Study of the Calibration Channel Width for a Digital Sideband Separating System for SIS 2SB Receiver
Khudchenko, Andrey; Finger, R.; Baryshev, A.~M.; Mena, F.~P.; Rodriguez, R.; Hesper, R.; Fuentes, R.; Bronfman, L.

Published in:
Atacama Large-Aperture Submm/mm Telescope (AtLAST)

DOI:
10.5281/zenodo.1159039

IMPORTANT NOTE: You are advised to consult the publisher’s version (publisher’s PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Study of the calibration channel width for a Digital Sideband Separating system for SIS 2SB receivers

A. Khudchenko¹, R. Finger², A. M. Baryshev¹, F. P. Mena³, R. Rodriguez², R. Hesper¹, R. Fuentes² and L. Bronfman²

1 - NOVA/Kapteyn Astronomical Institute, University of Groningen, The Netherlands.
2 - Astronomy Department, University of Chile, Santiago, Chile.
3 - Electrical Engineering Department, University of Chile, Santiago, Chile.

Abstract

• Digital Sideband Separating (DSS):
 – Very promising concept for future (multipixel) heterodyne receivers.
 – Relaxes requirements for the Image Rejection Ratio (IRR) of analog receivers.
 – It improves the IRR substantially with simple hardware.
 – Ideal for spectral line surveys (it practically eliminates line confusion and atmospheric noise in the image band).
 – It is a potential option for a future ALMA upgrade.
• Recent work:
 – Applied to a full 2SB receiver (i.e. including the analog IF hybrid).
 – It allows reaching an IRR of 45 dB across the full band.
• Important question:
 – How wide should the calibration-channel width be in order to reach a desired IRR?
 – It determines, for a large part, the calibration speed of the DSS system and influences the back-end architecture.

Concept of Digital Sideband Separating System

Implementation for ALMA Band-9 2SB receiver

Width of calibration channel to reach certain IRR level

Advantage compared to receiver without the IF hybrid

SUMMARY

- Digital Sideband Separating can strongly relax requirements for analog components of 2SB SIS receivers, providing at the same time the sideband rejection up to 40dB.
- Calibration stability proved stable on 24 hours and 9 mixer reset cycles (deflux, demagnetisation)
- The channel width of 46 MHz guarantees IRR above 30dB current ALMA receivers.

Contact: A.Khudchenko@sron.nl, rfinger@u.uchile.cl