Appendix
Summary

The brain is responsible for our abilities to think, create memories, feel emotions and display behavior. A healthy brain therefore is essential for our daily functioning. The brain consists of different types of brain cells, which all have their own crucial functions. For example, the nerve cells (neurons) in the brain are at the basis of all brain functions, by sending and receiving electrical and chemical signals. Moreover, the so-called ‘glia’ cell types (such as microglia and astrocytes) are vital for supporting neurons and communication between neurons, for the defense against pathogens, and for the removal or recovery of damaged brain cells. All in all, this cooperation between different brain cells and brain cell types enables the brain to function optimally.

Unfortunately, different brain diseases exist, which disturb the health of brain cells and the interactions between them. A well-known brain disease is Alzheimer’s disease. Alzheimer’s disease is a feared disease, because it causes memory impairment, other cognitive problems and behavioral changes, which become increasingly worse as the disease progresses. As such, Alzheimer’s patients will over time lose the ability to perform normal activities of daily living, and can eventually lose all sense of time, place and self. Alzheimer’s is therefore a devastating illness for patients themselves and their environment. In addition, Alzheimer’s disease demands intensive and long-term health care, and comes with great economic costs. Besides a few medications that can temporarily improve Alzheimer’s symptoms, there are currently no treatments that can efficiently slow down, let alone prevent or cure, this disease, despite intensive research to find potential treatments for Alzheimer’s. The absence of therapies can likely be explained by our still incomplete understanding of this complex illness. In addition, Alzheimer’s is diagnosed relatively late, and start of treatment is late: when clinical symptoms (cognitive problems) arise, the pathology in the brain has already been developing for years. Urgent questions therefore include: how is Alzheimer’s disease caused, and how can Alzheimer’s be recognized and treated during early disease stages?

The Alzheimer’s brain is characterized by certain pathological changes, which can be observed through a microscope. Firstly, the Alzheimer’s brain is marked by clumps of two proteins: the protein amyloid beta (Aβ) clumps together into so-called ‘plaques’, and the protein tau sticks together to form so-called ‘tangles’. These abnormal clumps of protein are an important hallmark of Alzheimer’s, and are seen as important players in Alzheimer’s pathology since they are both capable of damaging brain cells. In addition, in the past years it has become increasingly clear that chronic inflammatory responses arise in the brain already during early Alzheimer’s stages, and that this chronic brain inflammation (known as neuroinflammation) plays an essential role in the development and progression of Alzheimer’s disease. Chronic neuroinflammation arises when microglia and astrocytes become chronically activated. In this constantly activated state, some of their protective functions are dampened, while their production of different harmful inflammatory factors is enhanced. As such, long-term activation of microglia and astrocytes is damaging to brain
Appendix

cells. From this, it follows that blocking chronic neuroinflammation is a promising therapeutic strategy for Alzheimer’s disease. However, the involved molecular mechanisms and potential therapeutic targets in chronic neuroinflammation are not completely understood yet. Therefore, many investigations are currently being performed in order to gain more insight into chronic neuroinflammation, including the inflammatory factors that are produced by chronically activated microglia and astrocytes, and their effects.

In 2012 an interesting new inflammatory factor was discovered to potentially play a role in Alzheimer’s disease. This inflammatory factor, named Lipocalin 2 (Lcn2), was already known to be involved in inflammatory responses in different diseases, and to exert antibacterial functions by hindering iron uptake by bacteria. In 2012, it was shown that the protein levels of Lcn2 were increased in postmortem brain tissue of Alzheimer’s patients, and that Lcn2 promoted cell death in cultured neurons. Furthermore, a number of studies in mice revealed that Lcn2 contributed to brain damage in mouse models of, for example, Multiple Sclerosis. However, surprisingly, a few other studies found neuroprotective effects for Lcn2. These previous findings stimulated us to obtain a better understanding of the role of Lcn2 in Alzheimer’s disease. This resulted in the current PhD thesis, in which we aimed to investigate the effects of Lcn2 in a mouse model of Alzheimer’s disease, and to further explore whether Lcn2 may be a valuable target for diagnosis and treatment of Alzheimer’s disease.

In order to further examine the regional changes in Lcn2 levels that occur in the Alzheimer’s brain, in chapter 2 we assessed the protein levels of Lcn2 in nine different brain regions, in postmortem brain tissue of healthy persons and Alzheimer’s patients. This showed that Lcn2 levels are not only increased in the hippocampus, one of the most severely affected brain regions in Alzheimer’s disease, but also in other brain regions that are affected by Alzheimer’s disease, such as the prefrontal cortex. In addition, we were interested in the possible differences in Lcn2 levels between Alzheimer’s patients with and without depression: depression is frequently present in Alzheimer’s disease and can aggravate the disease process, and previous studies have indicated that elevated Lcn2 levels are associated with depressive symptoms. We found that Lcn2 levels differed significantly between depressed and non-depressed Alzheimer’s patients, in different brain regions. Furthermore, we confirmed the previous findings that Lcn2 concentrations in blood are comparable between healthy persons and Alzheimer’s patients, and that Lcn2 levels in cerebrospinal fluid are decreased in Alzheimer’s patients as compared to healthy persons. All in all, these results indicate that Alzheimer’s pathology is accompanied by increased Lcn2 levels in affected brain regions, and that decreased Lcn2 concentrations in cerebrospinal fluid might be of value for the diagnosis of Alzheimer’s disease. Moreover, these outcomes stimulate further research regarding the functional relevance of the altered Lcn2 levels in the brains of Alzheimer’s patients, with or without depression.
To investigate whether increased Lcn2 levels may actually contribute to Alzheimer’s pathology, in chapter 3 we studied possible damaging or protective effects of Lcn2 in a mouse model of Alzheimer’s disease. First of all we could confirm that, also in the examined Alzheimer’s mouse model, Lcn2 protein levels in the brain were increased. Secondly, we did not find differences in important pathological characteristics (such as memory problems, Aβ accumulation, and activation of microglia and astrocytes) between normal Alzheimer’s mice and Alzheimer’s mice that could not produce Lcn2 (Lcn2-deficient Alzheimer’s mice). This indicates that Lcn2 might not exert a significant effect on pathological processes in Alzheimer’s disease. However, while normal Alzheimer’s mice showed severe iron accumulation in the brain and a lower body weight (which both are pathological characteristics of Alzheimer’s disease), Lcn2-deficient Alzheimer’s mice were in part protected against these pathological hallmarks. Altogether, the results in this chapter demonstrate that Lcn2 does not affect the severity of different important pathological processes in Alzheimer’s mice. Nevertheless, Lcn2 was shown to contribute to certain pathological processes. More research is required to establish the importance of these effects, and to determine whether normalization of elevated Lcn2 levels may have protective/therapeutic effects.

In chapter 4 we looked for compounds that could block Alzheimer’s-related overproduction of Lcn2. Iron chelators have been suggested as potential neuroprotective compounds, in part because of their ability to remove accumulated iron (which characterizes many neurodegenerative diseases) from the brain. Additionally, a recent study indicated that iron chelators can reduce the overproduction of Lcn2 in the injured brain. For this reason, we tested whether iron chelators could inhibit Aβ-induced production of Lcn2 in cultured astrocytes. The results confirmed that Aβ is a strong stimulus for astrocytes to produce Lcn2, and that iron chelators are able to inhibit this Aβ-induced Lcn2 production. Furthermore, the outcomes suggested that Aβ stimulates iron accumulation in cultured astrocytes, and that Lcn2 does not affect this process. More research in other model systems is needed to further elucidate the interaction between Aβ, iron and Lcn2, and to assess the therapeutic value of iron chelators for Alzheimer’s disease.

Back to the possible diagnostic value of Lcn2, in chapter 5 it was investigated whether Lcn2 concentrations in blood and cerebrospinal fluid are subject to a circadian rhythm. Previous research in healthy young males demonstrated that Lcn2 levels in blood indeed fluctuated significantly over the day/night. Since our lab is especially interested in age-related brain diseases, we in the current study focused on elderly people. We found no significant fluctuations in Lcn2 levels in blood and cerebrospinal fluid over the day/night, in healthy elderly males. This stability of Lcn2 levels over the day/night would be advantageous, when Lcn2 would be used as a diagnostic marker. Whether Lcn2 levels are also stable in Alzheimer’s patients remains to be determined in future studies.
In chapter 6 we provided an overview of the currently existing evidence for a possible role of Lcn2 in different age-related brain diseases, including Alzheimer’s disease, Parkinson’s disease and vascular dementia. In this regard we also discussed the hypothesis that Lcn2 could be an inflammatory link between aging, other risk factors, and the development of different age-related brain diseases. Namely, a great number of risk factors for Alzheimer’s disease, Parkinson’s disease and vascular dementia has been associated with elevated Lcn2 levels. For this reason, we proposed that increased Lcn2 levels during risk factors (such as older age, unhealthy lifestyles, presence of chronic inflammatory diseases and certain environmental factors) might contribute to an increased risk to develop age-related brain diseases, such as Alzheimer’s disease.

In summary, in this thesis we aimed to gain more insight into the neuroinflammatory mechanisms that contribute to Alzheimer’s disease, by focusing on the potentially important role of the inflammatory factor Lcn2. To this end, we studied the regulation and effects of Lcn2 in Alzheimer’s patients, an Alzheimer’s mouse model, and cultured brain cells. We confirmed that the protein levels of Lcn2 are increased in postmortem brain tissue of Alzheimer’s patients, and demonstrated that this is also the case in brain tissue of Alzheimer’s mice. In the studied Alzheimer mouse model, it appeared that Lcn2 did not affect certain major pathological characteristics of Alzheimer’s disease, such as memory problems, Aβ plaques and activation of microglia and astrocytes. However, we found that Lcn2 did contribute to iron accumulation in the brains of Alzheimer’s mice, and a lower body weight. More research is needed to better understand the role of Lcn2 in health and Alzheimer’s disease. Herein, as our results make clear, also the effects of Lcn2 on iron homeostasis, energy metabolism and emotion regulation should be considered. These future studies are required to establish whether Lcn2 may serve as a therapeutic target in novel treatments for Alzheimer’s disease, and whether Lcn2 could contribute to early diagnosis of this disease. Chronic neuroinflammation already arises during risk factors and early stages of Alzheimer’s disease, and plays an important role in the development and progression of Alzheimer’s disease. Blocking harmful chronic neuroinflammation (perhaps including Lcn2 overproduction) may currently be the most promising strategy to treat Alzheimer’s disease.
Nederlandse samenvatting

Het brein is verantwoordelijk voor ons vermogen om na te denken, herinneringen te vormen, emoties te voelen en gedrag te tonen. Gezonde hersenen zijn daarom essentieel voor ons dagelijks functioneren. De hersenen bestaan uit verschillende types hersencellen, die allen hun eigen onmisbare functies hebben. Zo vormen de zenuwcellen (neuronen) in het brein de basis voor alle hersenfuncties, door het verzenden en ontvangen van elektrische en chemische signalen. Daarnaast zijn de zogenaamde ‘glia’ celltypes (zoals microglia en astrocyten) cruciaal voor het onderhouden van neuronen en de communicatie tussen neuronen, voor de afweer tegen ziekteverwekkers, en voor het opruimen of herstel van beschadigde hersencellen. Al met al zorgt deze samenwerking tussen verschillende hersencellen en hersencelltipes ervoor dat het brein optimaal kan functioneren.

Helaas bestaan er verschillende hersenziektes, waarbij de gezondheid van hersencellen en hun onderlinge interactie wordt aangetast. Een bekende hersenziekte is de ziekte van Alzheimer. De ziekte van Alzheimer is een gevreesde ziekte, doordat deze aandoening gepaard gaat met voortschijnende achteruitgang van het geheugen en andere cognitieve functies, alsook met gedragsveranderingen. Naarmate de ziekte vordert zullen langzamerhand problemen ontstaan in het uitvoeren van normale activiteiten van het dagelijks leven, en kan iemand met Alzheimer uiteindelijk al het besef van plaats, tijd en de eigen persoon verliezen. De ziekte van Alzheimer is daarom verwoestend voor patiënten zelf en hun omgeving, is zeer zorgintensief, en brengt grote economische kosten met zich mee. Ondanks intensief onderzoek naar mogelijke behandelingen voor Alzheimer zijn er, naast enkele medicijnen die de ziekte symptomen tijdelijk kunnen verbeteren, nog geen geneesmiddelen die de ziekte kunnen afremmen, voorkomen of genezen. Deze afwezigheid van efficiënte therapieën is waarschijnlijk te verklaren door ons nog onvolledige begrip van deze complexe aandoening. Ook kan Alzheimer pas relatief laat worden vastgesteld, en is de start van medicatie laat: wanneer klinische symptomen (cognitieve problemen) ontstaan, is de pathologie in de hersenen al jaren aanwezig. Urgente vragen zijn daarom: hoe ontstaat de ziekte van Alzheimer, en kan de ziekte al in vroege stadia herkend en behandeld worden?

De hersenen van Alzheimer patiënten worden gekenmerkt door specifieke pathologische veranderingen, die te zien zijn met behulp van een microscoop. Zo zijn in Alzheimerbreinen klontering van twee eiwitten te vinden: het amyloid beta (Aβ) eiwit klontert samen tot zogenaamde ‘plaques’, en het tau eiwit plakt samen tot zogenaamde ‘tangles’. Deze abnormale eiwitkrontering zijn een belangrijk kenmerk van de ziekte van Alzheimer, en worden gezien als belangrijke boosdoeners in het ziekteproces doordat beide in staat zijn hersencellen te beschadigen. Hiernamaal is in de afgelopen jaren steeds duidelijker geworden dat al vroeg in de ziekte chronische ontstekingen ontstaan in de hersenen (ook bekend als neuroinflammation), en dat deze chronische neuroinflammatie een essentiële rol speelt in het ontstaan en het verder voortschrijden van de ziekte van Alzheimer. Chronische neuroinflammatie ontstaat wanneer microglia en astrocyten chronisch geactiveerd raken. In
deze constant geactiveerde staat worden sommige beschermende functies op een lager pitje gezet, terwijl de productie van verschillende schadelijke ontstekingsfactoren op de voorgrond komt. Langdurige activatie van microglia en astrocyten is op deze manier schadelijk voor hersencellen. Dit maakt dat het afremmen van chronische neuroinflammatie een veelbelovende therapeutische strategie is voor de ziekte van Alzheimer. Echter, er is nog veel onduidelijk over de betrokken moleculaire processen en mogelijke aangrijpingspunten in chronische neuroinflammatie. Om deze reden wordt momenteel veel onderzoek verricht om chronische neuroinflammatie beter te begrijpen, waaronder de ontstekingsfactoren die door chronisch geactiveerde microglia en astrocyten geproduceerd worden, en hun effecten.

In 2012 werd een interessante nieuwe ontstekingsfactor ontdekt, die mogelijk een rol zou spelen in de ziekte van Alzheimer. Van deze ontstekingsfactor, genaamd Lipocaline 2 (Lcn2), was al bekend dat het betrokken was bij ontstekingsreacties in verschillende ziektes, en dat het antibacteriële functies uitoefende door bacteriën te dwarsbomen in hun opname van ijzer. In 2012 werd aangetoond dat Lcn2 in verhoogde niveaus aanwezig was in post-mortem hersenweefsel van Alzheimer patiënten, en dat Lcn2 celdood stimuleerde in gekweekte neuronen. Daarnaast lieten enkele studies in muizen zien dat Lcn2 bijdroeg aan hersenschade in muismodellen voor bijvoorbeeld Multiple Sclerosis, al werden in andere studies verrassend genoeg soms juist beschermende effecten van Lcn2 gevonden. Deze vorige bevindingen waren de aanleiding voor dit proefschrift, waarin we de rol van Lcn2 in de ziekte van Alzheimer verder wilden begrijpen. Hierbij stelden we ons ten doel om de effecten van Lcn2 in een muismodel voor de ziekte van Alzheimer te onderzoeken, en om verder uit te zoeken of Lcn2 een waardevol aangrijpingspunt voor de diagnose en behandeling van Alzheimer zou kunnen zijn.

Om verder te bestuderen hoe de niveaus van Lcn2 veranderd zijn in het Alzheimer brein, hebben we in hoofdstuk 2 de eiwitniveaus van Lcn2 onderzocht in negen verschillende hersengebieden, in post-mortem hersenweefsel van gezonde personen en Alzheimer patiënten. Hierdoor konden we aantonen dat Lcn2 niveaus niet alleen verhoogd zijn in de hippocampus, één van de meest getroffen hersengebieden in Alzheimer, maar ook in andere hersengebieden die aangedaan zijn door de ziekte van Alzheimer, zoals de prefrontale cortex. Daarnaast waren we geïnteresseerd in de mogelijke verschillen in Lcn2 niveaus tussen Alzheimer patiënten met en zonder depressie: depressie komt veel voor in Alzheimer en kan het ziekteverloop verergeren, en eerdere studies wezen uit dat verhoogde Lcn2 niveaus geassocieerd zijn met depressieve symptomen. We vonden in ons onderzoek dat Lcn2 niveaus significant verschillen tussen depressieve en niet-depressieve Alzheimer patiënten, in verschillende hersengebieden. Ook bevestigden we de eerdere bevindingen dat Lcn2 concentraties in het bloed vergelijkbaar zijn tussen gezonde mensen en Alzheimer patiënten, en dat Lcn2 niveaus in cerebrospinale vloeistof verlaagd zijn in Alzheimer patiënten in vergelijking met gezonde leeftijdsgenoten. Al met al geven deze resultaten aan dat Alzheimer pathologie vergezeld gaat met verhoogde Lcn2 niveaus in aangedane hersengebieden, en dat
Nederlandse samenvatting

verlaagde Lcn2 concentraties in de cerebrospinale vloeistof mogelijk van waarde zouden kunnen zijn bij de diagnose van Alzheimer. Bovendien stimuleren de uitkomsten verder onderzoek naar de functionele betekenis van de veranderde Lcn2 niveaus in de hersenen van Alzheimer patiënten, met en zonder depressie.

Om te onderzoeken of verhoogde Lcn2 niveaus ook daadwerkelijk een rol zouden kunnen spelen in Alzheimer pathologie, bestudeerden we in hoofdstuk 3 de mogelijke schadelijke of beschermende effecten van Lcn2 in een muismodel voor de ziekte van Alzheimer. We konden ten eerste bevestigen dat, ook in het bestudeerde Alzheimer muismodel, Lcn2 eiwitniveaus in de hersenen verhoogd waren. Ten tweede vonden we geen verschillen in belangrijke pathologische kenmerken (zoals geheugenproblemen, Aβ opstapeling, en activatie van microglia en astrocyten) tussen normale Alzheimer muizen en Alzheimer muizen die geen Lcn2 konden produceren (Lcn2-deficiënte Alzheimer muizen). Dit geeft aan dat Lcn2 wellicht geen groot effect heeft op pathologische processen in de ziekte van Alzheimer. Echter, waar normale Alzheimer muizen een sterke opstapeling van ijzer in de hersenen en een lager lichaamsgewicht vertoonden (beide ook pathologische kenmerken van Alzheimer), leken Lcn2-deficiënte Alzheimer muizen hier voor een deel tegen beschermd te zijn. Tezamen laten de resultaten in dit hoofdstuk zien dat Lcn2 geen effect heeft op de ernst van verschillende belangrijke pathologische processen in Alzheimer muizen. Desalniettemin bleek dat Lcn2 wel een bijdrage levert aan enkele andere pathologische kenmerken. Meer onderzoek is nodig om het belang van deze effecten na te gaan, en om vast te stellen of het normaliseren van verhoogde Lcn2 niveaus wellicht een beschermend/therapeutisch effect zou kunnen hebben.

In hoofdstuk 4 zochten we naar stoffen die Alzheimer-gerelateerde overproductie van Lcn2 zouden kunnen remmen. Ijzer chelatoren zijn al langer bekend als potentiële neuroprotectieve medicijnen, doordat ze opgestapeld ijzer (dat kenmerkend is voor verschillende neurodegeneratieve ziektes) gedeeltelijk uit de hersenen kunnen verdrijven. Daarnaast werd in een recente studie gesuggereerd dat ijzer chelatoren de overproductie van Lcn2 in het beschadigde brein kunnen verminderen. Om deze redenen onderzochten we of Aβ-geïnduceerde productie van Lcn2 in gekweekte astrocyten geremd kon worden door ijzer chelatoren. De resultaten bevestigden dat Aβ een sterke stimulus is voor astrocyten om Lcn2 te produceren, en dat ijzer chelatoren deze Aβ-geïnduceerde Lcn2 productie kunnen afremmen. Daarnaast suggereerden de uitkomsten dat Aβ ijzeropstapeling stimuleert in gekweekte astrocyten, en dat Lcn2 geen invloed op uitoefent op de mate waarin dit gebeurt. Meer onderzoek in andere modelsystemen is nodig om de interactie tussen Aβ, ijzer en Lcn2 verder te ontrafelen, en om de therapeutische waarde van ijzer chelatoren voor de ziekte van Alzheimer te bepalen.

Terug naar de mogelijke diagnostische waarde van Lcn2, werd in hoofdstuk 5 onderzocht of Lcn2 concentraties in bloed en cerebrospinale vloeistof onderhevig zijn aan een circadiaan
ritme. Eerder onderzoek in jonge gezonde mannen toonde aan dat Lcn2 niveaus in het bloed inderdaad significant fluctueerden over de dag/nacht. Omdat ons lab voornamelijk geïnteresseerd is in leeftijdsgerelateerde hersenziektes, focusten we ons in deze studie op oudere mensen. We vonden geen grote fluctuaties in Lcn2 niveaus in bloed en cerebrospinale vloeistof over de dag/nacht, in gezonde oudere mannen. Deze stabiele Lcn2 niveaus zouden voordelig zijn, wanneer Lcn2 als diagnostische marker gebruikt zou worden. Of Lcn2 niveaus ook stabiel zijn in Alzheimer patiënten moet echter nog uitgewezen worden.

In hoofdstuk 6 eindigden we met een overzicht van het momenteel bestaande bewijs voor een mogelijke rol van Lcn2 in verschillende leeftijdsgerelateerde hersenziektes, waaronder de ziekte van Alzheimer, de ziekte van Parkinson en vasculaire dementie. Hierbij bespraken we ook de hypothese dat Lcn2 een inflammatoire link zou kunnen zijn tussen veroudering, andere risicofactoren, en het ontwikkelen van leeftijdsgerelateerde hersenziektes. Namelijk, een groot aantal risicofactoren voor Alzheimer, Parkinson en vasculaire dementie is geassocieerd met verhoogde Lcn2 niveaus. Om deze reden stelden we voor dat verhoogde Lcn2 niveaus tijdens risicofactoren (zoals een hogere leeftijd, ongezonde levensstijlen, aanwezigheid van chronische ontstekingsziektes en bepaalde omgevingsfactoren) zouden kunnen bijdragen aan een groter risico op het ontwikkelen van leeftijdsgerelateerde hersenziektes zoals de ziekte van Alzheimer.

Samenvattend hebben we in dit proefschrift geprobeerd meer inzicht te krijgen in de neuroinflammatoire mechanismen die bijdragen aan de ziekte van Alzheimer, door ons te focussen op de mogelijk belangrijke rol van de ontstekingsfactor Lcn2. Hiervoor hebben we de regulatie en effecten van Lcn2 bestudeerd in Alzheimer patiënten, in een Alzheimer muismodel, en in gekweekte hersencellen. We bevestigden dat eiwitniveaus van Lcn2 verhoogd zijn in post-mortem hersenweefsel van Alzheimer patiënten, en toonden aan dat dit ook in hersenweefsel van Alzheimer muizen het geval is. In het bestudeerde Alzheimer muismodel bleek Lcn2 geen effect te hebben op sommige voornamer pathologische kenmerken van Alzheimer, zoals geheugenproblemen, Aβ plaques en activatie van microglia en astrocyten. Echter, we ontdekt de Lcn2 in Alzheimer muizen wel bijdroeg aan ijzeropstapeling in de hersenen en een lager lichaamsgewicht. Meer onderzoek is nodig om de rol van Lcn2 in zowel gezondheid als de ziekte van Alzheimer beter te begrijpen. Onze resultaten maken duidelijk dat daarbij ook de effecten van Lcn2 op ijzer homeostase, energie metabolisme, en emotieregulatie aandacht verdienen. Deze toekomstige studies zullen verder moeten uitwijzen of Lcn2 als therapeutisch aangrijpingspunt kan dienen in nieuwe behandelmethoden voor de ziekte van Alzheimer, en kan bijdragen aan een vroege diagnose van Alzheimer. Chronische neuroinflammatie komt al op tijdens risicofactoren en vroege stadia van Alzheimer, en speelt een belangrijke rol in het ontstaan en het voortschrijden van de ziekte van Alzheimer. Het remmen van schadelijke chronische neuroinflammatie (eventueel inclusief Lcn2 overproductie), is momenteel mogelijk de meest veelbelovende strategie om de ziekte van Alzheimer te behandelen.
Dankwoord

Er zijn veel mensen die hebben bijgedragen aan dit proefschrift. Jullie hebben de totstandkoming van deze thesis mogelijk gemaakt, en hebben er daarnaast voor gezorgd dat mijn PhD erg leuk, leerzaam en (meestal:p) plezierig was. Ik ben iedereen hier heel dankbaar voor, wat ik hier dan ook graag in iets meer detail beschrijf.

Ten eerste wil ik graag mijn (co)promotoren Prof. Dr. Peter De Deyn, Prof. Dr. Uli Eisel en Dr. Pieter Naudé heel erg bedanken. Uli en Pieter, ik ontmoette jullie voor het eerst tijdens Uli’s Neurawetenschappen Research cursus in het derde jaar van mijn bachelor, toen jullie mijn supervisors waren voor het korte onderzoeksproject in deze cursus. Het was dit onderzoeksproject dat mijn interesse voor de ziekte van Alzheimer, neuroinflammatie en het doen van onderzoek aanwakkerde. Ik ben jullie erg dankbaar voor jullie begeleiding tijdens deze cursus: jullie gaven me het idee en het vertrouwen om verder te gaan in deze onderzoeksrichting, en om me aan te melden voor de BCN research master. Tot mijn vreugde was het tijdens mijn master mogelijk om mijn tweede master onderzoeksproject ook bij jullie uit te voeren, waarbij nu ook Peter als supervisor betrokken was. Dit masterproject beviel me erg goed, en kon gelukkig voortgezet worden als PhD project. Nu, aan het eind van mijn PhD, wil ik jullie alle drie erg bedanken voor de super begeleiding, en jullie vertrouwen in mij om dit PhD project uit te voeren. Ik heb veel bewondering voor jullie enorme expertise, gedrevenheid, vriendelijkheid, humor, en passie voor wetenschappelijk onderzoek. Ik heb dan ook veel van jullie geleerd, en vond het altijd zeer plezierig om met jullie samen te werken. Ik wil jullie graag bedanken voor al jullie hulp, advies, vertrouwen, aanmoediging, enthousiasme, de vrijheid die jullie me gaven om ideeën uit te testen, en de geruststelling die jullie gaven als ik me zorgen maakte of bepaalde dingen zouden gaan werken. Bedankt dat jullie geduld, bijvoorbeeld als ik tijdens besprekingen een verhaal begon waarvan ikzelf ook nog niet wist of er een rode lijn in zat. Dankzij jullie ben ik me ervan bewust geworden dat het in principe ook mogelijk is om bondige en gefocuste verhalen te produceren, en tot mijn trots heb ik deze kennis zelfs al een enkele keer in de praktijk gebracht. Ook al draagt het niet bij aan de bondigheid van dit verhaal, ik noem hieronder graag willekeurig nog een aantal dingen op die ik zeer aan jullie heb gewaardeerd. Peter, bedankt dat je altijd begrijpelijk was om dingen te bespreken, voor het opperen en overwegen van nieuwe hypotheses, je enthousiasme, alle discussies en leuke kletspraat. Pieter, bedankt voor je altijd erg behulpzame en gedetailleerde feedback, interessante ideeën en gesprekken, gezellig geklets, en al je tijd en begeleiding: zo heb ik bijvoorbeeld bijna alle labtechnieken die ik ken (mede) van jou geleerd. Samengevat ben ik jullie alle drie erg dankbaar voor de mogelijkheid om dit proefschrift tot stand te brengen. Ik kijk er al naar uit om jullie in de toekomst misschien wel weer eens lastig te vallen.
Ook zou ik graag de leden van de leescommissie willen bedanken voor hun tijd om deze thesis te lezen en te beoordelen. Erg bedankt hiervoor, Prof. Dr. Paul Lucassen, Prof. Dr. Eddy van der Zee en Prof. Dr. Joana Palha. Tevens ben ik de leden van de promotiecommissie alvast erg dankbaar voor hun tijd en bereidheid om de verdediging van dit proefschrift bij te wonen.

Er zijn meerdere mensen van buiten mijn eigen afdeling die ik erg graag wil bedanken voor hun bijdrage aan dit proefschrift. Ten eerste wil ik graag Prof. Dr. Sebastiaan Engelborghs, Dr. Debby Van Dam, Dr. Yannick Vermeiren (Universiteit van Antwerpen) en Prof. Dr. Richard Oude Voshaar (Universitair Medisch Centrum Groningen (UMCG)) bedanken, zonder wie hoofdstuk 2 van deze thesis niet mogelijk was geweest. Daarnaast wil ik Dr. Debby Van Dam en Elly Geerts erg bedanken voor hun hulp bij het opzetten van de Morris water maze. Ook zou ik graag Prof. Dr. Erik Boddeke, Prof. Dr. Bart Eggen, Dr. Inge Holtman, Dr. Zhuoran Yin, Nieske Brouwer en letje Mantingh-Otter (UMCG) bedanken. Ik ben nog steeds dankbaar voor mijn leerzame eerste master onderzoeksproject bij jullie op het lab, en ik waardeer het erg dat ik tijdens mijn PhD de nodige kleuringen (hoofdstuk 2) bij jullie op het lab mocht uitvoeren, met hulp van Zhuoran en letje. Ook wil ik Klaas Sjoltema van het UMCG Microscopy and Imaging Center erg bedanken, voor alle hulp achter de microcoop. Daarnaast wil ik graag Dr. Kerensa Broersen bedanken (Universiteit Twente). Ik ben jou, Yvonne en Federica erg dankbaar voor de biochemische proefjes die ik bij jou op het lab mocht uitvoeren, en voor de gezellige en interessante tijden op het lab, tijdens de ADPD meeting in Wenen, en tijdens de Memorabel meetings. De Memorabel meetings vond ik altijd erg leerzaam en inspirerend, dankzij de bijdrage van al genoemde personen, alsook van bijvoorbeeld Dr. Rob Veerhuis, Dr. Jos Paulusse en Guus Scheefhals.

Het werk dat is beschreven in deze thesis is voornamelijk uitgevoerd op de afdeling (Moleculaire) Neurobiologie van het Groningen Institute for Evolutionary Life Sciences (GELIFES). Wat is dit een gezellige groep, en wat zijn er veel mensen binnen GELIFES die hebben bijgedragen aan dit proefschrift. Ten eerste wil ik graag de analisten bedanken. Jan Keijser, Wanda en Kunja, jullie zijn als actine Western blots...jullie werken zo ongeveer altijd, en bieden houvast in chaotische tijden:P Bedankt dat jullie altijd voor iedereen klaarstaan, en de Neurobiologie afdeling draaiende houden. Jullie enthousiasme voor nauwkeurig en replicaerbaar labwerk is aanstekelijk, en jullie vriendelijkheid zorgt dat iedereen zich meteen thuis voelt op het lab. Heel erg bedankt voor al jullie hulp en advies, voor alle buisjes/cupjes/platen/puntjes etc. waar ik om kwam vragen, en voor het checken of ik en andere mensen nog leefden als we al wel erg lang op het lab of in de kelder zaten en jullie naar huis gingen. Ook Jan Bruggink, Roel en Gerard wil ik erg bedanken, voor jullie hulp bij bijvoorbeeld autoclaveer- en glaswerkvragen, optimalisatie van de J20 PCR, en het opzetten van de PIR systemen. Daarnaast ben ik erg veel dank verschuldigd aan de dierverzorgers. Wendy, Roelie, Benjamin, Diane, Linda, Robin, Saskia en Brendan: ik wil jullie erg bedanken voor al jullie goede zorgen voor de dieren in de dierfaciliteit, en jullie hulp. Al klinkt de kelder...
Dankwoord

opzich niet uittodigend, de sfeer was er dankzij jullie en alle andere ondergrondse collega’s altijd goed. Wendy en Roelie, ik ben heel erg dankbaar voor al jullie werk voor het onderhouden en inzetten van alle foklijnen! Sorry voor wanneer ik jullie liet wachten op PCR uitslagen. Ik ben nog bezig met de IVC-unit van chocola, die ik jullie beloofde tijdens één van de (altijd gezellige) dierenmeetings. Ook Martijn en Miriam erg bedankt voor jullie hulp en advies bij DEC’s en CCD’s, en natuurlijk het controleren van dierenwelzijn.

Iedereen op de 4e verdieping, bedankt voor de gezellige en stimulerende sfeer! Regien, Eddy, Paul, Ad, Robbert en Csaba, bedankt voor de leerzame discussies, en de gezellige praatjes op de gang. Daarnaast ben ik erg dankbaar voor mijn PhD en post-doc collega’s. Kees, Ate, Iris, Vibke, Erin, Leonie, Yun, Priscila, Ewelina, Kata, Els, Peter, Wiggert, Frank, Marelle, Valentina, Yingying, Youri, Natalia, Pim, Tamás, Romy, Tong, super bedankt voor jullie vriendschap, behulpzaamheid en gezelligheid!! Ik denk met heel veel plezier terug aan onze goeie en leuke discussies, ons vele gezellige geklets/(gezwam) over van alles en nog wat (van Western blots tot avocado’s met carbonarasaus), en onze gezamenlijke tripjes naar conferenties in bijvoorbeeld Lunteren en Rotterdam. Ook ben ik nog steeds geschokt dat we een tijdje zelfs een rengroepje hadden (en dat we dan na afloop zelfs de trap terug naar de 4e namen!). Normaal zou ik niet snel uit vrije wil rennen, maar met jullie vond ik het toch nog net acceptabel:P Ate, Peter en Naomi, ik wil jullie nog erg bedanken voor onze super fijne samenwerking voor de J20 phenotype screening! Ik heb veel van jullie geleerd tijdens onze discussies over gedragstesten, en vond het erg leuk om samen te werken in deze drukke studie. Ate, jij in het bijzonder bedankt voor het houden van het overzicht in deze (een beetje groot uitgevallen) phenotype screening, je constante enorme behulpzaamheid, en de leuke en lange discussies en gesprekken die we hebben gevoerd. Naast iedereen op de 4e, wil ik ook de andere PIs en medewerkers binnen GELIFES bedanken, bijvoorbeeld voor de interessante en leerzame Neurobiology seminars en GELIFES seminars. En natuurlijk ook de Neurobiologie PhDs op de andere verdiepingen (Betty, Kevin, Anouschka en Daniëlle, om maar een paar mensen te noemen) voor de gezelligheid en behulpzaamheid!

Daarnaast wil ik mijn HBO, bachelor en masterstudenten heel erg bedanken voor al hun enthousiasme, harde werk en gezelligheid. Friederike, Harm, Tegan, Naomi, Margo, Marcel, Lieve, Sam, Joachim, Leonardo, Mustafa en Rakan, en alle bachelorstudenten tijdens de jaarlijkse Neurowetenschappen Research cursus, super bedankt voor jullie hulp en de leuke tijden!

Ook Pleunie (en Maria) erg bedankt voor je hulp bij het regelen van allerlei verschillende dingen binnen GELIFES. Yvonne, erg bedankt voor je hulp bij de afhandeling van financiële zaken, op de afdeling Neurologie (UMCG). Ook Diana en Evelyn van BCN wil ik graag bedanken voor hun hulp bij verschillende BCN- en PhD-gerelateerde zaken. Jullie vriendelijkheid en behulpzaamheid waardeer ik zeer.
Appendix

Wanda en Frank, erg bedankt dat jullie mijn paranimfen wilden zijn! Wanda, zij was uiteraard één van de eerste mensen die ik tegenkwam tijdens mijn bachelorproject in de Moleculaire Neurobiologie groep, en mede door jou voelde ik me al snel thuis op het lab. Ik kijk met veel plezier terug op alle keren in de afgelopen jaren dat we samen aan het werk waren in het lab, bijvoorbeeld als we weer eens aan het synchroon-celkweken waren (al was zij natuurlijk altijd eerder klaar:p). Uiteraard ook nog mijn oprechte felicitaties voor jouw overwinning in onze strijd om de sushi-bokaal, hahaha:p Frank, ook jij erg bedankt voor alle gezelligheid, en voor het vele gezellige geklets over zinnige en onzinnige dingen. Met mijn gebrekkige Nederlands en jouw Limburgse accent zou het best kunnen dat we elkaar eigenlijk nooit goed verstaan hebben, maar dat deert ja niet. Ik wens jou ook nog veel success met het afronden van je PhD! Maar het is overduidelijk dat dat wel goed komt😊

Susanne, super bedankt voor je oneindige (hopelijk!:p) vriendschap en steun! Ik ben blij dat we elkaar zelfs als het druk is nog regelmatig zien (vaak in het gezelschap van sushi:p), en dat het altijd goed is, ook als er toch langere tijd tussen zit! Ook Anna erg bedankt voor jouw constante vriendschap (of inderdaad onze oneindige familieband hahaha:p)! Ik vind onze stedentrips altijd heel leuk en gezellig, en ook onze tripjes naar Oma natuurlijk😊 Ik hoop dat we dat nog lang blijven doen. Ook Marindy bedankt voor de gezellige thee- en HEMA ontbijten. Nynke bedankt voor alle gezelligheid, ook al zagen we elkaar door de grotere afstand en drukte de laatste jaren niet super vaak! Ook vond ik de uitstapjes met jou, Nicole en Femke altijd heel gezellig! Voor de meiden van de BCN master, ik vond de master met jullie heel gezellig, en vind het heel leuk dat we nog steeds met elkaar afspreken! Tineke en Cindy, bedankt dat jullie zulke leuke balletjuffen zijn, en voor jullie vriendschap en steun! Jullie zorgen ervoor dat de balletschool als een soort familie voelt (zelfs voor mensen die hele periodes veel te laat/niet in de les kwamen...sorry!), en ik ben blij dat ik daar ook al zo lang bij mag horen. Ook alle meiden en dames van ballet bedankt voor de gezelligheid!

Als laatste wil ik ook mijn ouders en mijn broer erg bedanken. Mams, paps en Wouter, heel erg bedankt voor jullie constante liefde en steun. Ik hou van jullie en ben heel blij met jullie. En Wout ook al zit je helemaal in Amerika, ik vind onze JoGeWoDo appjes altijd heel gezellig, en onze reizen naar jou en andersom vind ik natuurlijk helemaal leuk.

Ik hoop dat ik niemand ben vergeten te noemen. Mocht ik je plotseling toch vergeten zijn te noemen: ook voor jouw betrokkenheid ben ik heel dankbaar!
Curriculum vitae

Dorine (Doortje) Willemijn Dekens was born on 2 July 1990 in Groningen, The Netherlands. After graduating from high school (VWO at Rölingcollege Belcampo in Groningen) in 2008, she started her bachelor degree in Biology at the University of Groningen. Her bachelor education was focused on Behavioral and Neurosciences, and allowed her to perform her first short research project under the supervision of Prof. Dr. Ulrich Eisel and Dr. Pieter Naudé. After receiving her bachelor degree in 2011, she was accepted for the research master Behavioral and Cognitive Neurosciences (BCN) at the University of Groningen, focusing on molecular and clinical neurosciences. During her first master research internship she studied potential mouse models of microglial aging, under the supervision of Prof. Dr. Erik Boddeke, Prof. Dr. Bart Eggen and Dr. Inge Holtman at the Department of Neuroscience, University of Groningen. During her second research internship she investigated the role of the inflammatory factor Lipocalin 2 in Alzheimer’s disease and co-existing depression, under the supervision of Prof. Dr. Peter Paul De Deyn, Prof. Dr. Ulrich Eisel and Dr. Pieter Naudé at the Department of Neurology and Alzheimer Centrum Groningen (University Medical Center Groningen (UMCG)), and the Department of Molecular Neurosciences (Groningen Institute for Evolutionary Life Sciences (GELIFES)), University of Groningen. In 2013 she obtained her master degree with honors. Subsequently, she started her PhD research under the supervision Prof. Dr. Peter De Deyn, Prof. Dr. Ulrich Eisel and Dr. Pieter Naudé at the University of Groningen, aiming to gain further insight into the role of Lipocalin 2 in Alzheimer’s disease. The findings that were obtained in this PhD project are described in the present PhD thesis, titled ‘Lipocalin 2 and the pathophysiology of Alzheimer’s disease’.
List of publications


To be submitted:
