Pleistocene Mitochondrial Genomes Suggest a Single Major Dispersal of Non-Africans and a Late Glacial Population Turnover in Europe

Posth, Cosimo; Renaud, Gabriel; Mittnik, Alissa; Drucker, Dorothée G; Rougier, Hélène; Cupillard, Christophe; Valentin, Frédérique; Thevenet, Corinne; Furtwängler, Anja; Wißing, Christoph

Published in:
Current Biology

DOI:
10.1016/j.cub.2016.01.037

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2016

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Pleistocene Mitochondrial Genomes Suggest a Single Major Dispersal of Non-Africans and a Late Glacial Population Turnover in Europe

Highlights

- Newly generated pre-Neolithic European mtDNA genomes triple the number available
- Clade M found for the first time in Europe, prior to the Last Glacial Maximum bottleneck
- Rapid single dispersal of all non-Africans less than 55,000 years ago
- Previously unknown major population shift in Europe at the end of the Pleistocene

Authors

Cosimo Posth, Gabriel Renaud, Alissa Mittnik, ..., Wolfgang Haak, Adam Powell, Johannes Krause

Correspondence

posth@shh.mpg.de (C.P.), powell@shh.mpg.de (A.P.), krause@shh.mpg.de (J.K.)

In Brief

Posth et al. recover 35 new mitochondrial genomes from Late Pleistocene and early Holocene European hunter-gatherers. Major human mtDNA haplogroup M, absent in contemporary Europeans, is discovered in several pre-Last Glacial Maximum individuals. Demographic modeling reveals a major population turnover during the Late Glacial ~14,500 years ago.

Accession Numbers

KU534947–KU534981
Pleistocene Mitochondrial Genomes Suggest a Single Major Dispersal of Non-Africans and a Late Glacial Population Turnover in Europe

Cosimo Posth,1,2,8 Gabriel Renaud,5 Alissa Mittnik,1,3 Dorothée G. Drucker,4 Hélène Rougier,5 Christophe Cupillard,6,7 Frédérique Valentin,8 Corinne Thevenet,9 Anja Furtwängler,1,10 Christoph Wißing,4 Michael Francken,11 Maria Malina,11 Michael Bolus,11 Martina Lari,12 Elena Gigli,12 Giulia Capecci,13 Isabelle Crevecoeur,14 Cédric Beauval,15 Damien Flas,16 Mietje Germonpré,17 Johannes van der Plicht,16,19 Richard Cottiaux,20 Bernard Gély,20 Annamaria Ronchitelli,13 Kurt Wehrberger,21 Dan Grigorescu,22 Jiří Svoboda,23,24 Patrick Semal,17 David Caramelli,12 Hervé Bocherens,4,25 Katerina Harvati,10,25 Nicholas J. Conard,25,26 Wolfgang Haak,3,27 Adam Powell,3,* and Johannes Krause1,3,25,*

SUMMARY

How modern humans dispersed into Eurasia and Australasia, including the number of separate expansions and their timings, is highly debated [1, 2]. Two categories of models are proposed for the dispersal of non-Africans: (1) single dispersal, i.e., a single major diffusion of modern humans across Eurasia and Australasia [3–5]; and (2) multiple dispersal, i.e., additional earlier population expansions that may have contributed to the genetic diversity of some present-day humans outside of Africa [6–9]. Many variants of these models focus largely on Asia and Australasia, neglecting human dispersal into Europe, thus explaining only a subset of the entire colonization process outside of Africa [3–5, 8, 9]. The genetic diversity of the first modern humans who spread into Europe during the Late Pleistocene and the impact of subsequent climatic events on their demography are largely unknown. Here we analyze 55 complete human mitochondrial genomes (mtDNAs) of hunter-gatherers spanning ~35,000 years of European prehistory. We...

Current Biology 26, 827–833, March 21, 2016 ©2016 Elsevier Ltd All rights reserved
unexpectedly find mtDNA lineage M in individuals prior to the Last Glacial Maximum (LGM). This lineage is absent in contemporary Europeans, although it is found at high frequency in modern Asians, Australasians, and Native Americans. Dating the most recent common ancestor of each of the modern non-African mtDNA clades reveals their single, late, and rapid dispersal less than 55,000 years ago. Demographic modeling not only indicates an LGM genetic bottleneck, but also provides surprising evidence of a major population turnover in Europe around 14,500 years ago during the Late Glacial, a period of climatic instability at the end of the Pleistocene.

RESULTS AND DISCUSSION

Genetic studies of human mitochondrial DNA (mtDNA) show that all present-day non-Africans belong to two basal mtDNA haplogroups (hgs), M and N [10]. The time to the most recent common ancestor (TMRCA) of each of these two clades has been estimated independently at around 50,000 years ago (50 ka) (95% confidence interval [CI], 53–46 ka) and 59 ka (95% CI, 64–54 ka), respectively [11]. However, whereas present-day Asians, Australasians, and Native Americans carry both M and N mtDNA hgs, modern individuals with European ancestry lack almost completely lineages of the M clade [12]. The different spatial distributions and TMRCA estimates of these two ancestral clades have been interpreted as evidence of an early spread of modern humans carrying hg M into Asia, perhaps via a southern route, followed by a later non-African diffusion of the N clade, perhaps via a northern route [7]. However, an alternative model proposes a rapid and single dispersal across Eurasia, with Asia being reached first, whereas Western Eurasia would have been settled only after a hiatus, during which hg M was lost [4].

Little is known about the genetic makeup of the first European hunter-gatherers, who likely arrived ~45 ka [13], or about the subsequent population dynamics during the nearly 40,000 years spanning from the Late Pleistocene to the Neolithic transition [14]. Here, we reconstructed 35 complete or nearly complete mtDNAs (from 11x to 1,860x average coverage) of ancient

Figure 1. Late Pleistocene and Early Holocene Archeological Sites and Hunter-Gatherer mtDNA Haplogroups
(A) Pre-LGM dispersal of non-African populations, carrying both M and N lineages (hgs R, U, U5, and U2’3’4’7’8’9 belong to the N clade, distinct from the M clade).
(B) Post-LGM re-expansion in Europe while ice sheets retracted.
(C) Late Glacial shift in mtDNA hg frequency.
(D) Holocene hunter-gatherer mtDNA, mainly belonging to hg U5.
See also Table S1, Table S2, Table S4, and the Supplemental Experimental Procedures.
modern human individuals from Italy, Germany, Belgium, France, Czech Republic, and Romania, spanning in age from 35 to 7 ka (Figure 1; Table S1). Hybridization capture of mtDNA in combination with high-throughput sequencing technologies [15] allowed us to evaluate typical DNA damage patterns and average fragment length [16] as criteria for authentication of ancient DNA (Supplemental Experimental Procedures). Both features were taken into account in an iterative probabilistic approach [17] that jointly estimates present-day human contamination and reconstructs mtDNA sequences (Table S2). Combining 311 modern and 66 ancient dated worldwide mtDNA genomes (both new and from the literature; Table S3), we used Bayesian phylogenetic methods [18] to estimate the mutation rate and hg coalescence times. Further, we combined our 35 new mtDNA genomes with 20 previously published ancient European mtDNAs for a total of 55 pre-Neolithic sequences (Table S4) and explicitly tested scenarios of the early population history of Europe using coalescent demographic modeling paired with approximate Bayesian computation (ABC) [19] (Supplemental Experimental Procedures).

Hg assignment of the authenticated mtDNAs confirmed that the vast majority of Late Pleistocene and Early Holocene individuals belonged to the U lineage, which is a subgroup of the N clade [20] (Figures 2 and S1). We also found a basal U lineage that had no derived position leading to known sub-hgs in a 33,000-year-old Romanian individual. Surprisingly, three hunter-gatherers from Belgium and France dating to between 35 and 28 ka carried mtDNA hg M, today found predominantly in Asia, Australasia, and the Americas, although it is almost absent in extant populations with European ancestry [12].

We used 66 ancient dated mtDNAs as tip calibration points in BEAST v1.8.1 [18] in combination with 311 modern worldwide mtDNA sequences to reduce the possible impact of sample biases (Table S3 and Supplemental Experimental Procedures) in estimating the mtDNA mutation rate and hg M and N divergence times. Strict and uncorrelated lognormal relaxed clocks were tested, under both a constant size and a Bayesian skyline tree prior. The four analyses returned mtDNA mutation rates (Table 1) consistent with previously published rates using similar methodology [21, 22]. The Bayesian skyline, in combination with strict rate variation among branches, performed best according to stepping-stone and path sampling methods [23] and highest effective sample size (ESS) values, giving a best estimate of the mutation rate of 2.74×10^{-8} (95% highest posterior density [HPD], 2.44–3.01 $\times 10^{-8}$) mutation/site/year. This model allowed us to refine time estimates for the TM RCA of the basal non-African clades M and N of circa 49 ka (95% HPD, 54.8–43.6 ka) and 51 ka (95% HPD, 55.1–46.9 ka),
respectively (Table 1; Figure 2; Supplemental Experimental Procedures).

The observed mtDNA hg variation through time, including the apparent loss of hg M in Europe, suggests a genetic bottleneck that may have been influenced by climatic events (Figure 3). This period of European prehistory was accompanied by severe climatic fluctuations, such as the Last Glacial Maximum (LGM, 25 to 19.5 ka) and, at the end of the Pleistocene, the Bølling-Allerød interstadiol followed by the stadial Younger Dryas—a period we refer to as the Late Glacial (14.5 to 11.5 ka) [24, 25]. These climatic changes have been proposed as a driver of the range contraction to refugia in many species [26], including modern humans, for whom there is absence of evidence of northwestern European occupation during the LGM [25, 27]. We used coalescent modeling paired with ABC [19] to test a range of explicit models of European hunter-gatherer demography (Figure S2; Table S6), using the complete set of 55 pre-Neolithic ancient mtDNA genomes (Table S4). The best-fitting model (Figure 3 and 2b in Figure S2) strongly supports maternal population continuity through the LGM, albeit as a single genetic bottleneck, before being replaced by a new incoming population at the onset of the Late Glacial 14.5 ka (model posterior probability, $P_{2b} = 0.807$). Based on the estimated parameter values of this model (Table S5), we infer that this surviving population diverged from the ancestral one around 29 ka (95% HPD, 36–25 ka), prior to the beginning of the LGM.

The new hunter-gatherer mtDNA genomes reported here apparently triple the available sequences from pre-Neolithic Europe. One novel finding, that three out of 18 European pre-LGM hunter-gatherers carry a previously undescribed basal mtDNA lineage M (Figure 1A), has important implications for the timing of the dispersal of modern humans into Eurasia. Excluding a ~40,000-year-old Romanian individual known not to have contributed notably to the modern European gene pool [28], our BEAST analyses give a TMRCA for clades M and N from 44 to 55 ka, respectively. Our estimated dates, together with the oldest accepted archeological evidence for the presence of early modern humans in Australia and Europe (both dated at least 45 ka [13, 29]), are consistent with a model of a single, late, and therefore rapid dispersal of a source population containing both M and N hgs, which contributed all the mitochondrial diversity of present-day non-Africans (cf. [7]). Human individuals whose ancestries trace back to potential earlier expansion(s) outside Africa [30, 31] are thus unlikely to have left any surviving mtDNA descendants.

Phylogeographic inference based solely on mtDNA has limitations [2], but information from single loci can provide meaningful constraints on models of human prehistory. In particular, the fact that hg M has never previously been found in Europe is generally interpreted as an important limitation for the proposed scenarios of non-African population dispersals [4, 7]. According to the most popular model [4], an early expansion occurred before the M and N diversification with a subsequent loss of M in only the population ancestral to Europeans. Our evidence for the existence of hg M in Late Pleistocene Europe revises this scenario. It suggests that the loss of hg M may be due to population dynamics that occurred later within Europe itself. The expansion either occurred before the diversification of M and N, with subsequent migration bringing both lineages into Europe, or the dispersal was later, occurring after their TMRCA. Contrary to recent findings [11], though similar to a previous study [32], our two TMRCA are almost identically dated, suggesting a single major dispersal after 55 ka for all non-African populations, including Europe. The genetic evidence of pre-LGM hg M

Table 1. Haplogroup Divergence Times and mtDNA Mutation Rate

<table>
<thead>
<tr>
<th>Tree Prior</th>
<th>Clock</th>
<th>Statistic</th>
<th>Divergence Time</th>
<th>Log Marginal Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>TMRCA hg M</td>
<td>TMRCA hg N</td>
</tr>
<tr>
<td>Constant</td>
<td>strict</td>
<td>mean</td>
<td>58,869</td>
<td>57,482</td>
</tr>
<tr>
<td></td>
<td></td>
<td>median</td>
<td>58,578</td>
<td>57,181</td>
</tr>
<tr>
<td></td>
<td></td>
<td>95% HPD</td>
<td>68,163–50,380</td>
<td>64,363–51,387</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESS</td>
<td>585</td>
<td>445</td>
</tr>
<tr>
<td>Constant</td>
<td>relaxed</td>
<td>mean</td>
<td>58,961</td>
<td>58,531</td>
</tr>
<tr>
<td></td>
<td></td>
<td>median</td>
<td>58,507</td>
<td>58,207</td>
</tr>
<tr>
<td></td>
<td></td>
<td>95% HPD</td>
<td>70,389–49,125</td>
<td>66,398–51,664</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESS</td>
<td>354</td>
<td>416</td>
</tr>
<tr>
<td>Skyline</td>
<td>strict</td>
<td>mean</td>
<td>49,106</td>
<td>50,562</td>
</tr>
<tr>
<td></td>
<td></td>
<td>median</td>
<td>48,837</td>
<td>50,317</td>
</tr>
<tr>
<td></td>
<td></td>
<td>95% HPD</td>
<td>54,780–43,958</td>
<td>55,138–46,892</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESS</td>
<td>741</td>
<td>799</td>
</tr>
<tr>
<td>Skyline</td>
<td>relaxed</td>
<td>mean</td>
<td>48,005</td>
<td>50,179</td>
</tr>
<tr>
<td></td>
<td></td>
<td>median</td>
<td>47,695</td>
<td>50,021</td>
</tr>
<tr>
<td></td>
<td></td>
<td>95% HPD</td>
<td>53,917–43,054</td>
<td>54,189–46,483</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESS</td>
<td>251</td>
<td>285</td>
</tr>
</tbody>
</table>

The values reported are obtained in BEAST [18] using 377 worldwide mtDNAs, 66 of which come from ancient dated human remains. A Bayesian skyline tree prior in combination with strict rate variation between branches performed better than the other three tested models according to higher log marginal likelihood estimates (compared to the constant tree prior models) and effective sample size (ESS) values. HPD, highest posterior density. See also Table S3 and the Supplemental Experimental Procedures.
indicates that this lineage reached Western Europe by at least 35 ka (GoyetQ116-1), either alongside the first arrival of N or later. The reconstructed phylogeny (Figure 2) with both basal N and M lineages in Late Pleistocene Europe possibly mirrors the inferred back migration into Africa, which has been suggested by the existence of hgs U6 and M1 in modern-day North Africans [33]. Therefore, the major modern human dispersal described here after 55 ka might have affected not only non-Africans, but also African populations to some extent.

The potential impact of climatic events on the demography, and thus the genetic diversity of early Europeans, has previously been difficult to quantify, but it likely had consequences for the relative components of ancient ancestry in modern-day North Africans [14]. Our demographic modeling reveals a dynamic history of hunter-gatherers, including a previously unknown major population shift during the Late Glacial interstadial (the Bølling-Allerød, ~14.5 ka). Under our best-fitting model (Figure 3 and 2b in Figure S2), the small initial founder population of Europe slowly grows up until ~25 ka and survives with smaller size in LGM climatic refugia (25–19.5 ka) [25] before re-expanding as the ice sheets retract (Figure 1B). Although this model supports population continuity from pre- to post-LGM, the genetic bottleneck is consistent with the apparent loss of hg M in the post-LGM. The subsequent Late Glacial period is characterized by drastic climatic fluctuations, beginning with an abrupt warming during the Bølling-Allerød interstadial and followed by a similarly drastic period of cooling during the Younger Dryas [24]. Globally, the early warming phases of the Late Glacial are strongly associated with substantial demographic changes, including extinctions of several mega-faunal species [34] and the first expansion of modern humans into the Americas [35]. In European hunter-gatherers, our model best explains this period of upheaval as a replacement of the post-LGM maternal population by one from another source. Although the exact origin for this later population is unknown, the inferred demographic history (Figure 3 and 2b in Figure S2) suggests that it descended from another, separate LGM refugium. On the basis of mtDNA alone, we cannot rule out some degree of genomic continuity throughout the Late Pleistocene and early Holocene hunter-gatherer populations, and thus into present-day Europeans [14]. For this reason, we interpret our model as capturing the maternal signal of a major population shift, rather than a complete replacement. Ancient nuclear DNA data and additional geographically and temporally distributed specimens may provide a more comprehensive picture, possibly identifying the source and ancestry of these later incoming hunter-gatherers.

In conclusion, the large dataset presented here allowed us to provide a late upper bound on the major dispersal of all non-Africans and to uncover unexpected population dynamics of European hunter-gatherers. The Late Glacial event that we identify here is the oldest in an accumulating list of major European population turnovers revealed by ancient mtDNA [20].

ACCESSION NUMBERS

The accession numbers for the 35 mtDNA genome sequences reported in this paper are GenBank: KU534947–KU534981.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, two figures, and six tables and can be found with this article online at http://dx.doi.org/10.1016/j.cub.2016.01.037.
AUTHOR CONTRIBUTIONS

ACKNOWLEDGMENTS

We are grateful for comments from Stephan Schiffels, Hugo Reyes-Centeno, David Reich, Maria Spyrou, Henrique Heyne, Heidi Colleran, and members of the Department of Archaeogenetics of the Max Planck Institute for the Science of Human History, as well as the three anonymous reviewers. We thank Pontus Skoglund, Qiaomu Fu, Viviane Sion, and Eppie Ruth-Jones for access to unpublished data, Martyna Molak, Alexander Peltzer, Marek Dynowski, and Judith Beier for technical support, and Annette Günzel for graphical support. We further thank the Soprintendenza Archeologia della Puglia, which authorized and supported the excavations at Grotta Paglicci, and Professor A. Palma di Cesnola for fieldwork and studies over the years. Part of this work was performed on the computational resource bwGRiD Cluster Tübingen funded by the Ministry of Science, Research and the Arts Baden-Württemberg and the Universities of the State of Baden-Württemberg, Germany, within the framework program bwHPC. J.K. and C.P. were supported by the Baden Württemberg Foundation, J.K. and A.M. by the DFG grant KR 4015/1-1, and K.H. by the European Research Council (ERC StG 283503). The Goyet project led by H.R. was funded by the Wenner-Gren Foundation (grant no. 7837), the College of Social and Behavioral Sciences of CSUN, and the RBINS.

Received: December 17, 2015
Revised: January 13, 2016
Accepted: January 14, 2016
Published: February 4, 2016; corrected online February 22, 2016

REFERENCES

