Lateral interactions in the superior colliculus produce saccade deviation in a neural field model
Zhiguo Wang *, Wouter Kruijne, Jan Theeuwes
Vrije Universiteit, Amsterdam, The Netherlands

ARTICLE INFO
Article history:
Received 28 November 2011
Received in revised form 27 March 2012
Available online 5 April 2012

Keywords:
Saccade deviation
Neural field model
Superior colliculus
Eye movement control

ABSTRACT
Contrary to human intuition, saccades (rapid eye movements) rarely go directly to their intended destination, but instead typically deviate from the optimal track. Previous studies have demonstrated that saccades may deviate toward or away from irrelevant distractors. Deviation toward distractors is generally explained with theories of “population coding”, while deviation away from distractors is believed to be caused by top-down inhibition at the distractor location. With a Mexican-hat shaped lateral interaction kernel, we successfully simulated both deviation toward and away from distractors using a neural field model of the superior colliculus (SC). Our findings suggest that top-down inhibition of the SC is not necessary for the generation of saccade deviations.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction
Humans make over 100,000 eye movements every day. While looking at a scene, searching for a target typically involves a series of saccades (rapid eye movements) interspersed by short fixations during which the scene is processed. While awake, humans normally make 3–4 saccades per second. Behavioral and neurophysiological studies of this unique type of eye movement have greatly advanced our understanding of motor control.

1.1. Neural field models of the SC
The superior colliculus (SC), a layered midbrain structure, is a crucial component of the oculomotor system (for a recent review, see White & Munoz, 2011). The intermediate layers of the SC (SCI) contain a topographic motor map that encodes the vector of saccades into the contralateral visual field (Ottes, Van Gisbergen, & Eggermont, 1984; Robinson, 1972; Van Gisbergen, Van Opsfal, & Tax, 1987; see Fig. 1A). A similar map also exists in the superficial layers of the SC (SCs), which receives projections from the retina and the visual cortex and is in alignment with the motor map in SCI (Helms, Özen, & Hall, 2004; Isa, Endo, & Saito, 1998; Wurtz & Goldberg, 1972). Many computational models of the SC (e.g., Kopecz & Schön, 1995; Trappenberg et al., 2001) assume that the lateral connection between neurons in the SC depends on distance, with proximal neurons exciting each other and distal neurons inhibiting each other. This lateral interaction ensures only one locus of activity dominates the motor map when multiple sources of input are present (winner-take-all). Such lateral connectivity in the SC is backed by in vivo extracellular recordings in monkeys (Dorris, Olivier, & Munoz, 2007; Meredith & Ramoa, 1998; Munoz & Istvan, 1998; Trappenberg et al., 2001). However, even though a long-range inhibitory connection is prominent in SCs, in vitro recordings in rodents indicate that such long-range connections may be absent in SCI (Isa & Hall, 2009). Although the existence of long-range inhibitory connectivity in the SCI is still under debate (see Marino et al., 2011; for a summary of existing findings), neural field models (Amari, 1977; Wilson & Cowan, 1973) with such lateral inhibition have proven to be successful in simulating various saccade-related behaviors and cell recordings (Arai & Keller, 2005; Arai, Keller, & Edelman, 1994; Kopecz & Schön, 1995; Trappenberg et al., 2001; Wang et al., 2011; Willimzig, Schneider, & Schoener, 2006).

1.2. Saccade deviation
It is known that the trajectory of saccades may either deviate toward (Becker & Jürgens, 1979; Coren & Hoenig, 1972; Findlay, 1982; Walker et al., 1997; Watanabe, 2001) or away (Doyle & Walker, 2001; McSorley, Cruikshank, & Inman, 2009; Van der Stigchel & Theeuwes, 2005) from a task irrelevant visual distractor (for reviews, see Van der Stigchel, 2010; Van der Stigchel, Meeter, & Theeuwes, 2006; Walker & McSorley, 2008). When deviating toward a visual distractor, saccades typically land close to the distractor
location (cf., oculomotor capture, Theeuwes et al., 1998), or somewhere between the distractor and target locations (saccade averaging or global effect, see Chou, Sommer, & Schiller, 1999; Coren & Hoenig, 1972; Findlay, 1982). These observations have been attributed to insufficient suppression of distractor related activity (McPeek, 2006; McPeek, Han, & Keller, 2003; Van der Stigchel, Meeter, & Theeuwes, 2006) or population coding (Tipper, Howard, & Jackson, 1997). When positioned in close proximity, the distractor- and target-related activity collaborates, merging into one activity “bubble” centered at an intermediate location (for computational exploration of this idea, see Meeter, Van der Stigchel, & Theeuwes, 2010; Satel et al., 2011; Wilimzig, Schneider, & Schoener, 2006). This explanation is backed by several neurophysiological investigations showing stronger neuronal activity at SC sites representing locations between the target and distractor (Edelman & Keller, 1998; Glimcher & Sparks, 1993; van Opstal & van Gisbergen, 1990). However, up to now, there is no satisfying explanation in the literature for deviation away from distractors. The dominant view of this phenomenon relates deviation away from distractors to a form of top-down inhibition at the distractor location (Van der Stigchel, Meeter, & Theeuwes, 2006). The observation of saccades deviating away from the response field of inactivated SC regions (Aizawa & Wurtz, 1998; Lee, Rohrer, & Sparks, 1988; Quaia et al., 1998) lends some support to this view. However, this top-down inhibition theory was put into doubt by a recent study (White, Theeuwes, & Munoz, 2012), where neuronal activity was recorded in SCI while the monkey performed a distractor task. The distractor-target onset asynchrony (DTOA) was either 400 ms or 0 ms. If deviation away were to be caused by top-down inhibition, during the 400 DTOA, one would expect a reduction of distractor evoked neuronal activity associated with saccades that deviated away from the distractor. However, there was no reduction of activity in this time window. Although not statistically reliable, in this time window, stronger deviation away from distractors was accompanied by stronger distractor evoked SC activity. Importantly, this is the exact opposite pattern predicted by a theory that assumes deviation away from distractors is the result of top-down inhibition.

1.3. A unified theory of saccade deviation

The primary purpose of the present study is to explain deviations in saccade direction, as frequently studied in a distractor paradigm, with a neural field model of the SC (Trappenberg et al., 2001). A typical display setup in the distractor paradigm is illustrated in Fig. 1B. The participant initiates a saccade to a target while a distractor appears before, after, or simultaneously with the target. The main findings in the literature can be summarized as follows. (a) Saccades may deviate toward or away from task-irrelevant distractors (e.g., Van der Stigchel, Meeter, & Theeuwes, 2007; Van der Stigchel & Theeuwes, 2005; White, Theeuwes, & Munoz, 2012). (b) In contrast to deviation toward distractors, the magnitude of deviation away is typically small, with the initial directional deviation smaller than 400 ms.
5° (e.g., Godijn & Theeuwes, 2002). (c) Deviation away from distractors can also be observed when the distractor is presented up to 400 ms before target onset (White, Theeuwes, & Munoz, 2012). (d) Saccade deviations vary with saccade latency (e.g., McSorley, Cruickshank, & Inman, 2009; Mulckhuysen, Van der Stigchel, & Theeuwes, 2009).

To accommodate the above mentioned observations, we propose an intuitive theory of saccade deviation based on two principles. First, the lateral connection between saccade-related neurons in the SC is Mexican-hat shaped (e.g., Arai et al., 1999; Trappenberg et al., 2001). This interaction kernel is characterized by a strong proximal excitation zone, and inhibitory connections at longer distances that weaken as the distance between two neurons increases further (see Fig. 1C). This Mexican-hat shaped lateral interaction has been shown to be effective in reproducing both cell-recordings and saccade behavior in various experimental tasks (Arai et al., 1999; Trappenberg et al., 2001; Wang et al., 2011). In our simulations, we will demonstrate that such Mexican-shaped lateral interaction itself is sufficient to produce both deviation toward and away from distractors. Second, neuronal activity in the SC is modulated by inhibitory projections from the substantia nigra pars reticulata (SNr). Jiang, Stein, and McHaffie (2003) have shown that SNr neurons which project to the ipsilateral SC have relatively small visual receptive fields that are in topographic alignment with their SC target neurons. Previous studies have also shown that a visual signal can temporarily release the tonic SNr inhibitory input to the SC (e.g., Basso & Wurtz, 2002; Handel & Glimcher, 1999; Hikosaka & Wurtz, 1983; Jiang, Stein, & McHaffie, 2003; Joseph & Boussaoud, 1985). This visually elicited release of SNr inhibition (SNr disinhibition) is necessary for our theory to accommodate the observation that saccades may deviate away from distractors presented long before target onset (White, Theeuwes, & Munoz, 2012).

1.3.1. Lateral interactions produce both deviation toward and away from distractors

Our model assumes that the lateral interaction in the SC is Mexican-hat shaped (see Fig. 1C). When the distance between the distractor and target is in the range of lateral collaboration, the distractor and target related activity will merge additively. The merged activity, which encodes the vector of the imminent saccade, will eventually peak at an SC site representing an intermediate location between the target and distractor (the global effect). When the distance between the distractor and target is in the range of lateral competition, as illustrated in Fig. 1D, one side of the target activity (dark shaded area) receives stronger inhibition from the distractor than the other side (light shaded area). In the same vein, the distractor activity also receives uneven inhibition from the target. Thus, target and distractor activities push each other away during lateral interaction and the target related activity will eventually trigger a saccade that deviates away from the distractor.

1.3.2. SNr activity modulates saccade deviation

The above theory can explain deviation away from distractors when the target and distractor are presented at roughly the same time. However, if the DTOA is long, distractor evoked SC activity should have largely decayed by the time of target presentation. Consequently, no visually elicited distractor activity will compete with the target activity, and no deviation away from (or toward) distractors will be observed. To accommodate the observation of deviation away from distractors at a 400 ms DTOA (White, Theeuwes, & Munoz, 2012), SNr disinhibition at the distractor stimulated SC site was included in our simulations (for similar implementation, see Arai & Keller, 2005). We hypothesized that SNr disinhibition is responsible for the sustained discharge

Fig. 2. Saccade deviation varies with distractor–target distance Positive and negative values on the y-axes represent deviation toward and away from distractors, respectively. DTOA = 0 ms in (A–C), DTOA = 400 ms in (D). (A) Results of simulations with a kernel similar to Trappenberg et al. (2001); human data was adapted from McSorley, Cruickshank, and Inman (2009). McSorley, Cruickshank, and Inman (2009) reported deviations in both trajectory (relative to the direct path between fixation and landing position) and landing position (see their Fig. 2a and b). We summed these two measures to estimate the overall directional deviation (averaged over latency bins, see also Fig. 5). (B) Results of simulations with a kernel in which the long-range inhibition was removed, \(a = 72, b = 24, c = 0, s_a = 0.5 \text{ mm}, s_b = 1.0 \text{ mm} \) (see the upright corner). (C) Results of simulations with a kernel of small width, \(a = 144, b = 24, c = 6, s_a = 0.25 \text{ mm}, s_b = 1.5 \text{ mm} \) (see the upright corner). (D) Results of simulations with SNr disinhibition.
following the initial SC response to the distractor (see White, Theeuwes, & Munoz, 2012; Fig 7B), see Fig. 3A. Thus, the distractor elicited activity will be able to interact with target-related activity over a relatively long time period.

2. Model architecture and parameters

The present study used a 1-dimensional neural field model of the SC (Trappenberg et al., 2001). We chose to use a 1-dimensional model because deviation away from distractors is a relatively small behavioral effect, usually less than 5° (e.g., Godijn & Theeuwes, 2004), so to reflect subtle changes in deviations away in response to experimental manipulations (e.g., Mulckhuyse, Van der Stigchel, & Theeuwes, 2009), a model with high spatial resolution is needed. However, a high resolution 2-dimensional model poses an impractically high computational load onto readily available hardware. Also, because saccade deviation is frequently measured in terms of saccade direction (e.g., Port & Wurtz, 2003; Van der Stigchel, Meeter, & Theeuwes, 2006), and because in some studies the target and distractor are presented at the same eccentricity (e.g., McPeek, Han, & Keller, 2003; McSorley, Haggard, & Walker, 2009; Theeuwes & Godijn, 2004), a simplification was made by using a population of nodes (n = 1000) on a straight line to roughly represent 5 mm of SCi tissue, which encodes saccades with 20° eccentricity in various directions (thick black line in Fig. 1A). Because the iso-eccentricity meridian of 20° approximates a straight line, the distance error introduced by this later simplification is negligible.

The connection strength (wij) between two nodes i and j was defined in Eq. (1), with parameters a = 72, b = 24, c = 2.4, σe = 0.6 mm, σr = 1.8 mm, unless specified otherwise. These parameters were the same as those used by Trappenberg and colleagues (Satel et al., 2011; Trappenberg et al., 2001; Wang et al., 2011), except that the amount of long-range inhibition was reduced (from c = 6.5) to reflect the fact that there may be only weak long-range inhibitory connections in the SCi (Phongphanphaneet al., 2008).

The internal dynamics of a node i, ui(t), is described in Eq. (2), where wij is the connection strength between node i and node j, rj(t) is the discharge level of node j, Iexo.endo is an excitatory input to node i, Inr is an inhibitory SNr input to node i, and τ = 10 ms is a time constant. A sigmoid gain function (Eq. (3)) is used to relate the discharge level of a node i to its internal state, where β = 0.08.

\[
\begin{align*}
\tau \frac{du_i(t)}{dt} &= -u_i(t) + \sum_j w_{ij} r_j(t) + I^\text{exo.endo}_i(t) + I^\text{nr}_i(t) \\
\tau &= 10 \text{ ms} \\
r_i(t) &= \frac{1}{1 + \exp(-\beta u_i(t))} \\
I^\text{exo.endo}_i(t) &= e \cdot \exp\left(\frac{(x_i - x_e)^2}{2\sigma^2_e}\right) \\
I^\text{nr}_i(t) &= -R_{\text{max}} + R \cdot \exp\left(\frac{(x_i - x_e)^2}{2\sigma^2_{\text{nr}}}\right)
\end{align*}
\]

As in previous studies (Kopecz, 1995; Kopecz & Schöner, 1995; Marino et al., 2011; Trappenberg et al., 2001), the excitatory input was dissected into exogenous (visual) and endogenous (presumably a saccade decision signal from higher cortical areas) inputs. These two inputs were used to represent the SCs, and higher cortical areas, respectively. The latency of the exogenous (exo) input (i.e., the time it takes to reach the SC) was estimated to be 70 ms (Dorris, Parè, & Munoz, 1997), while the latency of endogenous (endo) input was estimated to be 120 ms. Both exogenous and endogenous inputs were assumed to have a Gaussian spatial shape (see Eq. (4)). In our simulations, the width of exogenous and endogenous inputs were fixed at σexo = 0.5 mm and σendo = 1.2 mm, which are close to cell-recording based estimations (Marino et al., 2011). The strength of exogenous and endogenous inputs were fixed at eexo = 30 and endeo = 15 in our simulations unless specified otherwise; these values were also chosen to approximate cell-recordings (White, Theeuwes, & Munoz, 2012) and regular saccade latencies. The exogenous input was set to decay exponentially (with a time constant of 10 ms), while endogenous input was sustained until the onset of the saccade (cf. Satel et al., 2011; Wang et al., 2011). In addition to excitatory inputs, every node received a constant inhibitory input from the SNrs (Eq. (5)), Rmax = 16, which can be released by a visual stimulus (Hikosaka & Wurtz, 1983).

Once the activity of a node reached a threshold of 80% of its maximum discharge rate, a trigger was assumed to be sent to the saccade burst generator in the brainstem, eliciting a saccade in the appropriate direction, which is consistent with experimental recordings (White, Theeuwes, & Munoz, 2012) and regular saccade encoded direction. In our simulations, a 25-ms effenter delay is used to calculate saccade latency.

3. Simulation results

3.1. Simulation 1: saccade deviation and distractor–target distance

The primary prediction of our theory is that saccade deviation varies with distractor–target distance. Simulations were performed to demonstrate this prediction. In these simulations, the angular distance between the target and the distractor was varied between 15° and 165° and the DTOA was set to 0 ms. As shown in Fig. 2A, our model produced deviation toward a distractor when it was close to the target, and deviation away from a distractor when it was distal to the target. It is clear that our model simulations closely resemble the human data of McSorley, Cruickshank, and Inman (2009).
Trappenberg et al.'s (2001) lateral interaction parameters were optimized to approximate cell-recordings and saccade latencies in a visual distractor task. Those parameters were used in our model because the present study also explored the effects of visual distractors, albeit in the spatial domain (i.e., saccade deviations). Previously, this interaction kernel has been criticized for including long-range inhibitory connections (Isa & Hall, 2009). To reflect recent neurophysiological observations that indicate weak long-range connections in the SC (Phongphanphanee et al., 2008), only a small amount of long-range inhibition ($c = 2.4$) was included in our lateral interaction kernel (see Fig. 1C). It is important to note that our explanation of saccade deviation away from distractors does not depend on intrinsic long-range inhibition in the SC. Deviation away from distractors, albeit weaker, can still be produced when only short-range inhibition is included in the interaction kernel (see Fig. 2B).

As in McSorley, Cruickshank, and Inman (2009), our model produced deviation away from distractors only when the distractor–target distance was greater than 90°, while in the literature deviation away from distractors is frequently observed when the distractor–target distance is only 45° (e.g., Mulckhuysen, Van der Stigchel, & Theeuwes, 2009; White, Theeuwes, & Munoz, 2012). The discrepancy is probably due to the relatively large width of our interaction kernel. By reducing the width of the interaction kernel, our model was able to produce robust deviation away from distractors with a small distractor–target distance (60°), see Fig. 2C. It is also possible that this discrepancy between studies is caused by other mechanisms contributing to saccade deviations, with further empirical study needed to clear up this issue.

3.2. Simulation 2: saccade deviation and SNr disinhibition

Another observation in the literature is that deviation away from distractors can be caused by distractors presented long before target onset (White, Theeuwes, & Munoz, 2012). Cell-recordings reported in White, Theeuwes, and Munoz (2012; see Fig. 3A) shed some light on the mechanism(s) behind this observation. White, Theeuwes, and Munoz (2012) found that, rather than a quick decay, the distractor evoked neuronal activity sustained until target onset (see Dorris et al., 2002; Fecteau & Munoz, 2005; for similar observation of sustained SC activity evoked by task irrelevant visual stimuli). It is possible that this sustained distractor activity competed with target evoked activity and drove saccades away from distractors. A likely source of this sustained distractor activity is SNr disinhibition.

Early work by Hikosaka and Wurtz (1983) showed that most SNr neurons reduce their level of discharge in response to a visual stimulus (see also Basso & Wurtz, 2002; Joseph & Boussaoud, 1985). This visually evoked SNr response is initially strong and then decays to a weaker level where it is sustained (Basso & Wurtz, 2002); the response field of such a SNr response is relatively focal (Hikosaka & Wurtz, 1983; Jiang, Stein, & McHaffie, 2003). For simplicity, we have assumed that the distractor evoked a SNr response (disinhibition) ($R = 4, \sigma_{snr} = 0.3$ mm) which had a latency of 120 ms (Hikosaka & Wurtz, 1983) and lasted for 500 ms. Hikosaka and Wurtz (1983) also found that the visual response of some SNr neurons was strong, saccade-locked, and had a fairly large response field (see also Basso & Wurtz, 2002). Thus, we have further assumed that the target evoked a strong and broad SNr response ($R = 16, \sigma_{snr} = 1.8$ mm) shortly (15 ms) before saccade onset. In our simulations, the distractor–target distance here was set to 45°, as in White, Theeuwes, and Munoz (2012).

As shown in Fig. 3, the simulated neuronal activity (Fig. 3B) resembled distractor evoked SC activity recorded in the monkey SC (White, Theeuwes, & Munoz, 2012; see Fig. 3A). Following the initial visual response (the first peak), there was a sustained discharge caused by SNr disinhibition (Fig. 3B). When the target appeared, the quick rise of the target visual response caused a dip in the distractor evoked activity. The target related endogenous input and the saccade-locked SNr disinhibition were responsible for the final peaks in the simulation.

With the DTOA set to 400 ms, we also varied the distractor–target distance between 15° and 165° in our simulations. The pattern of results (see Fig. 2D) was similar to those obtained in Simulation 1 (see Fig. 2A), which provides a prediction for future studies. Note that, in those simulations, the amount of deviation depended on the magnitude of distractor evoked SNr disinhibition (see simulations reported in the next section).

3.3. Simulation 3: saccade deviation and saccade latency

As frequently reported in the literature, saccade deviation varies with saccade latency (McSorley, Cruickshank, & Inman, 2009; McSorley et al., 2006; McSorley, Haggard, & Walker, 2009; Mulckhuysen, Van der Stigchel, & Theeuwes, 2009; but see Walker, McSorley, & Haggard, 2006; White, Theeuwes, & Munoz, 2012). This observation has been regarded as evidence for the top-down inhibition theory of deviation away from distractors. The idea here is that because top-down inhibition takes time to develop and reach the SC (strong) deviation away from distractors is only observed when saccade latency is long (Van der Stigchel, 2010; Van der Stigchel, Meeter, & Theeuwes, 2006). We suggest that this observation can also be explained in terms of lateral competition in the SC; that is, factors that affect the relative activation level at the target and distractor locations cause saccade latency and deviation to co-vary. These factors include, but are not limited to, the relative strength of the distractor input and, in the presence of long DTOAs, the magnitude of the distractor evoked SNr disinhibition. When the distractor is close to the target, due to short-distance collaboration, stronger activity at the distractor location would reduce latency and increase deviation toward distractors. However, when the distractor is distal to the target, stronger activity at the distractor location would increase both latency and deviation away from distractors. This idea was supported by simulation results presented in Fig. 4. For close distractors, as the distractor input (Fig. 4A) or the distractor evoked SNr disinhibition (Fig. 4B) increases, saccade latency decreases and deviation toward distractors increases. For distal distractors, as the distractor input (Fig. 4C) and distractor evoked SNr disinhibition (Fig. 4D) increases, both saccade latency and deviation away from distractors increases.

The above proposal can explain the observation that deviation toward distractors decreases (e.g., McSorley, Cruickshank, & Inman, 2009) and deviation away from distractors increases (e.g., Mulckhuysen, Van der Stigchel, & Theeuwes, 2009) with saccade latency. However, it is unclear why a transition from toward to away appears as saccade latency increases (e.g., McSorley et al., 2006; see also Fig. 5A). For most studies that have explored the relationship between saccade deviation and saccade latency, a common feature is that temporal gaps between fixation offset and target onset were introduced to manipulate saccade latencies. Previous behavioral studies have shown that temporal gaps reduce saccade latency, referred to as the gap effect (Reuter-Lorenz, Hughes, & Fendrich, 1991; Saslow, 1967). Monkey neurophysiology suggests that the gap effect could be attributed to top-down preparatory input during the gap period which raises the baseline level of activation in the SC (e.g., Dorris, Olivier, & Munoz, 2007; Dorris, Paré, & Munoz, 1997; McSorley et al., 2006) reported the magnitude of curvature in saccade trajectories, rather than deviation in saccade direction. We contacted Eugene McSorley and asked for their data. Our analysis of their raw data showed that the pattern of results reported in their paper, i.e., deviation toward changed into deviation away as latency increased, was also present in the initial saccade directions.
This top-down preparatory input reflects cognitive factors such as temporal or spatial expectation of the target (e.g., Paré & Munoz, 1996). In our simulations, we assumed that a broad endogenous preparatory input ($r_\text{e} = 2.4$ mm), which linearly increase with time (0.03/ms), arrived at the SC 0, 50, 100 or 150 ms before target onset. As shown in Fig. 5, our model reproduced the pattern of results reported in McSorley, Cruickshank, and Inman (2009), including the transition from deviation toward distractors to deviation away from distractors in their 60° (distractor–target angular distance) condition. However, extensive simulations demonstrated that this pattern of results could only be produced when the preparatory input was sent to a location in between the target and the distractor. The exact spatial and temporal dynamics of top-down preparatory input is largely unknown (but see Marino et al., 2011). It is possible that our simulations, as presented in Fig. 5B, have explored a parameter space similar to McSorley, Cruickshank, and Inman (2009).

It is important to note that, as shown in our simulations (Fig. 5B) and in McSorley, Cruickshank, and Inman (2009; see Fig. 5A), the transition from deviation toward distractors to deviation away from distractors also depends on distractor–target distance. The transition only occurred in the 60° condition of McSorley, Cruickshank, and Inman (2009) and in the 95° condition of our simulation. When the distractor and target are presented at a distance where the global effect is typically observed, although deviation toward distractors is reduced as saccade latency increases (Fig. 5A), no deviation away from distractors has been reported in the literature.

4. General discussion

Contrary to human intuition, saccades almost never go directly to the target, but instead they usually deviate from the optimum...
track to their intended destination. This phenomenon is most prominent when the saccade target is accompanied by a visual distractor. Previous studies have demonstrated that saccades may deviate toward or away from a visual distractor. In the literature, deviation toward a distractor is generally explained with lateral interaction or “population coding” that is implemented in the SC, however, the underlying mechanism(s) of deviation away from distractors is still under debate. Many scholars speculated that deviation away from distractors may have a very different neural implementation, i.e., top-down inhibition at the distractor location (for reviews, see Van der Stigchel, Meeter, & Theeuwes, 2006; Walker & McSorley, 2008).

Rather than assuming separate mechanisms for deviation toward and away from distractors, the present study proposed that both phenomena can be produced by the lateral interactions within the SC. This theory has two simple principles. First, the lateral interaction within the SC is Mexican-hat shaped (Trappenberg et al., 2001); when the distractor and target are in the range of lateral competition, they push themselves away from each other (see Fig. 1D). Second, the tonic SNr inhibition to the SC can be temporally released by visual stimulation (Hikosaka & Wurtz, 1983). The later principle can explain the observation of deviation away from distractors when distractors are presented before target onset (White, Theeuwes, & Munoz, 2012) by causing long-lasting activity in the collicular map in response to the distractor.

4.1. Previous modeling work on saccade deviation

Recent work by Arai and Keller (2005) and Meeter, Van der Stigchel, and Theeuwes (2010) also explored saccade deviation with neural field models, but none of them reported successful simulations of deviation away from distractors. The interaction kernel used by Arai and Keller (2005, p. 24) was similar to the one used in simulations presented in Fig. 2B, however, the spatial resolution of their 2-dimensional model was low (20 20 nodes for one SC). As mentioned before, deviation away from distractors is a small behavioral effect, so it is possible that the low spatial resolution of their model led to undetected deviation away from distractors.

The lateral interaction kernel used by Meeter, Van der Stigchel, and Theeuwes (2010) was Gaussian-shaped and a saccade vector was determined by the average vector rather than the peak of a winning activity in the network. According to our theory of deviation away from distractors (see Fig. 1D), this model cannot produce such deviations without external mechanisms.

Even though our model produced both deviation toward and away from distractors without the help of external (top-down) inhibition, the present study does not preclude the possibility that some observations of deviation away from distractors are contributed to by active inhibition to the SC. Previous studies showed that reversible inactivation of an SC region can cause saccades to deviate away from the response field of the inactivated region (Aizawa & Wurtz, 1998; Lee, Rohrer, & Sparks, 1988; Quaia et al., 1998). By suppressing node activity in the inactivated region, a similar result has been produced in a neural field model of the SC (Badler & Keller, 2002) using a lateral interaction kernel similar to the one used in the present study. This suggests that external inhibition inducing deviation away from distractors is computationally feasible, and one possible source of this external inhibition is the SNr (White & Munoz, 2011). Previous studies have shown that some SNr neurons increase rather than decrease their level of discharge around the time of saccade onset (Handel & Glimcher, 1998; Jiang, Stein, & McHaffie, 2003), so the SNr modulates SC activity through both enhancing and releasing of tonic inhibition.

4.2. Neural signature of saccade deviations

Several recent studies have explicitly explored the neural signature of saccade deviations in the SC (McPeek, Han, & Keller, 2003; White, Theeuwes, & Munoz, 2012) and the frontal eye fields (FEF) (McPeek, 2006). White, Theeuwes, and Munoz (2012) tested a DTOA of 400 ms and recorded distractor evoked neuronal activity in the SCi. The relatively long DTOA allowed a test of the top-down inhibition theory of deviation away from distractors. If deviation away is caused by top-down inhibition at the distractor location, one would expect a decrease of distractor evoked activity before target onset. However, no such reduction was observed for saccades that deviated away from the distractor, as compared to those deviated toward the distractor. Instead, differences in neuronal activity for saccades that deviated away from and toward distractors were only observed in a small perisaccade time window, starting about 20 ms before saccade onset (for a similar observation in FEF, see McPeek, 2006). It is unclear whether this perisaccade neuronal difference is responsible for saccade deviations. Taking into account an efferent delay (20–30 ms), this neuronal difference emerges after, rather than before, saccade decisions are made in the SC. However, electrical stimulation delivered to the SC in this time window appears to be effective in eliciting deviation toward the response field of the stimulated SC site (McPeek, Han, & Keller, 2003).

4.3. Deviation away from attended, memorized and expected locations

In addition to irrelevant visual distractors, saccades may also deviate away from attended (Sheliga, Riggio, & Rizzolattii, 1994, 1995; Sheliga et al., 1995, 1997), remembered (Theeuwes, Oliers, & Chizk, 2005) and expected (Van der Stigchel & Theeuwes, 2005) locations. These observations may also have a connection to SNr. The SNr is a major output station of the basal ganglia and it receives inhibitory projections from the caudate nucleus (CD). Previous studies have reported enhanced CD neuronal activity related to attention, memory and expectation (for a review, see Hikosaka, Takikawa, & Kawagoe, 2000). It is possible that attending, remembering or expecting a (distractor) location enhances CD activity, inhibits SNr, and leads to a spontaneous discharge in the SC. As demonstrated in our simulations, such spontaneous SC activity caused by SNr disinhibition will interact with target-related activity to produce saccade deviations.

4.4. Limitations of the present work

Although our model was successful at simulating a wide range of experimental findings on saccade deviations, several limitations of the model need to be acknowledged. First, as our model represents a single collicular slice, only oblique saccades were simulated in the present work, as opposed to vertical saccades that are commonly explored in behavioral experiments. Second, the present paper focuses on the SC activity up to saccade onset and thereby models only the initial saccade directions. It is possible that the SC activity affects the trajectory of a saccade after its initiation (e.g., Meeter, Van der Stigchel, & Theeuwes, 2010; Walton, Sparks, & Gandhi, 2005), but how SC activity interacts with the brainstem to drive saccades was not considered in the present paper. Third, the present model assumes that saccade metrics are determined by the peak of a winning SC activity. This is not identical to the often proposed schemes of vector averaging or vector summation of SC activity to define the motor command (Gandhi & Katnani, 2011). Nevertheless, it is not expected that an exploration of those decoding mechanisms would yield very different results, as in our model the activity at the time of saccade onset is primarily centered around the target node. Finally, although the 1-dimension
5. Conclusion

Our simulations have produced several predictions that can be tested in future behavioral and neurophysiological studies.

(1) A connection between deviation and distractor–target distance has been suggested by several studies which showed stronger deviations away for distractors present in the same field as the target than for those presented in the opposite field (e.g., Doyle & Walker, 2001; McSorley, Haggard, & Walker, 2004). To our knowledge, McSorley, Cruickshank, and Inman (2009) is the only study that systematically varied the angular distance between the distractor and the target, up to 120°. The relationship between saccade deviation and distractor–target distance, as presented in Fig. 2A, warrants further empirical explorations.

(2) Our simulations showed that both deviation toward and away from distractors can be produced even with a relatively long DTOA (Fig. 2D). This prediction needs further empirical verification. In addition, the simulations predicted that, with a long DTOA, the amount of saccade deviation varies with the magnitude of SNr disinhibition (Fig. 4B and D). This prediction calls for neurophysiological investigations of SNr neuronal activity in a distractor paradigm.

(3) Marino et al. (2011) demonstrated that the source, size and number of inputs to the SC may interact to produce seemingly unexplainable behavioral observations. The present study has shed some light on how the timing of stimulus onset and fixation offset would interact in this parameter space. Our simulations determined that the localization of top-down preparatory activity, as elicited by temporal gaps, was vital for successful simulation of the behavioral results of McSorley, Cruickshank, and Inman (2009). Further exploration of the spatial and temporal characteristics of top-down preparatory responses in the SC is needed.

5. Conclusion

The present study introduced a unified theory of saccade deviation based on the lateral interactions in the SC. This theory was tested with simulations in a neural field model. Model simulations suggest that generally assumed external (top-down) inhibition to the SC is not necessary to elicit saccades which deviate away from task irrelevant distractors. Nevertheless, as demonstrated in previous behavioral studies, top-down factors, such as expectancy, memory and attention, do affect saccade deviations. Behavioral, neurophysiological and computational investigations of these factors are strongly encouraged.

Acknowledgments

We are grateful to Brian White, Jason Satel, Martijn Meeter, Thomas Trappenberg and two anonymous reviewers for their comments and suggestions. We thank Eugene McSorley for sharing data with us. This project was supported by a grant from NWO (Netherlands Organization for Scientific Research), Grant 463-06-014, to Jan Theeuwes.

References

