.081 mCi/kg) bodyweight 18F-FDG on a Biograph mCT (Siemens Healthineers), according to the European Association of Nuclear Medicine (EANM) procedure guidelines for tumour imaging with FDG PET/CT (version 2.0) [25]. Acquisition was performed in seven bed positions of 2-min emission scans for patients 60–90 kg. Patients with body weight less than 60 kg and more than 90 kg body weight were scanned with 1 min and 3 min per bed position, respectively. Low-dose transmission CT was used for attenuation correction. Low-dose CT and 18F-FDG PET scans were automatically fused by the use of three-dimensional fusion software (Siemens Healthineers) with manual fine adjustments. Raw data were reconstructed through ultra-high definition (Siemens Healthineers).

Computed tomography

Diagnostic CTs were acquired via integrated 18F-FDG PET/CT scans according to the European Association of Nuclear Medicine (EANM) procedure guidelines for tumour imaging with FDG PET/CT (version 2.0) [25]. Bulky disease was defined as any nodal lymphoma lesion > 10 cm in coronal, axial or sagittal planes.

18F-FDG PET analysis

All 18F-FDG PET scans were visually assessed for the presence of tumour necrosis (necrosisPET) by an experienced reader (TCK), who was blinded to clinical, laboratory, biopsy and follow-up findings, as previously described [15]. Areas within any nodal or extranodal 18F-FDG PET–avid lymphomatous lesions that showed no 18F-FDG uptake were registered as having necrosisPET (Fig. 2); no specific visual scale was used. Semiquantitative analysis was performed using an in-house tool for quantitative 18F-FDG PET/CT analysis, as previously described [26–28]. This programme automatically preselects lesions using a SUVmax threshold of 4 and a metabolic volume threshold of 2.5 ml. Unwanted preselected FDG-avid regions, such as the bladder and brain, are removed by user interaction. Finally, remaining FDG-avid segmentations are processed.
using a background-corrected 50% of SUV peak region growing method, as described by Frings et al [26], to obtain the final tumour segmentations. In case obvious lymphoma lesions were not selected (n = 3), they were manually added after automatic tumour segmentation. From the final segmentation, the metabolic active tumour volume (MATV, in ml),

Table 1 Demographics and baseline disease characteristics of patients with diffuse large B cell lymphoma according to MYC status

<table>
<thead>
<tr>
<th></th>
<th>Total (n = 61)</th>
<th>MYC− (n = 40)</th>
<th>MYC+ (n = 21)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>36</td>
<td>59.0</td>
<td>24</td>
<td>60.0</td>
</tr>
<tr>
<td>Female</td>
<td>25</td>
<td>41.0</td>
<td>16</td>
<td>40.0</td>
</tr>
<tr>
<td>Age Median (range)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age ≤ 60 years</td>
<td>24</td>
<td>39.3</td>
<td>14</td>
<td>35.0</td>
</tr>
<tr>
<td>Age > 60 years</td>
<td>37</td>
<td>60.7</td>
<td>26</td>
<td>65.0</td>
</tr>
<tr>
<td>Stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I–II</td>
<td>22</td>
<td>36.0</td>
<td>15</td>
<td>37.5</td>
</tr>
<tr>
<td>III–IV</td>
<td>39</td>
<td>63.9</td>
<td>25</td>
<td>62.5</td>
</tr>
<tr>
<td>NCCN-IPI score</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–3</td>
<td>30</td>
<td>49.2</td>
<td>22</td>
<td>55.0</td>
</tr>
<tr>
<td>4–8</td>
<td>31</td>
<td>50.8</td>
<td>18</td>
<td>45.0</td>
</tr>
<tr>
<td>Serum LDH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>282</td>
<td>126–3037</td>
<td>237</td>
<td>126–1292</td>
</tr>
<tr>
<td>Normal</td>
<td>29</td>
<td>47.5</td>
<td>22</td>
<td>55.0</td>
</tr>
<tr>
<td>Elevated</td>
<td>32</td>
<td>52.5</td>
<td>18</td>
<td>45.0</td>
</tr>
<tr>
<td>Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-CHOP</td>
<td>56</td>
<td>91.8</td>
<td>37</td>
<td>92.5</td>
</tr>
<tr>
<td>Intensive chemotherapy</td>
<td>3</td>
<td>4.9</td>
<td>1</td>
<td>2.5</td>
</tr>
<tr>
<td>Palliative</td>
<td>2</td>
<td>3.3</td>
<td>2</td>
<td>5.0</td>
</tr>
</tbody>
</table>

a Pearson’s chi-square test with Yates’ continuity correction
b Wilcoxon rank-sum test with continuity correction
c Fisher’s exact test for count data
total lesion glycolysis (TLG = MATV × SUV mean) and SUVs are derived for each lesion independently as well as summed over all lesions. Lesion selection and semiquantitative analysis was performed by MH under direct supervision of an experienced nuclear medicine physician (WN) and a nuclear physicist (RB). SUV max was defined as the highest SUV per voxel within one lymphomatous lesion. In this paper, SUV max is reported as the mean of SUV max across all lesions of an individual patient. SUV max single highest was defined as the highest SUV max of all lesions within an individual patient.

Statistical analysis

Comparison between continuous, non-normally distributed variables was estimated by Wilcoxon rank-sum test. Differences between two nominal variables were evaluated using Pearson’s chi-square or Fisher’s exact test (for expected groups sizes ≤ 5). For exploratory survival analysis, the primary endpoints were overall survival (OS), progression-free survival (PFS) and disease-specific survival (DSS). OS was defined as the time from diagnosis until death (from any cause). PFS was defined as the time from diagnosis until death or relapse or progression [12]. DSS was defined as the time from diagnosis until death from DLBCL. Surviving patients were censored at the last date of follow-up. Survival curves were estimated according to the Kaplan-Meier method. Cox regression was used for univariate and multivariate survival analyses and results were reported as hazard ratio (HR), 95% confidence interval (CI) and p value based on statistical Wald test. A two-tailed p value of less than 0.05 indicated statistical significance. All analyses were performed using R version 3.4.1 and R-studio version 1.0.153 software.

Results

Patient characteristics

Characteristics of the entire cohort (61 patients) are summarised in Table 1. A total of 21 patients (34%) had a DLBCL harbouring a MYC rearrangement. MYC rearrangement was observed in 11 patients (21.6%) primarily seen in the UMCG (n = 51) and 10 patients (100%) referred from affiliated hospitals (n = 10). MYC groups did not differ with regard to baseline characteristics (Table 1) except for serum LDH levels, which were higher in the MYC-positive group (p = 0.036) than in cases without MYC rearrangement.

MYC status, necrosis and semiquantitative 18F-FDG PET parameters

necrosisPET was observed in 15 patients (25%). The relationships between MYC status and necrosisPET, necrosisHist and semiquantitative 18F-FDG PET parameters are summarised in Table 2. MYC+ cases did not differ from cases without

Table 2 Necrosis and semiquantitative 18F-FDG PET parameters according to MYC status

<table>
<thead>
<tr>
<th>MYC status</th>
<th>Total (n = 61)</th>
<th>MYC− (n = 40)</th>
<th>MYC+ (n = 21)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. %</td>
<td>No. %</td>
<td>No. %</td>
<td></td>
</tr>
<tr>
<td>necrosisPET</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>46 75.4</td>
<td>30 75.0</td>
<td>16 76.2</td>
<td>1.0c</td>
</tr>
<tr>
<td>Present</td>
<td>15 24.6</td>
<td>10 25.0</td>
<td>5 23.8</td>
<td></td>
</tr>
<tr>
<td>necrosisHist</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>42 68.9</td>
<td>28 70.0</td>
<td>14 66.7</td>
<td>0.52c</td>
</tr>
<tr>
<td>Present</td>
<td>16 26.2</td>
<td>11 27.5</td>
<td>5 23.8</td>
<td></td>
</tr>
<tr>
<td>Not available</td>
<td>3 4.9</td>
<td>1 2.5</td>
<td>2 9.5</td>
<td></td>
</tr>
<tr>
<td>SUVmax</td>
<td>Med. (range)</td>
<td>13.0 (3.0–38.4)</td>
<td>13.1 (3.0–33.9)</td>
<td>10.4 (5.8–38.4)</td>
</tr>
<tr>
<td>SUVmax single highest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med. (range)</td>
<td>18.8 (3.8–45.8)</td>
<td>19.7 (3.8–39.0)</td>
<td>14.2 (5.8–45.8)</td>
<td>0.49b</td>
</tr>
<tr>
<td>MATV</td>
<td>Med. (range)</td>
<td>154.7 (1–3774)</td>
<td>156.0 (1–2800)</td>
<td>154.7 (7–3774)</td>
</tr>
<tr>
<td>TLG</td>
<td>Med. (range)</td>
<td>1387.4 (3–29,462)</td>
<td>1632.8 (3–29,462)</td>
<td>1147.1 (47–20,065)</td>
</tr>
</tbody>
</table>

b Wilcoxon rank-sum test
c Fisher’s exact test for count data
MYC rearrangement with regard to necrosisPET \((p = 1.0)\) or necrosisHist \((p = 0.52)\).

When the semiquantitative parameters \text{SUV\textsubscript{max}}, \text{SUV\textsubscript{max} single highest}, \text{MATV}, and \text{TLG} were studied, no difference between \textit{MYC} groups was observed. There was no relation between the presence of necrosisPET and necrosisHist \((p = 0.1\); Supplementary Figure 1).

\textbf{NecrosisPET and tumour volume}

In 14 of 15 necrosisPET cases, necrosis was observed in the largest lesion. In comparison, the largest individual lesion of cases without necrosisPET had a significantly lower \text{MATV} \((p = 0.0006)\) and \text{SUV\textsubscript{max}} \((p = 0.02)\), irrespective of \textit{MYC} status (Supplementary Figure 2). Bulky disease was observed in 24 patients (39%). Bulky disease was significantly correlated with necrosisPET \((p = 0.005)\), but not with \textit{MYC} status \((p = 0.9)\) or necrosisHist \((p = 0.8)\). Extranodal growth of lesions was not significantly correlated with the presence of necrosisPET \((p = 0.26)\).

\textbf{Survival analysis}

The median follow-up was 34 months. At 5 years, OS was 67\% (95\% CI 54–83\%), PFS was 65\% (95\% CI 53–81\%) and DSS was 81\% (95\% CI 70–93\%) for the entire cohort. Of the seven deaths unrelated to lymphoma, two were caused by metastatic adenocarcinoma, two were due to cardiac failure, one was due to acute on chronic renal failure and there were two cases of sudden deaths in patients in complete remission of DLBCL.

Results of the univariate Cox regression analysis (HR, 95\% CI and \textit{p} value) are shown in Table 3. The univariate analysis for OS identified \textit{MYC}, NCCN-IPI and \text{SUV\textsubscript{max} single highest} as associated factors. In univariate analysis for PFS, only NCCN-IPI was associated with outcome. In the univariate analysis for DSS \textit{MYC}, NCCN-IPI, \text{SUV\textsubscript{max} single highest} and necrosisPET were associated. Both \text{SUV\textsubscript{max}} and \text{SUV\textsubscript{max} single highest} showed negative beta-coefficients throughout the univariate survival analysis.

For multivariate analysis, the parameters \textit{MYC}, NCCN-IPI, necrosisPET and \text{SUV\textsubscript{max} single highest} were used due to their
prognostic impact on lymphoma-related deaths in univariate analysis (Table 4). NecrosisPET did not contribute to the prognostic model for OS and PFS. However, for DSS, necrosisPET had a large adverse prognostic impact and proved to be independent (HR = 13.9; 95% CI 3.0–65; p = 0.001). The Kaplan-Meier analysis for DSS showed no events during the 5-year follow-up period for patients who neither had MYC rearrangements nor had necrosisPET (n = 30) (Fig. 3).

Table 4 Multivariate analysis of patient characteristics on overall survival, progression-free survival and disease-specific survival

<table>
<thead>
<tr>
<th></th>
<th>Hazard ratio OS</th>
<th>95% CI</th>
<th>p value (Wald test)</th>
<th>p value model (Wald test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MYC MYC-negative</td>
<td>Reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MYC-positive</td>
<td>3.1</td>
<td>1.1–8.7</td>
<td>0.029*</td>
<td>0.004</td>
</tr>
<tr>
<td>NCCN-IPI 0–3</td>
<td>Reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCCN-IPI 4–8</td>
<td>2.4</td>
<td>0.8–6.9</td>
<td>0.116</td>
<td></td>
</tr>
<tr>
<td>NecrosisPET Absent</td>
<td>Reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NecrosisPET Present</td>
<td>2.6</td>
<td>0.9–7.7</td>
<td>0.079</td>
<td></td>
</tr>
<tr>
<td>SUVmax single highest < Median</td>
<td>Reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUVmax single highest ≥ Median</td>
<td>0.3</td>
<td>0.1–0.9</td>
<td>0.027*</td>
<td></td>
</tr>
</tbody>
</table>

Hazard ratio PFS 95% CI p value (Wald test) p value model (Wald test)

<table>
<thead>
<tr>
<th></th>
<th>Hazard ratio OS</th>
<th>95% CI</th>
<th>p value (Wald test)</th>
<th>p value model (Wald test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MYC MYC-negative</td>
<td>Reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MYC-positive</td>
<td>2.4</td>
<td>0.9–6.3</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>NCCN-IPI 0–3</td>
<td>Reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCCN-IPI 4–8</td>
<td>3.2</td>
<td>1.1–9.0</td>
<td>0.028*</td>
<td></td>
</tr>
<tr>
<td>NecrosisPET Absent</td>
<td>Reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NecrosisPET Present</td>
<td>2.6</td>
<td>1.0–7.0</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>SUVmax single highest < Median</td>
<td>Reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUVmax single highest ≥ Median</td>
<td>0.4</td>
<td>0.2–1.1</td>
<td>0.08</td>
<td></td>
</tr>
</tbody>
</table>

Hazard ratio DSS 95% CI p value (Wald test) p value model (Wald test)

<table>
<thead>
<tr>
<th></th>
<th>Hazard ratio OS</th>
<th>95% CI</th>
<th>p value (Wald test)</th>
<th>p value model (Wald test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MYC MYC-negative</td>
<td>Reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MYC-positive</td>
<td>14.6</td>
<td>2.6–82</td>
<td>0.002**</td>
<td></td>
</tr>
<tr>
<td>NCCN-IPI 0–3</td>
<td>Reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCCN-IPI 4–8</td>
<td>6.5</td>
<td>0.6–66</td>
<td>0.113</td>
<td></td>
</tr>
<tr>
<td>NecrosisPET Absent</td>
<td>Reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NecrosisPET Present</td>
<td>13.3</td>
<td>2.8–63</td>
<td>0.001**</td>
<td></td>
</tr>
<tr>
<td>SUVmax single highest < Median</td>
<td>Reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUVmax single highest ≥ Median</td>
<td>0.12</td>
<td>0.01–1.2</td>
<td>0.075</td>
<td></td>
</tr>
</tbody>
</table>

* = significance level of p < 0.05; ** = significance level of p < 0.01
Discussion

Based on the current investigation, there is no association of MYC rearrangements with the presence of tumour necrosis assessed by 18F-FDG PET or the semiquantitative 18F-FDG PET parameters SUV_{max}, SUV_{max} single highest, MATV and TLG. We therefore rejected the hypothesis that metabolic changes induced by MYC rearrangements might increase the incidence of necrosis$^\text{PET}$ or alter the profile of semiquantitative parameters in DLBCL. Necrosis$^\text{PET}$ was significantly associated with the MATV of the single largest tumour lesion. The SUV_{max} of the single largest necrosis$^\text{PET}$ lesion was significantly higher compared with the lesions without necrosis$^\text{PET}$. Both of these observations support the notion of larger, more metabolically active tumours being more susceptible to necrosis, irrespective of MYC status.

Our analyses demonstrate that necrosis$^\text{PET}$ had a significant impact on DSS, thereby substantiating previous findings about the prognostic value of this visual marker [15]. The presented data show that the presence of MYC rearrangement, in itself a powerful predictive factor, is not related to necrosis$^\text{PET}$. This allows for integration of MYC status and necrosis$^\text{PET}$ into a prognostic model for DLBCL. When combined with MYC, NCCN-IPI and SUV_{max} single highest in the multivariate analysis, necrosis$^\text{PET}$ had the highest significance in predicting death due to lymphoma and a higher prognostic impact than NCCN-IPI, the currently most accurate prognostic index for DLBCL [22]. Thus, our results support the potential additive value of necrosis$^\text{PET}$ as an important biomarker for risk stratification in the clinical setting [14, 15].

The lack of a relationship between MYC rearrangements and semiquantitative 18F-FDG PET metrics might have several causes. First, proliferation in DLBCL could be independent of MYC rearrangement. This would only partially explain the lack of relationship, since the median proliferation index...
(Ki-67 staining) of MYC+ DLBCL is universally high (>90%) in contrast to the much broader range observed in MYC− DLBCL [29]. Second, overexpression of MYC via other mechanisms such as epigenetic pathways might explain increased glucose uptake in MYC FISH-negative DLBCL. This is supported by studies showing high MYC protein expression in 19–40% of DLBCL cases [30–32]. Cottereau et al previously reported a lack of relation between MYC protein expression and 18F-FDG PET parameters in DLBCL [19]. However, FISH analysis, which is considered the gold standard examination for MYC rearrangements [33–35], was not performed. Third, high metabolic activity might be induced by alternative changes in metabolic drivers, such as mutations in PTEN (observed in approximately 15% of DLBCL) that lead to activation of the P13K/AKT/mTOR pathway [29, 36–38].

Intriguingly, the univariate survival analysis indicated a protective effect for cases with SUV max and SUV max single highest measurements above the median. Studies on the prognostic impact of these variables are conflicting [20, 39–41]. Gallicchio et al published results similar to ours, alluding to lymphomas with high metabolic activity being more responsive to chemotherapy [20]. In light of conflicting data on the prognostic value of semiquantitative 18F-FDG PET parameters [19–21, 42, 43], our results underline the need for larger, prospective studies with external validation cohorts [42].

This study has several limitations. First there is a referral bias with a high incidence of MYC+ cases (34%) in our dataset. The enrichment in our study can largely be explained by the fact that, as a reference centre, aggressive and MYC+ DLBCL cases (including suspected cases of Burkitt lymphoma which subsequently prove to be MYC+ DLBCL) are referred to our site. Second, the total number of cases with necrosisPET is small, which increases the risk of a sampling error. Nevertheless, the incidence of necrosisPET in our study is in line with previous studies [13–15]. Furthermore, patients were included irrespective of their comorbidities. Factors like differences in treatment regimen and non-cancer-related deaths might thus have a large impact on the statistical analysis. This is supported by the difference between DSS and OS. Despite its limitations, the prognostic potential of MYC status and NCCN-IPI was reproduced in this dataset, making it a representative set of DLBCL cases. Larger prospective studies are warranted to validate the prognostic value of necrosisPET.

Conclusion

In this comprehensive analysis of MYC rearranged DLBCL, we showed that a fundamental pathological change such as MYC rearrangement, which by itself has a significant impact on prognosis, has no influence on the presence of necrosisPET or semiquantitative 18F-FDG PET metrics. An explorative survival analysis suggests that the presence of necrosis determined by visual assessment of 18F-FDG PET scans is an independent predictor of disease-specific survival in patients with DLBCL, regardless of MYC status.

Funding

The authors state that this work has not received any funding.

Compliance with ethical standards

Guarantor

The scientific guarantor of this publication is M. Nijland.

Conflict of interest

The authors declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was not required for this study. This study utilised rest material from patients, the use of which is regulated under the code for good clinical practice in the Netherlands and does not require informed consent in accordance with Dutch regulations.

Ethical approval

According to Dutch regulations, no medical ethical committee approval was required for this retrospective, observational study. A waiver was obtained from the medical ethics committee of the UMCG on November 13, 2018.

Methodology

This is a retrospective observational study performed at one institution.

Open Access

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

40. Park S, Moon SH, Park LC et al (2012) The impact of baseline and interim PET/CT parameters on clinical outcome in patients with

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.