Improving antimicrobial therapy for Buruli ulcer

Omansen, Till Frederik

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Chapter 9

Oxazolidinones can replace clarithromycin in combination with rifampin in a mouse model of Buruli ulcer

Deepak V. Almeida\(^1\), Till F. Omansen\(^{1,2}\), Si-Yang Li\(^1\), Jin Lee\(^1\), Jacques H. Grosset\(^1\), Paul J. Converse\(^1\), Eric L. Nuermerberger\(^1\)

\(^1\) Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA

\(^2\) Infectious Diseases Unit, Department of Internal Medicine, University of Groningen, Groningen, The Netherlands
Rifampin (RIF) plus clarithromycin (CLR) for 8 weeks is now the standard of care for Buruli ulcer (BU) treatment, but CLR may not be an ideal companion for rifamycins due to bidirectional drug-drug interactions. The oxazolidinone linezolid (LZD) was previously shown to be active against *Mycobacterium ulcerans* infection in mice but has dose- and duration-dependent toxicity in humans. Sutezolid (SZD) and tedizolid (TZD) may be safer than LZD. Here, we evaluated the efficacy of these oxazolidinones in combination with rifampin in a murine BU model. Mice with *M. ulcerans*-infected footpads received control regimens of RIF plus either streptomycin (STR) or CLR, or test regimens of RIF plus either LZD (1 of 2 doses), SZD, or TZD for up to 8 weeks. All combination regimens reduced the swelling and bacterial burden in footpads after two weeks of treatment compared to RIF alone. RIF+SZD was the most active test regimen, while RIF+LZD was also no less active than RIF+CLR. After 4 and 6 weeks of treatment, neither CLR nor the oxazolidinones added significant bactericidal activity to RIF alone. By the end of 8 weeks of treatment, all regimens rendered footpads culture-negative. We conclude that SZD and LZD warrant consideration as alternative companion agents to CLR in combination with RIF to treat BU, especially when CLR is contraindicated, intolerable or unavailable. Further evaluation could prove SZD superior to CLR in this combination.
INTRODUCTION

Treatment of Buruli ulcer (BU) caused by *Mycobacterium ulcerans* infection has evolved from wide surgical excision of lesions followed by skin grafting to an 8-week course of rifampin (RIF) combined with streptomycin (STR) or, more recently, with clarithromycin (CLR) (1-3). The RIF+CLR regimen is now preferred due to oral administration and the avoidance of oto- and nephrotoxicity (4) associated with STR. Preliminary results of a clinical trial (NCT01659437) indicate that the regimens have equivalent efficacy when administered for 8 weeks (5). However, patients undergoing treatment with CLR may have gastrointestinal complaints (6) and receipt of CLR for longer than two weeks may increase the risk of death in those with heart disease (7). RIF also dramatically increases the metabolism of CLR (8-10), which could result in sub-therapeutic exposures of CLR, especially considering that CLR is typically administered as 500 mg/day in BU treatment (1, 11). A major objective of BU drug development efforts is to identify more potent regimens with a higher safety/tolerability profile that can shorten treatment duration (2).

Oxazolidinones are potential candidates to replace CLR. Linezolid (LZD), the first marketed member of this drug class, is highly orally bioavailable, less affected by co-administration with RIF, and is no longer patent-protected. Ji et al. (12) showed that LZD was active *in vitro* and in a mouse footpad model of *M. ulcerans* infection. The MIC₉₀ of LZD was 2.0 µg/ml. At a dose of 100 mg/kg/day, LZD monotherapy rendered 0 and 30% of mice culture-negative after 4 and 8 weeks, respectively. The combination of LZD with RIF (10 mg/kg/day), rendered 90% and 100% of mice culture-negative after 4 and 8 weeks of treatment, respectively, a result that could not be distinguished from results with RIF alone or RIF+STR.

LZD is associated with dose- and duration-dependent hematologic and neurologic toxicities (13), although neuropathy only rarely occurs in the first 4-8 weeks of treatment. Newer oxazolidinones in development may be safer than LZD. For example, sutezolid (SZD), originally designated PNU-100480, exhibited less hematological toxicity in a phase 1 trial and also may have superior antimycobacterial activity (14). Tedizolid (TZD) is another oxazolidinone licensed for acute bacterial skin and skin structure infections that may also be less toxic than LZD at the approved dose (15). To our knowledge, neither SZD nor TZD have been evaluated against *M. ulcerans*.

In this experiment, we compared the efficacy of these oxazolidinones, including a reduced dose of LZD, in combination with RIF to that of standard-of-care regimens based on their ability to reduce footpad swelling and bacterial burden in a well-established mouse footpad model. Addition of SZD increased the efficacy of RIF and the combination of RIF+SZD was comparable in activity to RIF+STR and at least as good as RIF+CLR over the first 2 weeks of treatment. At the dose tested, TZD appeared less effective than SZD or LZD. After 8 weeks,
all regimens tested achieved culture negativity. The oxazolidinones SZD and LZD may be effective alternatives to CLR or STR in the treatment of BU.

METHODS AND MATERIALS

Bacterial strain: *M. ulcerans* strain 1059, originally obtained from a patient in Ghana and provided by Dr. Pamela Small, University of Tennessee, was subsequently engineered to be autoluminescent (Mu1059AL) (26, 27), while remaining virulent in mouse footpad models.

Antibiotics: RIF and STR were purchased from Sigma. CLR was purchased from the Johns Hopkins Hospital pharmacy. LZD, SZD and TZD were kindly provided by the Global Alliance for TB Drug Development. RIF and CLR were prepared in sterile 0.05% agarose solution, STR was prepared in sterile normal saline. Oxazolidinones were prepared and formulated for oral administration as described elsewhere (28).

Mouse infection and treatment: One hundred sixty female BALB/c mice (Charles River Laboratories) were inoculated subcutaneously in the right hind footpad with 0.03 ml of a culture suspension prepared from freshly harvested footpad suspension of previously infected mice (ALI = 2-3). The inoculum was estimated to contain approximately 3.6 x 10^4 colony-forming units (CFU) of Mu1059AL based on the CFU counts performed on Middlebrook 7H11 plates. Treatment began 39 days (D0) after infection when the ALI was 2.1±0.4. Mice were randomized to one of the seven treatment regimens and treated for two, four, six, or eight weeks (Table 1). Control regimens included RIF_{10}+STR_{150}, RIF_{10}+CLR_{100}, or RIF_{10} alone, where the subscript represents the dose in mg per kg body weight. Test regimens consisted of RIF_{10}+LZD_{50}, RIF_{10}+LZD_{100}, RIF_{10}+SZD_{50}, and RIF_{10}+TZD_{10}. All drugs were administered 5 days per week in 0.2 ml by gavage, except for STR which was administered by subcutaneous injection. Drug doses were chosen based on mean plasma exposures (i.e., area under the concentration-time curve over 24 hours post-dose) compared to human doses (28-30). All animal procedures were conducted according to relevant national and international guidelines and approved by the Johns Hopkins Animal Care and Use Committee.

Evaluation of treatment response: Three parameters were used to monitor the progress of infection and treatment response in mouse footpads: (i) the average lesion index (ALI), (ii) relative light unit (RLU) counts, and (iii) CFU counts. The scoring of the lesion index was described previously (2, 31). Briefly, the presence and the degree of inflammatory swelling of the infected footpad are assessed weekly and scored from 0 (no swelling) to 4.
Oxazolidinones can replace clarithromycin in combination with rifampin in a mouse model of Buruli ulcer

Table 1. Experimental scheme

<table>
<thead>
<tr>
<th>Drug regimens</th>
<th>No. of mice sacrificed at the following time points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D-38</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
</tr>
<tr>
<td>Untreated</td>
<td>5</td>
</tr>
<tr>
<td>RIF_{10}</td>
<td>5</td>
</tr>
<tr>
<td>RIF_{10}+STR_{150}</td>
<td>5</td>
</tr>
<tr>
<td>RIF_{10}+CLR_{100}</td>
<td>5</td>
</tr>
<tr>
<td>Test Regimens</td>
<td></td>
</tr>
<tr>
<td>RIF_{10}+LZD_{50}</td>
<td>5</td>
</tr>
<tr>
<td>RIF_{10}+LZD_{100}</td>
<td>5</td>
</tr>
<tr>
<td>RIF_{10}+SZD_{50}</td>
<td>5</td>
</tr>
<tr>
<td>RIF_{10}+TZD_{10}</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
</tr>
</tbody>
</table>

(inflammatory swelling extending to the entire limb). RLU counts in infected footpads were determined in live mice by anesthetizing them with ketamine/xylazine (87.5/12.5 mg/kg, injected intraperitoneally), placing them in a tabletop luminometer (TD 20/20), and measuring the RLU for 4 seconds (26, 27). Five mice were sacrificed for CFU counts on the day after infection (D-38), 25 days after infection (D-14) and at D0 to determine the infectious dose, the initial multiplication rate and the pretreatment CFU counts, respectively. The response to treatment was determined by sacrificing 5 mice from each treatment group after 2, 4, 6 and 8 weeks of treatment and harvesting the footpads after thorough disinfection with 70% alcohol swabs. Footpad tissue was then homogenized by fine mincing and suspended in 2.5 ml of sterile phosphate buffered saline (PBS). Ten-fold serial dilutions were plated in 0.5 ml aliquots on selective Middlebrook 7H11 plates and incubated at 32°C for 8-12 weeks before CFU were enumerated. At week 4, 6 and 8 time points, the entire footpad homogenate was plated to maximize detection of low CFU numbers.

Statistical analysis: GraphPad Prism 6 was used to compare group means by student’s T test and one-way analysis of variance with Tukey’s post-test to adjust for multiple comparisons. A regimen was considered bactericidal when CFU count was significantly lower (p <0.05) than that of untreated controls at D0 and the footpad swelling had reduced to ALI <1.
RESULTS

Footpad Average Lesion Index (ALI)

Footpad swelling was apparent after 4 weeks of infection. By D0, the ALI was 2.1±0.4. Thereafter, the ALI steadily declined in all groups except the untreated mice in whom it increased to 2.8±0.4 by week 4 (Fig 1). All treated mice reached an ALI of 0, i.e., normal appearance by week 6 or week 7, except in the RIF+TZD group, in which some residual swelling (ALI = 0.8±0.4) remained at the end of treatment.

Fig 1: Treatment with rifampin and companion drugs reduces footpad swelling in *M. ulcerans*-infected mice.

Footpad RLU counts

Untreated mice had increasing RLU counts from the day of infection until D0, after which time the values remained stable or declined slowly (Fig 2). In contrast, the RLU counts in all treatment groups declined sharply compared to untreated controls and, except for RIF and RIF+TZD groups, all were an order of magnitude lower than controls after 1 week of treatment. By week 2, RLU counts in all treated groups were at least an order of magnitude lower than untreated controls and none could be differentiated from RIF alone. By the end of week 3, all treatment groups except for RIF (0.10±0.11) and RIF+LZD100 (0.06 ± 0.05) had mean RLU counts below the background RLU cutoff of 0.05 (Fig 2).
Oxazolidinones can replace clarithromycin in combination with rifampin in a mouse model of Buruli ulcer

Fig 2: Treatment with rifampin and companion drugs reduces bacterial burden as assessed by footpad relative light unit (RLU) counts in the M. ulcerans-infected mice. The horizontal line indicates background RLU level.

Footpad CFU counts

The mean footpad CFU count (± SD) was 4.09±0.23 log_{10} on the day after infection (D-38), increased to 4.94±0.12 at D-14, and increased further to 5.77±0.60 log_{10} by D0 (Fig 3). After 2 weeks of treatment, the mean CFU counts declined most rapidly in mice treated with RIF+STR (2.99±0.73), followed by RIF+SZD (3.53±0.53), RIF+CLR (3.98±1.05), RIF+LZD_{50} (4.51±0.33), RIF+LZD_{100} (4.63±0.35), RIF+TZD (4.71±0.47), and RIF alone (5.13±0.45). When compared to the current all-oral recommended standard of care, RIF+CLR (3, 5), treatment with RIF+SZD reduced the CFU counts by an additional half-log, while CFU counts in groups receiving RIF combined with LZD or TZD were at least a half-log higher. None of these differences between combinations were statistically significant. Compared to RIF alone, RIF+SZD was the only oxazolidinone-containing regimen to show significantly (p<0.01) greater activity while both RIF+CLR and RIF+STR control regimens were also significantly better (p<0.05 and p<0.0001, respectively) than RIF alone. After 4 weeks of treatment, similar trends in CFU counts were seen, RIF+STR produced the lowest CFU counts (0.59±1.32), followed by RIF+LZD_{50} (1.50±0.59), RIF alone (1.68±0.38), RIF+CLR (1.68±0.43), RIF+SZD (1.86±1.35), RIF+LZD_{100} (2.14±0.95) and RIF+TZD (2.06±0.92). Mean CFU counts in mice receiving various combinations of RIF with oxazolidinones ranged from 1.50 to 2.06 and were not significantly different from those in mice receiving RIF+CLR (1.68±0.43). By week 6, most footpads were culture negative, including all of those from mice treated with RIF+STR or RIF+CLR, 4 of 5 mice treated with RIF+LZD_{50} or RIF+TZD, and 3 of 5 mice treated with RIF+LZD_{100} or RIF+SZD.
Again, there were no significant differences between the combination regimens. All footpads in all mice were culture negative at week 8.

DISCUSSION

In the past two decades, considerable progress has occurred in the treatment of BU (2, 16). Initial recommendations involved extensive surgical excision of the lesions. Studies in mouse footpad models identified regimens containing RIF and an aminoglycoside would be efficacious and subsequent clinical trials established the effectiveness of 8 weeks of RIF+STR. However, the use of STR has the disadvantages of ototoxicity and need for injections for 8 weeks (2, 4). As an alternative to STR, the WHO technical advisory group on Buruli ulcer recently recommended an all-oral regimen of RIF+CLR based on results of a series of clinical trials (5). Although RIF+CLR appears effective, it still requires administration for 8 weeks whereas a shorter regimen would likely enhance treatment completion and reduce utilization of precious healthcare resources. In addition, CLR is compromised by tolerability concerns and a drug-drug interaction with RIF that significantly reduces CLR exposures (a problem that may worsen if high-dose rifamycin regimens are tested as they are in TB).
Oxazolidinones can replace clarithromycin in combination with rifampin in a mouse model of Buruli ulcer (8-10, 17, 18), and may reduce its effectiveness as a companion agent, and possibly result in acquired RIF resistance. Therefore, new oral companion agents are sought to shorten treatment and/or provide a more effective companion agent to RIF. We sought to determine whether an oxazolidinone might achieve these objectives.

In our study, SZD was the only oxazolidinone that, like CLR, added activity to RIF alone in a statistically significant manner at week 2 and was not worse than RIF+STR. However, RIF combined with LZD at doses producing exposures similar to 600 mg and 1200 mg daily doses in patients had activity that was indistinguishable from RIF+CLR and from each other, while RIF+TZD was numerically worse than all regimens at weeks 2 and 4 by CFU and swelling scores. SZD is currently in clinical development for treatment of tuberculosis, where it has demonstrated significant early bactericidal activity and reduced hematologic toxicity compared to LZD (14, 19). Therefore, it could represent a promising alternative to CLR. However, additional clinical studies are needed to determine whether an adverse drug-drug interaction with RIF exists before its candidacy for BU treatment regimens could be seriously considered.

LZD has received increasing attention as a second-line drug for treatment of MDR-TB. In fact, it was recently ranked as a Group A drug by the WHO, indicating that it should be prioritized for inclusion in the regimen for any MDR-TB patient (20). It is also off patent and should be increasingly available at lower prices. Although we did not find that addition of LZD significantly improved the activity of RIF alone, the mean CFU counts and swelling grades were numerically lower in either RIF+LZD group compared to RIF alone group during the first 2 weeks. These results suggest that LZD may still play a role in enhancing the bactericidal effect of RIF-containing regimens and in reducing the risk of selecting RIF-resistant mutants. Although LZD carries risk of dose- and duration-dependent toxicity (13), its neurotoxicity consists primarily of peripheral and occasional optic neuropathies that typically do not manifest before 3-4 months of treatment (21) and would not be a major concern for BU treatment. Hematologic toxicity, typically thrombocytopenia or anemia, is reversible and tends to occur after 2-4 weeks of treatment. It is trough-dependent and is therefore less likely to occur with once-daily treatment (22). Importantly we found that the 50 mg/kg dose of LZD was just as effective as the 100 mg/kg dose, indicating that 600 mg daily may be just as effective as 1200 mg daily in humans. We also found that any additive effect of LZD (as with SZD) was most evident in the first 2-4 weeks. Taken together, the results may suggest that LZD 600 mg x 2-4 weeks may more-or-less optimize the contribution of LZD to a RIF+LZD regimen and be largely devoid of neurotoxicity and hematologic toxicity.

Tedizolid is marketed for acute bacterial skin and soft tissue infections and, at the approved dose of 200 mg daily, appears to have less hematologic toxicity than LZD 600 mg twice daily (15). However, whether it is less toxic than LZD 600 mg administered once daily
remains unknown. Moreover, TZD appeared to be the least effective oxazolidinone in this model.

While we did not find that any oxazolidinone-containing regimen was superior to RIF+CLR, it should be kept in mind that the CLR dose used in our experiments could over-represent CLR exposures obtained in humans because the induction of CLR metabolism by RIF in mice is likely not as great as what is observed in patients, where CLR exposures are reduced by 70-90% (8-10). Thus, the contribution of CLR to the RIF+CLR combination may be overestimated by the CLR 100 mg/kg in mice. Moreover, the significance of the RIF-CLR interaction will only increase if higher doses of RIF or rifapentine are evaluated for BU as they are currently being evaluated for TB (23). Co-administration with RIF also reduces LZD plasma exposures, though to a much more limited extent and this interaction may actually provide some protection against trough-driven LZD toxicity (24, 25).

Acknowledgement and funding.
We gratefully acknowledge TB Alliance for providing each oxazolidinone
Oxazolidinones can replace clarithromycin in combination with rifampin in a mouse model of Buruli ulcer

REFERENCES

Oxazolidinones can replace clarithromycin in combination with rifampin in a mouse model of Buruli ulcer

