Aspirin for recurrence prevention in bipolar disorder—Promising, yet clinically understudied?

Bartholomeus CM Haarman, Marrit K de Boer, Christiaan M van der Gaag, Huib Burger, Willem A Nolen, Robert A Schoevers

Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands

Correspondence
Bartholomeus CM Haarman, Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
Email: b.c.m.haarman@rug.nl

Funding Information
This study was funded by EU‐FP7‐HEALTH‐222963 'MOODINFLAME', EU‐FP7‐PEOPLE 286334 'PSYCHAID', EU‐H2020‐754740 'MOODSTRATIFICATION'. The funding organizations had no further role in the study design; collection, analysis and interpretation of data, the writing of the report and the decision to submit the paper for publication.

1 | BACKGROUND

Current available maintenance pharmacotherapy for bipolar disorder (BD) leaves ample room for improvement. Up to 50% of patients with BD do not respond adequately to available treatments and still suffer from manic and/or depressive episodes. Although a number of pharmaceutical companies have invested in novel medications, none of the recently developed compounds has shown efficacy for recurrence prevention.

Given that BD is associated with dysregulations of the immune system, there is increasing interest in the therapeutic potential of immune-modulating medications. Although aspirin (acetylsalicylic acid) has been investigated to treat depressive symptoms, low-dose aspirin (typically ≤150 mg/day) aspirin may be a particularly promising candidate for recurrence prevention: it is well tolerated, even with long-term use, well absorbed, passes the blood-brain barrier, and likely exerts anti-inflammatory effects in both the brain and the periphery.

In this perspective article, we will give an overview of the neuropharmacodynamics of (low-dose) aspirin, reflect on the published clinical studies and argue that aspirin is a promising, yet understudied option for recurrence prevention.

2 | PATHOPHYSIOLOGICAL MECHANISMS

Aspirin can exert its effect on the neuroimmune system in BD via two pathways: modification of the cyclooxygenase enzymes (COX enzymes) and by stimulation of myelination. Aspirin is unique among the NSAIDs in that it covalently modifies COX-1 and COX-2 where it has differential effects. Aspirin treatment of COX-1 irreversibly inhibits the cyclooxygenase activity of the enzyme and subsequently the production of prostaglandin G2 (PGG2), blocking the conversion of arachidonic acid (AA) to prostaglandins and thromboxane A2. In the brain, COX-1 is predominantly expressed by microglia, known to be activated in BD. Preclinical evidence suggests that inhibition of COX-1 is neuroprotective after intracerebroventricular administration of lipopolysaccharide (LPS). In contrast to full inhibition of COX-2 by selective COX-2 inhibitors, which is thought to have detrimental effects by increasing leukocyte recruitment into the brain and exacerbating tissue damage, aspirin acetylation of COX-2 results in a shift in reaction specificity, converting enzyme activity from a cyclooxygenase to a lipoxygenase. Lipoxygenase activity results in the generation of anti-inflammatory mediators such as lipoxin A4 and 15-epi-lipoxin A4, as well as docosahexaenoic acid (DHA) to 17-(R)-OH-DHA. The increase of these anti-inflammatory lipoxygenase metabolites is dose-dependent, being increased in low-dose aspirin treated humans in a randomized trial by Chiang et al. Interestingly, aspirin shares these effects with lithium synergistically, which was found to reduce rat brain COX-2 activity and prostaglandin E2 (PGE2) concentration, while increasing brain concentrations of DHA-derived anti-inflammatory metabolites.

Lithium and low-dose aspirin in BD may have an additional synergistic mode of action, involving the myelination of white matter...
treat = 4.0). P + A groups (p(two‐tailed) = 0.019, odds ratio = 3.7, number needed
depressive symptoms that was driven by both the M + A and the
placebo‐minocycline + placebo aspirin (P + P). When all four arms
aspirin (81 mg b.i.d.) (M + P); placebo‐minocycline + active aspirin (P + A); and
active minocycline + placebo

equal allocation probability: active minocycline (100 mg b.i.d.) + ac‐
cebo‐controlled trial, and randomized to one of four groups with
effects on white matter microstructural disturbances, possibly being one of its therapeutic mechanisms, via a known inhibition of glycogen syn‐
hase kinase 3 beta (GSK‐3β). Interestingly, low‐dose aspirin was also
found to have a stimulating effect on myelin‐forming oligodendro‐
cytes in mice,3 potentially enhancing the effect of lithium via this
route. In oncological research, aspirin is known to have an inhibitory
effect on GSK‐3β as well.

3 | CLINICALLY UNDERSTUDIED

Aspirin has been investigated in only three published clinical studies on treatment of mood and medication side effects in BD.

Savitz et al. tested the efficacy of aspirin and minocycline as aug‐
mentation therapy for bipolar depression.3 Ninety‐nine depressed
outpatients with BD were enrolled in a 6 week, double‐blind, pla‐
cebo‐controlled trial, and randomized to one of four groups with
equal allocation probability: active minocycline (100 mg b.i.d.) + ac‐
tive aspirin (81 mg b.i.d.) (M + A); active minocycline + placebo aspirin (M + P); placebo‐minocycline + active aspirin (P + A); and
placebo‐minocycline + placebo aspirin (P + P). When all four arms
were included in the analysis, there was a main effect of aspirin on
depressive symptoms that was driven by both the M + A and the
P + A groups (ptwo‐tailed) = 0.019, odds ratio = 3.7, number needed
to treat = 4.0).

Stolk et al performed a pharmacoepidemiological study related to BD4 in which medication histories on subjects who had been pre‐
scribed lithium were collected using health care registry data. After stratification of drug classes that inhibit phospholipase A2 (PLA2)
and/or COX enzymes, and duration of use, incidence density (ID) of
medication events (dose increase or substance change) was com‐
pared as a proxy for clinical worsening. Low‐dose aspirin produced
a statistically significant duration‐independent reduction in the rela‐
tive risk of clinical deterioration in subjects on lithium (ID ratio 0.82),
wheras other NSAIDs and glucocorticoids did not.

Saroukhani et al assessed the effect of 240 mg aspirin on lithium‐related sexual dysfunction in 32 men with stable bipolar affective
disorder in a 6 week randomized, double‐blind, placebo‐controlled
study.5 At the end of the study, patients in the aspirin group showed
significantly greater improvement in total sexual function (63.9% im‐
provement from baseline) and erectile function domain (85.4% im‐
provement from baseline) scores than the placebo group (14.4% and
19.7% improvement, respectively). The mood symptoms remained
stable over the course of the study.

There were no severe adverse events related to aspirin in any of
these studies. Of particular importance in BD, low‐dose aspirin does
not increase serum lithium, contrary to other NSAIDs.

4 | DISCUSSION

The study by Savitz et al points toward an ameliorating effect of
aspirin on depressive symptoms in BD. Since the pathophysiological
action of immune modulators primarily focuses on improving the
stability of the underlying dysregulated immune and glial cells, they
may be even more effective in preventing recurrences.

It is interesting that this hypothetical recurrence‐preventing
mode of action of low‐dose aspirin is supported by the pharmaco‐
epidemiological study by Stolk et al. In this study, low‐dose aspirin
was found to have a statistically significant duration‐independent
reduction in the relative risk of clinical deterioration, when com‐
pared to subjects not using aspirin.4 Indeed, studies that investi‐
gated cytokines, gene‐expression, T‐cell populations, and CRP
across mood states, including those from our group, have shown
the immune system to be more severely dysregulated during mood
episodes. Nevertheless, clinical trials to improve mood stability and
reduce the recurrence rate by administration of aspirin to stabilize
the immune system in a (more immune dysregulated subgroup of)
patients with BD have never been performed. In conclusion, the
high burden of illness in combination with the limited available
treatment options make the clinical investigation of a recurrence‐
preventing mode of action of low‐dose aspirin in BD an important
endeavor. Since aspirin’s patent has passed historically long ago, it
is unlikely pharmaceutical companies will investigate this possible
new indication. However, when proven to be efficacious in patients
with BD, this would be of great clinical relevance since aspirin is
well tolerated, has other beneficial health effects, is affordable, and
therefore would have a strong favorable cost/benefit ratio, empha‐
sizing the importance of public funding for such trials.

AUTHOR CONTRIBUTION

All authors contributed in the concept and design of the study and
authors have seen and approved the final version of this manuscript.

CONFLICTS OF INTEREST

None of authors have any financial and personal relationships with
other people or organizations to report that could inappropriately
influence (bias) this work.

ORCID

Bartholomeus CM Haarman ID https://orcid.org/0000‐0002‐9006‐8863
Marrit K Boer ID https://orcid.org/0000‐0002‐8457‐8584
Robert A Schoevers ID https://orcid.org/0000‐0003‐0760‐9866
REFERENCES


