Doing well and feeling well
Moghimi, Darya

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 08-05-2020
DIFFERENTIAL EFFECTS OF SELECTION, OPTIMIZATION, AND COMPENSATION STRATEGIES ON CHANGE IN DAILY OCCUPATIONAL WELL-BEING

Note. This chapter is based on Moghimi, D., Scheibe, S., Zacher, H., & Van Yperen, N. W. Differential Effects of Selection, Optimization, and Compensation Strategies on Change in Daily Occupational Well-Being. Manuscript submitted for publication.
Abstract

Occupational well-being can fluctuate across the workday. According to the model of selection, optimization, and compensation (SOC), employees can actively influence levels of well-being by engaging in action-regulation strategies. However, not every strategy may yield the same effects, and associations could differ in the short- and long-term. We distinguished between selection- vs. pursuit-focused strategies and preference- vs. loss-based strategies and hypothesized that selection-focused strategies lead to lower levels of fatigue, while pursuit-focused strategies lead to higher fatigue levels at the end of the work day. We further hypothesized that preference-based strategies lead to increased job satisfaction while loss-based strategies lead to reduced job satisfaction. We tested these hypotheses with a sample of 244 UK-based employees from different occupational sectors who completed twice-daily measurements over ten consecutive work days. Results of multi-level analyses showed that on the day-level, change in fatigue was positively predicted by loss-based selection, whereas change in job satisfaction was positively predicted by optimization and compensation but negatively predicted by loss-based selection. At the person-level, loss-based selection was associated with increased fatigue, and optimization with increased job satisfaction. In additional analyses we investigated reversed order effects and found that especially on the person-level job satisfaction positively predicted the use of all four SOC strategies while fatigue positively predicted only the use of loss-based strategies. These results show that relationships between SOC strategies and well-being might differ per strategy and level of analysis, and might be reciprocal rather than one-directional.
Occupational well-being can fluctuate from day to day as a function of employees’ daily goal pursuit and their success in reaching their goals (e.g., Harris, Daniels, & Briner, 2003). When daily work goals are attained, employees usually experience high occupational well-being (Locke & Latham, 2002). However, when the pursuit of daily work goals is hindered, and selected goals cannot be achieved, low occupational well-being might be the consequence. Two central indicators of low occupational well-being are the feeling of extreme tiredness and exhaustion at work (fatigue; Frone & Tidwell, 2015) and a reduced pleasure regarding one’s job (job satisfaction; Spector, 1997). Although occasional drops in occupational well-being are not per se problematic, chronic levels of both high fatigue and low job satisfaction can compromise employee health (e.g., Andrea, Kant, Beurskens, Metsemakers, & van Schayck, 2003; Sluiter, de Croon, Meijman, & Frings-Dresen, 2003). It is therefore important to understand the strategies that help employees actively control such daily fluctuations in occupational well-being. In the present study, we focus on the action-regulation strategies of selection, optimization, compensation (SOC; Baltes & Baltes, 1990), which allow employees to actively manage their goal pursuit and well-being at work (Moghimi et al., 2017).

The SOC model states that people can actively allocate their personal resources to achieve their goals by making use of elective selection (prioritization of some goals over others in line with preferences), loss-based selection (reorganization of goal hierarchies in response to resource losses), optimization (resources investment), and compensation (substitution of lost resources) strategies (Freund & Baltes, 2000). As shown in Figure 1, strategies are either motivated by preferences or losses, and are either directed at goal selection or goal pursuit (Ebner et al., 2006; Freund, 2006).
In a recent systematic review and meta-analysis of mostly cross-sectional studies, Moghimi et al. (2017) found that SOC strategy use is positively associated with job satisfaction. The link between SOC strategy use and fatigue could not be tested meta-analytically due to a lack of studies that have investigated such relationships. Because the relationship between SOC and a more global indicator of job strain, which included fatigue (in addition to exhaustion and negative job affect), was not significant, no definite conclusion about the relationship between SOC and fatigue can yet be drawn. A reason for the zero-relationship between SOC strategy use and strain in the meta-analysis could be the lack of studies that looked at each SOC strategy individually. While some strategies are resource consuming, other strategies might preserve or replenish resources, which should have different consequences for experiences of fatigue. We suggest that the two goal selection strategies (i.e., elective and loss-based) are less resource consuming because they precede the act of resource investment and – if executed correctly – lead to adaptive resource allocation. Therefore, work fatigue as a result of resource investment may be observed mainly in relation to goal pursuit strategies (i.e., optimization and compensation).

In their review, Moghimi et al. (2017) further identify a number of shortcomings in the literature on SOC at work. First, due to the cross-sectional and between-person design of most SOC studies, there is not much information available regarding *within-person variability* of SOC.
strategy use at work and its short-term outcomes. Second, the few studies that have investigated the within-person associations of SOC strategy use with well-being in the short term (e.g., Breevaart & Zacher, 2018; Schmitt et al., 2012; Venz et al., 2018; Zacher et al., 2015) have assessed the core constructs only once a day. This approach does not account for fluctuations in the outcome variables within a day and carries the risk of attributing too much or too little of the effect to SOC strategy use by disregarding the general well-being state of that day. Finally, most previous studies (24 out of 37; Moghimi et al., 2017) have either reported only the overall use of SOC strategies, or reported only two or three of the four individual strategies. This approach ignores that the motivation to use SOC strategies may not be the same for all four strategies and might therefore overlook effects that are present when looking at each strategy individually but vanish if aggregated scores are considered (see Edwards, 2001). The goal of the current study is to address these shortcomings by comparing within- and between-person relationships of single SOC dimensions with change in fatigue and job satisfaction across a workday.

This study contributes to the literature in three ways. First, we go beyond previous cross-sectional studies by investigating relationships between SOC strategy use and well-being outcomes at the daily level to disentangle within- and between-person variability in strategy use and outcomes. To date, it is unclear whether SOC strategies should be regarded as trait-like, state-like, or both. In the present study we get a step closer to answering this question. Second, by measuring work fatigue and job satisfaction twice a day, we are able to control for earlier fatigue and satisfaction levels on the same day when estimating the impact of SOC strategies on these outcomes. By doing so we can provide a more accurate picture of the SOC-outcome relationships that is not affected by general, SOC-unrelated, fluctuations in fatigue and satisfaction. Finally, we contribute to research on SOC theory by testing hypotheses for the effects of each SOC dimension individually. As elaborated below, there is reason to assume that using some SOC strategies has detrimental effects on work fatigue and job satisfaction while the use of other strategies may be associated with beneficial outcomes.
Selection, Optimization, and Compensation Strategies

The SOC model suggests that the use of four action regulation strategies helps to maintain effective functioning and well-being in face of high demands and/or low resources (Freund & Baltes, 2000). The four SOC strategies can be categorized into selection- vs. pursuit-focused strategies and loss- vs. preference-based (see Figure 1). Each strategy may help individuals to actively manage their resources according to present demands, and by doing so achieve their goals (Moghimi, Scheibe, & Freund, 2019). Specifically, the four strategies can help to invest resources in an effective way, acquire new resources, and thereby prevent resource depletion. Moreover, the model assumes that SOC strategy use is particularly beneficial when demands are high and resources are limited.

Elective selection involves goal-setting based on preference to achieve a desired state (Freund & Baltes, 2000). A key feature of elective selection is the selection of a small number of goals as opposed to pursuing multiple goals at the same time. An example of elective selection at work would be coming to work and deciding to respond to emails before taking or making any phone calls. **Loss-based selection** refers to the reorganization of a previous goal hierarchy due to a loss of internal or external resources. Specifically, this strategy entails disengaging from unattainable goals, selecting new goals, and reorganizing goal priorities (Freund & Baltes, 2000). If an employee experiences problems with the internet connection and cannot reply to emails, (s)he could decide to make phone calls first and respond to emails later. **Optimization** refers to the adaptive allocating of existing resources such as attention, time, and effort to attain goals (Freund & Baltes, 2000). Individuals who engage in optimization acquire, refine, use, and re-activate internal or external means to achieve selected goals. An example of optimization at work would be investing a lot of effort and attention in preparing a presentation. Finally, **compensation**, like loss-based selection, is a strategy that can be used when people face a loss of internal or external resources. The strategy comprises the acquisition and use of new or previously unused resources to achieve a goal and thereby helps the individual to maintain functioning after a resource loss (Freund & Baltes, 2000). If employees receive an important phone call while working on a presentation and therefore experience a loss of time,
they can compensate for this loss by asking a colleague for help.

As shown in Figure 1, elective selection and loss-based selection are goal selection strategies as they aim at restricting the number of goals one wants to pursue and at developing goal hierarchies. In contrast, optimization and compensation are goal pursuit strategies, which entail the investment of resources to successfully attain the selected goals. Furthermore, strategies can be differentiated into preference-based strategies and loss-based strategies (cf., Freund, 2006). When engaging in elective selection or optimization, employees are pursuing a goal or a strategy that they prefer; they act as a proactive agent. Conversely, when engaging in loss-based selection or compensation, employees are confronted with a resource loss and therefore must deviate from previously set goals and preferred strategies. Hence, employees are rather reactive and respond to the current losses. These distinctions provide the basis for our hypotheses.

SOC Strategy Use and Work Fatigue

Although a meta-analysis of between-person studies did not find a link between SOC strategy use and overall job strain (Moghimi et al., 2017), there are theoretical reasons to assume that daily use of individual SOC strategies may affect employees’ feelings of fatigue. For instance, daily use of selection-focused (i.e., elective and loss-based selection) strategies may help to prevent fatigue at the end of the workday because they channel resource investment into fewer, more attainable goals, rather than focusing on several, unattainable goals at the same time. Hence, selection-focused strategies facilitate adaptive allocation of other personal and occupational resources, such as time, attention, and energy and by doing so help to prevent fatigue at the end of the workday. In contrast, pursuit-focused strategies (i.e., optimization and compensation) require effort expenditure and resource investment, which can be fatiguing because one has to invest resources to achieve previously selected goals. While this process might eventually help to attain one’s goals on the long term, this resource investment can be depleting and lead to fatigue at the end of the workday.

Fatigue has been defined as extreme tiredness and reduced capacity that is experienced during the workday as well as at the end of the workday
Frone and Tidwell (2015) suggest that three types of work fatigue exist, namely physical, cognitive, and emotional fatigue. While there is a large amount of cross-sectional research investigating links between demands, fatigue, as well as performance and well-being outcomes (e.g., Querstret & Cropley, 2012; Sluiter et al., 2003), diary studies are still rather scarce, especially in jobs that are not (physically) demanding at first sight. Until now, the few studies that have investigated fatigue over a workday confirm that fatigue is not static but can fluctuate from day to day (Gross et al., 2011; Kuba & Scheibe, 2017) and within days (Grech, Neal, Yeo, Humphreys, & Smith, 2009; Zacher, Brailsford, & Parker, 2014).

Reasons for experiencing work fatigue may be resource depletion, scarcity of new resources, and high work demands (Demerouti et al., 2001). According to conservation of resources (COR) theory (Hobfoll, 1989), resources are defined as means for goal attainment and can be individual or contextual characteristics. Job demands are physical, environmental, or social aspects of the job that require physical or mental efforts (Demerouti et al., 2001). Resources can get depleted as people seek to fulfil multiple demands and opportunities to recover are scarce. The job demands-resources model (JD-R; Bakker & Demerouti, 2007) builds on COR theory and states that fatigue is a possible result of resource depletion caused by high work demands (Demerouti et al., 2001). These assumptions have also been tested empirically, for instance by Van Yperen and Hagedoorn (2003), who showed that high job demands are associated with fatigue. Interestingly, the authors further found that this effect was only present when job resources were low. Hence, high job demands are not necessarily associated with increased fatigue if there are resources that can counteract the high demands. We suggest that by restricting current goals through elective selection and loss-based selection, resources are preserved better or invested more cautiously. This leads to a better management of the available resources and prevents work fatigue because there are sufficient resources left to counteract high demands.

Hypothesis 1a: At the within-person level and accounting for previous fatigue levels, the use of selection-focused strategies (i.e., elective selection and loss-based selection) is negatively related to work fatigue at the end of a workday.
Previous research confirms the theoretical assumption that fatigue occurs through resource depletion (e.g., J. Chen, Daraiseh, Davis, & Pan, 2014; Ilies, Huth, Ryan, & Dimotakis, 2015; Sluiter et al., 2003). However, a study by Earle and colleagues (2015) shows that the link between task demands and fatigue is mediated by the effort that is invested in task completion. We suggest that relative to selection-focused strategies, pursuit-focused strategies (i.e., optimization and compensation) are more effortful strategies and can therefore lead to more fatigue at the end of the workday. Investing resources to reach desired outcomes, as in optimization, or searching for and applying compensatory means, as in compensation, is resource depleting and costs effort. We therefore assume that engaging in optimization and compensation can be seen as resource depleting activities because they require a great amount of effort investment in a previously selected goal. Based on theory and past research, we further assume that this resource investment will lead to increased levels of fatigue at work.

Hypothesis 1b: At the within-person level and accounting for previous fatigue levels, the use of pursuit-focused strategies (i.e., optimization and compensation) is positively related to work fatigue at the end of a workday.

SOC Strategy Use and Job Satisfaction

Meta-analytic results show that individual differences in SOC strategy use relate positively to global job satisfaction (Moghimi et al., 2017). However, some studies report negative or non-significant results between some of the SOC components and job satisfaction. For instance, one of the first studies to assess SOC strategy use in the work context found that the relationship between compensation and job satisfaction was negative (Abraham & Hansson, 1995). Another study found that compensation strategies were not significantly associated with job satisfaction, while there was a positive relationship of selection and optimization with job satisfaction (Wiese et al., 2000). Schmitt and colleagues (2012) conducted a daily diary study across four days and showed that the relationship between daily SOC use (aggregated across the four dimensions) and daily job satisfaction was positive. Apparently, support for the positive relationship between SOC strategy use and job satisfaction is equivocal, which may be explained by
the reliance on overall indices of SOC strategies rather than the individual SOC dimensions.

In the present study, we hypothesized that preference-based strategies (i.e., elective selection and optimization) are positively related to daily job satisfaction while loss-based strategies (i.e., loss-based selection and compensation, see Figure 1) are negatively related to daily job satisfaction. When engaging in preference-based strategies, employees may feel neither restricted in goal selection and the development of a goal hierarchy, nor in the means required for the pursuit of the selected goals. This is likely to be positively associated with job satisfaction. In contrast, when engaging in loss-based strategies, one is required to focus on a goal that was originally not preferred or pursue a goal with alternative means. The mere act of having to deviate from one’s initial goal pursuit, implies a defeat which may be negatively associated with satisfaction (Locke & Latham, 2002).

Hypothesis 2a: At the within-person level and accounting for previous satisfaction levels, the use of preference-based strategies (i.e., elective selection and optimization) is positively related to job satisfaction at the end of a workday.

Hypothesis 2b: At the within-person level and accounting for previous satisfaction levels, the use of loss-based strategies (i.e., loss-based selection and compensation) is negatively related to job satisfaction at the end of a workday.

In addition to our hypotheses, we tested whether the hypothesized within-person relationships between daily SOC strategy use and daily fatigue and job satisfaction can be replicated at the **between-person level**. This approach allows us to address one of the previously mentioned shortcomings of SOC at work research – that is, the neglect to consider individual SOC dimensions on the within- and between-person level at the same time. With our approach, we intend to test the claim that SOC strategy use can be considered as a trait-like variable as well as a state (Moghimi et al., 2019). To disentangle between and within-person variation in the variables of interest, we model the hypothesized relationship on both levels of analysis.

Furthermore, to challenge our main assumption that the action-regulation strategies of selection, optimization, and compensation
affect employees’ daily levels of fatigue and job satisfaction, we tested the reversed temporal order as well. Goal-setting research suggests significant relationships between variables such as positive affect, vitality, engagement, fatigue, and satisfaction, on the one hand, and goal setting, on the other (Locke & Latham, 2002). For example, Richard and Diefendorff (2011) demonstrated that mood affects goal revision, with positive mood being positively related to goal revision, and negative mood being negatively related to goal revision. Merlo, Shaughnessy, and Weiss (2017) further showed that negative affective states lead to less attentional allocation and regulation, which in turn leads to decreased performance, while the reversed is true for positive affective states. Given these findings, there is reason to assume similar patterns in the present study. That is, our indicators of daily well-being (i.e., fatigue and satisfaction) may enhance or inhibit employees’ use of SOC strategies. Therefore, we also model fatigue and satisfaction as predictors of SOC strategies.

Method

Participants and Procedure
Data was collected with the help of an internet panel company that approached full-time employees in the United Kingdom with a minimum age of 18 years. Before the start of the daily diary phase, participants were asked to fill out a baseline questionnaire that took about 20 minutes to complete. Daily data were collected over the course of ten work days, hence two weeks. On each of the ten work days participants received three short questionnaires that took between 5 to 10 minutes to complete. The first daily questionnaire was sent out every morning, before the start of the workday. This first questionnaire did not contain any variables of interest for the present study and is not considered further. The second daily questionnaire (and the first one of interest for the present study) was sent out at noon, around the time of the lunch break, and the last daily questionnaire was sent out every afternoon, around the time of the end of the workday. Each survey was active for two hours. By controlling the time window for completion, we intended to decrease the effects of memory and
method bias (i.e., Beal, 2015) and assure that all surveys were completed at work or very shortly after work. Participants were incentivized for participation in the baseline survey, for each daily entry, with a bonus for each complete day, and an additional bonus for ten complete days.

This procedure resulted in 20 possible observations of interest per participant (10 midday and 10 end-of-workday surveys). After excluding double entries, invalid entries, and daily entries that could not be matched with a respective baseline questionnaire, we obtained 2,408 daily records comprising midday and/or end-of-workday entries (out of 3,510 possible entries) from 351 participants. In order to be able to make meaningful predictions regarding the outcome variables of interest, we only included participants who had at least one day where both midday and end-of-workday measurements were present. This resulted in a final sample of 2,058 daily records from 244 participants (8.4 out of 10 possible daily records per participant).

Of the 244 participants, 63.1% were male and 36.9% were female. The mean age of the sample was 43.4 years (SD = 13.0) and ranged between 19 and 73 years. The majority of participants was English (85%), 5.7% were Scottish, 2.3% were Irish, and 7% indicated having another nationality (e.g., Indian, German, Dutch). In terms of education, 30% of the participants had a bachelor’s degree, 14.2% had a master’s degree, 14.1% had done some college, and 14% had a high school degree. The sample included a broad array of occupational sectors: 16.2% were working in manufacturing, 13.1% in customer service, 10.7% in education, 8% in health care, and 51.9% indicated other fields of work such as transportation, logistics, staffing, management, IT, consulting, and sales. Given that participants in the study were required to have a full-time job the range of work hours was between 40 to 60 hours per week.

Measures

SOC strategies

An adjusted version of the original 12-item SOC questionnaire (Baltes, Baltes, Freund, & Lang, 1999) was used to assess SOC strategy use at midday and at the end of the workday with three items for each strategy.
The original SOC questionnaire consists of two possible response options per item, where one option represents a SOC behavior and the other one a non-SOC behavior. The respondents are asked to pick the option that resembles their own behavior most and then indicate on a Likert scale to what extent that behavior resembles their own behavior. In the adjusted version we used, each item presented a particular SOC strategy (see Zacher & Frese, 2011). Furthermore, the adjusted items referred specifically to the work setting and to the morning or afternoon by adding the words “this morning at work” or “this afternoon at work” at the beginning of each sentence (e.g., Schmitt et al., 2012; Zacher, Chan, Bakker, & Demerouti, 2015). Thus, at lunch time, SOC strategy use during the morning hours was assessed retrospectively. At the end of the work day, SOC strategy use during the afternoon hours was assessed retrospectively. By asking the participants to assess their SOC use retrospectively for the previous hours, we intended to capture a time period that is long enough to be able to engage in such strategies but brief enough to avoid memory bias.

Sample items from the end-of-workday survey are: “This afternoon at work, I concentrated all my energy on a few things” (elective selection), “This afternoon, when things at work didn’t go as well as they have in the past, I chose one or two important goals” (loss-based selection), “This afternoon at work, I kept working on what I had planned until I succeeded” (optimization), and “This afternoon, when things at work didn’t go as well as they used to, I kept trying other ways until I achieved the same result I used to” (compensation). Items were rated on a 7-point scale ranging from 1 (strongly disagree) to 7 (strongly agree).

Cronbach’s alphas of midday SOC strategies across the ten days ranged between .64 - .88 for elective selection, .77 - .87 for loss-based selection, .79 - .93 for optimization, and .70 - .86 for compensation. For the end-of-the-day measures, daily alphas ranged between .58 - .85 for elective selection, .76 - .85 for loss-based selection, .86 - .96 for optimization, and .73 - .85 for compensation.

Fatigue

Physical, cognitive, and emotional fatigue were assessed with one item each from the Three-Dimensional Work Fatigue Inventory (3D-WFI; Frone
& Tidwell, 2015). Per subscale, we chose the item with the highest factor loading. The 3D-WFI originally measures fatigue over the past 12 months. We adapted the items to match the current state of fatigue by changing the beginning of each item to “To what extent do you currently...” A similar approach has been suggested and validated by Van Hooff, Geurts, Kompier, and Taris (2007). The three items are “To what extent do you currently feel physically worn out?” (physical fatigue), “To what extent do you currently feel mentally exhausted?” (cognitive fatigue), and “To what extent do you currently want to avoid anything that takes too much emotional energy?” (emotional fatigue). All questions were rated on a 5-point scale ranging from 1 (not at all) to 5 (a great deal) and were combined into one fatigue total score, with reliabilities across the ten days ranging from .83 to .93 for midday fatigue, and from .78 to .93 for end-of-workday fatigue.

Job satisfaction

Based on recommendations by Wanous, Reichers, and Hudy (1997) we employed a single-item measure to assess job satisfaction as our study required very short daily surveys. Just like SOC strategy use, job satisfaction was assessed retrospectively for the previous hours. Thus, we adapted the validated item by Dolbier, Webster, McCalister, Mallon, and Steinhardt (2005) by adding the words “this morning” or “this afternoon” (e.g., “Taking everything into consideration, how did you feel about your job as a whole this morning?”) to fit the daily diary study design. The response scale ranged from 1 (extremely dissatisfied) to 7 (extremely satisfied).

Analytic Approach

To investigate within-day change in work fatigue and job satisfaction as a result of SOC strategy use, we adopted a multilevel modeling approach using Mplus 7 (Muthén & Muthén, 2007). For this purpose, we modelled SOC strategies, fatigue, and job satisfaction as Level-1 variables that were nested within participants (Level 2). We tested all hypotheses simultaneously using a multilevel structural equation modeling approach. At both levels, end-of-workday fatigue and end-of-workday job satisfaction were both predicted by end-of-workday SOC strategy use. At Level 1, we sought to partial out fluctuations in end-of-workday fatigue and end-
of-workday job satisfaction that were due to different starting-levels of fatigue and job satisfaction at midday; we therefore statistically accounted for midday fatigue and midday job satisfaction. At both levels, the two occupational well-being indicators were allowed to co-vary; the same applied to the four SOC strategies (see Figure 2).

After testing our hypotheses, we conducted a supplementary analysis including age at the between-person level because age is often assumed to be a strong predictor of SOC strategies, due to the resource declines that many older individuals face (Baltes, 1987). To control for that, age was included as a control variable at Level 2 and centered around the grand-mean (Enders & Tofighi, 2007). Furthermore, to overcome difficulties with the interpretability of the coefficients due to large differences in scales (i.e., age measured in years, core constructs measured on scales ranging from 1 to 7), we divided age by 10. For all analyses, the maximum likelihood estimator was used.

In the reversed-order analysis, work fatigue and job satisfaction measured at midday predicted SOC strategy use measured at the end of the workday at both levels. At Level 1, midday SOC strategy use was added as a covariate and centered around the group-mean. At both levels, the four SOC strategies were allowed to co-vary (see Figure 3). Subsequently, age was added to the model as a Level-2 covariate, again to control for any effects that employee age might have on well-being outcomes.

Results

Preliminary Analyses

Table 1 depicts the means, standard deviations, and intercorrelations of the study variables. Furthermore, it provides the interclass-correlation coefficients (ICC) for the day-level variables which were estimated in a null-model. As can be seen, the ICCs of our dependent variables ranged from .37 (end-of-workday elective selection) to .59 (end-of-workday job satisfaction). All in all, the ICCs confirm that there is sufficient within- and between-person variability in the day-level variables, justifying a multilevel approach.
Table 1 shows that at the between-person level (below the diagonal) aggregated midday measures of each SOC strategy correlated highly with the respective after-work measure with correlations ranging from $r = .95$ to $r = .97$. However, at the within-person level, the correlations between each SOC strategy measured at midday and the respective end-of-workday measure were much lower, yet still significant, and ranged from $r = .22$ to $r = .29$. Furthermore, Table 1 provides some support for our classification of SOC strategies into preference-based strategies and loss-based strategies (see Figure 1). The preference-based strategies of elective selection and optimization were relatively highly correlated, both at the person-level ($r = .81, p < .001$) and at the day-level ($r = .45, p < .001$). The loss-based strategies of loss-based selection and compensation were also highly correlated at the person-level ($r = .78, p < .001$) and moderately correlated at the day-level ($r = .32, p < .001$).

Given the high correlations between some SOC dimensions, we examined the factor structure of the daily survey items by conducting multilevel confirmatory factor analyses. Specifically, separately for the midday and end-of-the-day SOC measures, we tested our 4-factor model (see Figure 1) against (1) a 1-factor model in which all 12 items of the SOC questionnaire loaded onto a single common factor, (2) a 2-factor model in which selection-focused strategies (i.e., elective selection and loss-based selection) loaded on one factor and pursuit-focused strategies (i.e., optimization and compensation) loaded on another factor, and (3) a 2-factor model in which preference-based strategies (i.e., elective selection and optimization) loaded on one factor and loss-based strategies (i.e., loss-based selection and compensation) loaded on another factor. Table 2 shows that these confirmatory factor analyses revealed the best model fit for the 4-factor model for midday measures.

Predicting Work Fatigue

Figure 2 depicts a summary of the tested hypotheses and the way these hypotheses were modelled in Mplus. Based on commonly used cutoff scores (Byrne, 2011), we conclude that the model achieved satisfactory fit statistics ($X^2 = 32.312, df = 2, p < .001$; RMSEA = .089; CFI = .986; SRMR for within = .027, between = .001).
Table 1. Means, Standard Deviations, ICCs, and Correlations Between Variables at the Person-Level (Below the Diagonal) and at the Day-Level (Above the Diagonal)

<table>
<thead>
<tr>
<th>Variable</th>
<th>M</th>
<th>SD</th>
<th>ICC</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Midday elective selection</td>
<td>4.90</td>
<td>1.16</td>
<td>.39</td>
<td>—</td>
<td>.40</td>
<td>.49</td>
<td>.25</td>
<td>-1.0</td>
<td>.25</td>
<td>.22</td>
<td>.13</td>
<td>.16</td>
<td>.03</td>
<td>.08</td>
<td>.10</td>
</tr>
<tr>
<td>2. Midday loss-based selection</td>
<td>4.14</td>
<td>1.24</td>
<td>.41</td>
<td>.28</td>
<td>—</td>
<td>.18</td>
<td>.28</td>
<td>.02</td>
<td>.00</td>
<td>.17</td>
<td>.24</td>
<td>.04</td>
<td>.16</td>
<td>.02</td>
<td>-1.0</td>
</tr>
<tr>
<td>3. Midday optimization</td>
<td>5.39</td>
<td>1.31</td>
<td>.28</td>
<td>.37</td>
<td>.97</td>
<td>.36</td>
<td>.82</td>
<td>.53</td>
<td>.41</td>
<td>—</td>
<td>.34</td>
<td>.45</td>
<td>.24</td>
<td>.01</td>
<td>.16</td>
</tr>
<tr>
<td>4. Midday compensation</td>
<td>4.49</td>
<td>1.24</td>
<td>.52</td>
<td>.38</td>
<td>.79</td>
<td>.37</td>
<td>—</td>
<td>-0.06</td>
<td>.13</td>
<td>.15</td>
<td>.18</td>
<td>.15</td>
<td>.23</td>
<td>.06</td>
<td>.08</td>
</tr>
<tr>
<td>5. Midday fatigue</td>
<td>2.10</td>
<td>0.94</td>
<td>.51</td>
<td>-.33</td>
<td>.16</td>
<td>-.28</td>
<td>-.14</td>
<td>—</td>
<td>-.41</td>
<td>-.04</td>
<td>.00</td>
<td>-.10</td>
<td>-.02</td>
<td>.43</td>
<td>-.27</td>
</tr>
<tr>
<td>6. Midday satisfaction</td>
<td>5.32</td>
<td>1.36</td>
<td>.59</td>
<td>.48</td>
<td>.01</td>
<td>.51</td>
<td>.07</td>
<td>-.60</td>
<td>—</td>
<td>.10</td>
<td>.07</td>
<td>.14</td>
<td>.05</td>
<td>-.29</td>
<td>.37</td>
</tr>
<tr>
<td>7. End-of-workday elective selection</td>
<td>4.91</td>
<td>1.16</td>
<td>.37</td>
<td>.97</td>
<td>.36</td>
<td>.82</td>
<td>.53</td>
<td>-.26</td>
<td>.41</td>
<td>—</td>
<td>.34</td>
<td>.45</td>
<td>.24</td>
<td>.01</td>
<td>.16</td>
</tr>
<tr>
<td>8. End-of-workday loss-based selection</td>
<td>4.14</td>
<td>1.24</td>
<td>.49</td>
<td>.37</td>
<td>.95</td>
<td>.20</td>
<td>.77</td>
<td>.15</td>
<td>.05</td>
<td>.45</td>
<td>—</td>
<td>.19</td>
<td>.32</td>
<td>.09</td>
<td>.03</td>
</tr>
<tr>
<td>9. End-of-workday optimization</td>
<td>5.39</td>
<td>1.31</td>
<td>.47</td>
<td>.79</td>
<td>.15</td>
<td>.96</td>
<td>.40</td>
<td>-.27</td>
<td>.47</td>
<td>.81</td>
<td>.23</td>
<td>—</td>
<td>.38</td>
<td>-.07</td>
<td>.33</td>
</tr>
<tr>
<td>10. End-of-workday compensation</td>
<td>4.49</td>
<td>1.24</td>
<td>.56</td>
<td>.39</td>
<td>.75</td>
<td>.39</td>
<td>.97</td>
<td>.11</td>
<td>.10</td>
<td>.53</td>
<td>.78</td>
<td>.43</td>
<td>—</td>
<td>.00</td>
<td>.16</td>
</tr>
<tr>
<td>11. End-of-workday fatigue</td>
<td>2.51</td>
<td>1.60</td>
<td>.49</td>
<td>-.17</td>
<td>.21</td>
<td>-.13</td>
<td>.22</td>
<td>.89</td>
<td>-.46</td>
<td>.07</td>
<td>.24</td>
<td>-.07</td>
<td>.18</td>
<td>—</td>
<td>-.34</td>
</tr>
<tr>
<td>12. End-of-workday satisfaction</td>
<td>5.30</td>
<td>1.31</td>
<td>.59</td>
<td>.46</td>
<td>.00</td>
<td>.47</td>
<td>.07</td>
<td>-.56</td>
<td>.97</td>
<td>.38</td>
<td>.04</td>
<td>.47</td>
<td>.08</td>
<td>-.45</td>
<td>—</td>
</tr>
<tr>
<td>13. Age</td>
<td>43.43</td>
<td>13.23</td>
<td>—</td>
<td>.09</td>
<td>-.08</td>
<td>.19</td>
<td>-.13</td>
<td>-.27</td>
<td>.26</td>
<td>.06</td>
<td>-.09</td>
<td>.17</td>
<td>-.10</td>
<td>-.26</td>
<td>.22</td>
</tr>
</tbody>
</table>

Note. Level 1 N = 2058. Level 2 N = 244. ICC = Interclass correlations, indicating proportion of variance at the day-level. *p < .05. **p < .01. ***p < .001.
Table 2. Goodness-of-fit Indicators for Multilevel Confirmatory Factor Analysis of SOC Strategy use at Midday and at the End of the Workday

<table>
<thead>
<tr>
<th>Model</th>
<th>X²</th>
<th>df</th>
<th>p</th>
<th>CFI</th>
<th>RMSEA</th>
<th>SRMS within</th>
<th>SRMS between</th>
<th>S-BX²(df)</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Midday</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-factor model</td>
<td>1874.450</td>
<td>108</td>
<td>.001</td>
<td>.527</td>
<td>.101</td>
<td>.155</td>
<td>.517</td>
<td>1776.789</td>
<td>12</td>
<td>.001</td>
</tr>
<tr>
<td>2-factor model selection vs. pursuit</td>
<td>1383.654</td>
<td>107</td>
<td>.001</td>
<td>.658</td>
<td>.087</td>
<td>.145</td>
<td>.669</td>
<td>1730.805</td>
<td>11</td>
<td>.001</td>
</tr>
<tr>
<td>2-factor model loss vs. preference</td>
<td>2161.381</td>
<td>107</td>
<td>.001</td>
<td>.450</td>
<td>.110</td>
<td>.100</td>
<td>.110</td>
<td>346.393</td>
<td>11</td>
<td>.001</td>
</tr>
<tr>
<td>4-factor model</td>
<td>260.479</td>
<td>96</td>
<td>.001</td>
<td>.956</td>
<td>.033</td>
<td>.032</td>
<td>.088</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>End-of-workday</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-factor model</td>
<td>1251.047</td>
<td>108</td>
<td>.001</td>
<td>.624</td>
<td>.085</td>
<td>.122</td>
<td>.284</td>
<td>541.169</td>
<td>12</td>
<td>.001</td>
</tr>
<tr>
<td>2-factor model selection vs. pursuit</td>
<td>914.434</td>
<td>107</td>
<td>.001</td>
<td>.734</td>
<td>.072</td>
<td>.097</td>
<td>.233</td>
<td>337.909</td>
<td>11</td>
<td>.001</td>
</tr>
<tr>
<td>2-factor model loss vs. preference</td>
<td>874.144</td>
<td>107</td>
<td>.001</td>
<td>.748</td>
<td>.070</td>
<td>.084</td>
<td>.108</td>
<td>406.342</td>
<td>11</td>
<td>.001</td>
</tr>
<tr>
<td>4-factor model</td>
<td>251.839</td>
<td>96</td>
<td>.001</td>
<td>.949</td>
<td>.033</td>
<td>.037</td>
<td>.079</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Note. Level 1 N_{Midday} = 1590. Level 2 N_{Midday} = 244. Level 1 N_{Afternoon} = 1459. Level 2 N_{Afternoon} = 244. SOC = selection, optimization, compensation. CFI = comparative fit index. RMSEA = root mean square error. SRMR = standardized root mean square residual. ΔS-BX² = Satorra-Bentler chi square difference test.
Hypothesis 1a predicted that the use of selection-focused strategies results in decreased levels of fatigue at the end of the workday. As can be seen in Table 3 at the within-person level and accounting for previous fatigue levels, the use of selection-focused strategies (i.e., elective selection and loss-based selection) was not negatively related to end-of-workday fatigue, which fails to provide empirical support for Hypothesis 1a. Rather, at both the within-person level \((B = .09, p < .001) \) and the between-person level \((B = .30, p = .03) \), the use of loss-based selection in the afternoon was the only strategy that was related to fatigue and this relationship was positive.

Hypothesis 1b predicted that the use of pursuit-focused strategies results in increased levels of end-of-workday fatigue. As can be seen in Table 3, accounting for midday fatigue, we found no empirical support for this hypothesis on neither level of analysis.

Predicting Job Satisfaction

According to Hypothesis 2a, we expected a positive relationship between preference-based strategies and end-of-workday job satisfaction. Table 3 reveals that we could partly confirm this hypothesis, as there was a positive relationship between the use of optimization in the afternoon and end-of-workday job satisfaction \((B = .29, p < .001) \). Also at the between-person level, optimization was positively related to end-workday-job satisfaction \((B = .73, p < .001) \). However, at neither level, positive relationships between elective selection and job satisfaction were found.

Hypothesis 2b predicted a decrease in end-of-workday job satisfaction as a result of the use of loss-based strategies. Results partly support this hypothesis as well. At the within-person level, the use of loss-based selection was indeed associated with lower levels of job satisfaction at the end of the workday \((B = -.06, p = .03) \). Unexpectedly however, at the within-person level, the use of compensation in the afternoon was associated with increased levels of job satisfaction at the end of the workday \((B = .06, p = .04) \). At the between-person level, the only strategy that significantly predicted end-of-workday job satisfaction was the strategy of optimization \((B = .73, p < .001) \).
Figure 2. Hypothesized model with resulting unstandardized coefficients. Dotted lines represent non-significant paths. For clarity, only significant coefficients are depicted and covariance coefficients are omitted. * $p < .05$. ** $p < .01$. *** $p < .001$.
Table 3. Unstandardized Coefficients from MSEM Predicting End-of-Workday Fatigue and End-of-Workday Job Satisfaction

<table>
<thead>
<tr>
<th>Variable</th>
<th>End-of-workday fatigue</th>
<th></th>
<th></th>
<th>End-of-workday job satisfaction</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>SE</td>
<td>p</td>
<td>B</td>
<td>SE</td>
<td>p</td>
</tr>
<tr>
<td>Within-person level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective selection</td>
<td>-.004</td>
<td>.025</td>
<td>.878</td>
<td>.019</td>
<td>.029</td>
<td>.523</td>
</tr>
<tr>
<td>Loss-based selection</td>
<td>.089***</td>
<td>.025</td>
<td>.001</td>
<td>-.064*</td>
<td>.029</td>
<td>.027</td>
</tr>
<tr>
<td>Optimization</td>
<td>-.049</td>
<td>.028</td>
<td>.082</td>
<td>.287***</td>
<td>.033</td>
<td>.001</td>
</tr>
<tr>
<td>Compensation</td>
<td>.001</td>
<td>.027</td>
<td>.960</td>
<td>.064*</td>
<td>.032</td>
<td>.043</td>
</tr>
<tr>
<td>Midday fatigue/satisfaction</td>
<td>.458***</td>
<td>.033</td>
<td>.001</td>
<td>.299***</td>
<td>.031</td>
<td>.001</td>
</tr>
<tr>
<td>Residual variance</td>
<td>.475***</td>
<td>.020</td>
<td>.001</td>
<td>.638***</td>
<td>.027</td>
<td>.001</td>
</tr>
<tr>
<td>Between-person level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective selection</td>
<td>-.359</td>
<td>.196</td>
<td>.067</td>
<td>.000</td>
<td>.243</td>
<td>.999</td>
</tr>
<tr>
<td>Loss-based selection</td>
<td>.301*</td>
<td>.139</td>
<td>.030</td>
<td>.054</td>
<td>.173</td>
<td>.756</td>
</tr>
<tr>
<td>Optimization</td>
<td>.103</td>
<td>.166</td>
<td>.534</td>
<td>.726***</td>
<td>.205</td>
<td>.001</td>
</tr>
<tr>
<td>Compensation</td>
<td>.035</td>
<td>.129</td>
<td>.785</td>
<td>-.208</td>
<td>-.160</td>
<td>.195</td>
</tr>
<tr>
<td>Residual variance</td>
<td>.504***</td>
<td>.059</td>
<td>.001</td>
<td>.805***</td>
<td>.091</td>
<td>.001</td>
</tr>
</tbody>
</table>

Note. Level 1 N = 1935. Level 2 N = 244. MSEM = Multilevel structural equation modelling. *p < .05. ** p < .01. *** p < .001.
Supplementary Analyses: Accounting for Age at Level 2
Given the significant correlations between age and optimization, fatigue, and satisfaction (see Table 1) and prior theorizing that age predicts the effectiveness of SOC strategy use, we conducted supplementary analyses with age as a covariate at the between-person-level. Results show that age was negatively related to end-of-workday fatigue ($B = -.13, p = .001$) and positively related to end-of-workday satisfaction ($B = .10, p = .045$). Including age at the between-person level did not affect any of the previously found results between SOC strategies and end-of-workday fatigue and satisfaction.

Exploratory Analyses: Reversed Temporal Order
The focus of the present study was on the effects of using SOC strategies on within-day change in fatigue and satisfaction. However, as discussed, the reverse relationships might also be true. Therefore, we tested a model where end-of-workday SOC strategy use is predicted by midday-fatigue and midday satisfaction. As in the previous analyses, we modeled the same model on both levels, controlling for midday-SOC use at the within-person level. Figure 3 depicts a summary of the exploratory analyses; this model also achieved satisfactory fit ($\chi^2 = 56.034, df = 12, p < .001; \text{RMSEA} = .044; \text{CFI} = .986; \text{SRMR for within} = .034, \text{between} = .003$).

As can be seen in Table 4, at the within-person level, midday-satisfaction was positively related to the use of loss-based selection at the end of the workday ($B = .09, p = .01$). All other paths were non-significant, providing only very limited evidence that midday levels of occupational well-being drive within-day changes in SOC strategy use. Remarkably, at the between-person level, most coefficients were significant, revealing an interesting pattern of relationships (see Table 4). Specifically, a person’s average level of midday job satisfaction was positively linked to the use of all four SOC strategies (elective selection: $B = .26, p < .001$, loss-based selection: $B = .17, p = .03$, optimization: $B = .36, p < .001$, and compensation: $B = .22, p = .01$). Moreover, a person’s average level of midday fatigue was related to the use of the two loss-based strategies (loss-based selection: $B = .37, p = .003$ and compensation: $B = .35, p = .01$) but unrelated to the two preference-based strategies (elective selection and optimization, both $ps > .05$).
Figure 3. Exploratory analyses of the reversed temporal order. Dotted lines represent non-significant paths. For clarity, only significant coefficients are depicted and co-variance coefficients are omitted. *p < .05. **p < .01. ***p < .001.
Discussion

The goal of the present study was to extend SOC at work research by focusing on relationships between the use of single SOC strategies and change in fatigue and job satisfaction across a workday. In contrast to previous research that treated the four SOC strategies as more or less comparable in their effects on occupational well-being, we developed different predictions for selection- vs. pursuit-focused strategies and for preference vs. loss-based strategies. We conducted a daily diary study over ten consecutive workdays and argued that selection-focused strategies are negatively related to end-of-workday fatigue because they help to distribute resources adaptively while pursuit-focused strategies are positively related to end-of-workday fatigue because they require resource investment. Moreover, we predicted that preference-based strategies positively predict job satisfaction while loss-based strategies negatively predict job satisfaction because one has to deviate from an initial, preferred goal or pursuit strategy. By looking at each strategy at the day-level as well as at the person-level we intended to overcome previous shortcomings in SOC-at-work research.

Regarding the distinction between selection and pursuit-focused strategies and their relation to fatigue, our results show that only the strategy of loss-based selection is significantly related to end-of-workday fatigue and this relationship also holds at the between-person level. However, the nature of this relationship is opposed to what we hypothesized, namely, loss-based selection predicted higher (not lower) levels of work fatigue at the end of the workday. Gross and colleagues (2011) found results that may help explain our finding. In a study regarding the relationship between affective work events and after-work fatigue, the authors found a positive relationship between the study variables. Among the reported negative events were examples such as time shortage or the loss of the personal workspace. In accordance with SOC theory, these negative events can be defined as resource losses that require the use of loss-based selection. It is possible that those negative events that constitute resource losses lead to emotion-regulatory processes which are tiring in and of themselves, thus overlaying any resource-saving benefits from loss-based selection.
The present study and the reported study by Gross and colleagues (2011) both lend support to the idea that the loss of work-relevant resources can result in increased fatigue levels. What yet remains unclear is whether the increased end-of-workday fatigue levels should be attributed to the negative affectivity and associated emotion-regulatory efforts when facing resource losses, or whether they should rather be attributed to the constant need to reorganize goal hierarchies and prioritize new work goals.

Regarding elective selection, optimization, and compensation, the present study could not confirm any significant associations with fatigue on neither level of analysis. The lack of support for the other hypothesized relationships implies that work fatigue is mostly unrelated to the use of SOC strategies on the daily level. These results are in line with a study conducted by Schmitt and colleagues (2012) who investigated the within-person relationships between daily SOC strategy use and work fatigue as a function of daily problem solving demands, which also failed to find a significant relationship between SOC strategy use and work fatigue (though without controlling for midday levels).

Regarding the distinction between preference-based and loss-based strategies and their relation to job satisfaction, findings were more in line with expectations, though not completely. We partly confirmed hypotheses by showing that the use of optimization is indeed positively related to end-of-workday job satisfaction (at both the within-person and between-person levels), whereas the use of loss-based selection is negatively related to end-of-workday job satisfaction (though only at the within-person level). These findings suggest that the act of pursuing one’s goals and investing resources in goal achievement – as in optimization – is a robust contributor to employee well-being both in the short run and in the long-run, when used chronically. In contrast, the use of loss-based selection may reduce satisfaction in the short-term but – consistent with SOC theory – may not have any harmful effects in the long run. According to goal-setting theory (Locke & Latham, 2002), selecting goals based on one’s personal preference but regardless of whether one is actually able to achieve them or not (i.e., elective selection), and without engaging any kind of goal-pursuit, should not evoke any strong positive nor negative feelings because goal achievement is the determinant of satisfaction with
selected goals. However, the act of having to select new goals because the previously selected goals are not achievable anymore (i.e., loss-based selection), implies a failure in goal-achievement which in turn results in lower levels of satisfaction or even dissatisfaction at least in the short-term. When used chronically, neither elective selection nor loss-based selection affect job satisfaction, implying that there is no harm in engaging in a loss-based selection strategy.

Interestingly, and opposed to our hypotheses, we found a positive relationship between the use of compensation in the afternoon and within-day change in job satisfaction (though no such relationship existed at the between-person level). This is surprising considering the loss-driven nature of compensation. However, a closer look at the aim of this strategy – goal pursuit – might clarify why a loss-driven strategy (i.e., compensation) is associated with beneficial well-being outcomes in the short term. It is consistent with SOC theory and goal-setting theory that achieving one’s goals fosters feelings of satisfaction (Baltes & Baltes, 1990; Locke & Latham, 2002). Goal-setting theory suggests that goals serve as the reference point for satisfaction vs. dissatisfaction and goal achievement is considered as the determinant of satisfaction with selected goals (Locke & Latham, 2002). The strategy of compensation is – despite its loss-based nature – a way of achieving one’s previously selected goals, hence a first step toward goal-achievement. We assume that the mere act of engaging in goal-pursuit already makes goal-achievement a way more probable outcome which could explain why goal-pursuit – regardless whether loss-driven or not – is associated with short-term increases in job satisfaction. However, when used habitually, compensation does not seem to have such benefits. This again seems somewhat counterintuitive as one might assume that the habitual use of compensation is negatively associated with well-being outcomes. However, our results showed that the habitual use of compensation does not affect well-being at all. This might be partly due to the idea that compensation, despite the preceding resource losses, helps to get things done. The positive feelings of achieving a goal and the negative feelings of losing resources might equal each other out and lead to a neither positive nor negative association between habitual compensation and well-being outcomes.
Although our basic assumptions were that SOC strategies affect well-being at work, our additional analyses suggest that at the between-person level, employees’ well-being may determine SOC strategy use rather than the reverse. Specifically, an overall higher job satisfaction at midday across days was associated with a greater overall use of all four SOC strategies in the afternoon. Interestingly, at the person-level higher fatigue levels at midday were positively related to loss-based selection and compensation. It is possible that employees who experience more work fatigue might need to rearrange their goal hierarchies more often – hence engage in more loss-based selection – because their energy levels do not allow them to pursue their work goals as planned. Hence, higher fatigue levels seem to only leave sufficient energy to engage in loss-based strategies but do not allow for the active engagement in preference-based strategies such as goal-selection and goal-pursuit. For future SOC research, these results imply that there might be a reciprocal relationship between SOC and well-being and the direction of this relationship might depend on the level analysis. Our results show that the well-being \(\rightarrow \) SOC relationship is mostly present at the person-level, thus one needs to experience generally high well-being in order to engage in SOC strategies. This idea is very much in line with previous studies that show that one needs resources to invest resources in form of SOC strategies (see Moghimi, Scheibe, Freund, 2019). In contrast, the SOC \(\rightarrow \) well-being link is mostly visible at the day-level indicating that in the short-term, SOC strategies drive daily well-being outcomes rather than the reverse. Our results clearly stress a need for looking at SOC strategies on the day- and person-level of analyses and considering that occupational well-being might not only be an outcome of SOC strategy use but also a predictor.

In the supplementary analyses, we included age as a covariate because SOC strategy use is assumed to be most useful to older individuals who experience greater losses in their personal resources (Baltes, 1987; Salthouse, 1996; Truxillo, Cadiz, Rineer, Zaniboni, & Fraccaroli, 2012). Results showed that age – theoretically a strong predictor of SOC strategy use (e.g., Freund & Baltes, 1998) – was negatively related to end-of-workday-fatigue, and positively related to end-of-workday job satisfaction, meaning that older employees end their workdays less fatigued and more
satisfied. While perhaps counterintuitive at first (older worker stereotypes are rather negative after all), these relationships have also been reported by other researchers (e.g., White & Spector, 1987; Winwood, Winefield, & Lushington, 2006) and have often been attributed to a better match between the employee and the job, greater personal resources, and asserting more agency and proactive behavior at work with increasing age (Ng & Feldman, 2013). Our results suggest that higher age is associated with resource gains at work that prevent older employees from feeling tired and exhausted and help them craft their jobs to their personal needs (see Moghimi, Scheibe, & Van Yperen, 2015).

All in all, the overall findings that person-level outcomes did not consistently resemble day-level outcomes lend support to the call that SOC strategies should be considered as a state and as a trait and should therefore be studied on the between- and within-person level (Moghimi et al., 2017). Furthermore, our results confirm the necessity to look at SOC strategies separately and not as aggregate scores as the relationships between our study variables vary in strength and direction. Finally, the reversed-temporal order analyses conveyed that relationships between SOC strategies and fatigue and satisfaction might be reciprocal especially when considered at the between-person level.

Implications

This study has a number of practical and theoretical implications. On the theoretical side, the present study is among the first to distinguish strategies that are directed at selection vs. pursuit and loss vs. preference in the work setting, and to further test specific hypothesis that were developed based on this distinction. Furthermore, we extended prior research by looking at SOC strategies as a trait as well as a state, and by looking at strategies separately rather than as aggregate scores. We contributed to SOC research by showing that there are indeed differences in within-person SOC (where loss-based selection was a negative predictor of end-of-workday job satisfaction) and between-person SOC (where loss-based selection did not significantly affect end-of-workday job satisfaction). Similarly, there are indeed differences between the four strategies’ consequences: Loss-based selection appears as a rather maladaptive strategy as it leads to increased
fatigue on the daily and person-level. Pursuit-focused strategies, thus compensation and optimization, are beneficial strategies when it comes to daily job satisfaction, but compensation does not affect job satisfaction when it is used as a habitual strategy. Finally, elective selection, is a strategy that is unrelated to work fatigue and job satisfaction on either level of analysis. Furthermore, we found a great deal of support for the idea that the relationship between SOC strategy use and affective well-being is rather reciprocal than one-directional. This idea can serve as a cornerstone of a new point of view on SOC strategies and should receive more attention in future SOC-at-work research.

This study also contributes to aging research by showing that higher age is not necessarily associated with decreased well-being at work. Rather, higher age brings with it advantages in occupational well-being at least when it comes to experiences of low fatigue and high job satisfaction. These findings also help to contradict many stereotypes that are associated with older employees and can therefore help to rectify the negative image that many employers hold about older employees.

The current study further presents a number of practical implications that can help employers and employees understand and react to daily fluctuations in occupational well-being. In the present study we showed that such fluctuations, on the one hand, can be affected by certain SOC strategies and on the other hand be a predictor SOC strategy use. This insight can be used to develop interventions and trainings to increase occupational well-being. In the past, there has been a first attempt to develop a SOC-training aiming at improving employee well-being (Müller, Heiden, Herbig, Poppe, & Angerer, 2016). Other action-regulation trainings show that goal selection or goal pursuit can indeed achieve beneficial effects for instance in form of career satisfaction (Raabe, Frese, & Beehr, 2007). The knowledge from the present study that the strategy of optimization is robustly associated with job satisfaction at the within- and between-person level can aid in the development of future trainings. For instance, trainings could focus on teaching employees the specific skill sets that they need to optimize the pursuit of their work goals. The results further help to derive specific actions that employers and employees can undertake in order to ensure job satisfaction. For instance, our results reveal that in
the short-term, pursuit strategies (i.e., optimization and compensation) are associated with job satisfaction regardless of the loss- or preference-based nature. Thus, loss of daily resources may lead to lower functioning only if employees cannot, or do not want to, access compensatory means. This further implies that providing the means for goal-pursuit and eventually goal achievement can help employees engage in optimization and compensation strategies and by doing so, improve their occupational well-being. Based on our results, we recommend that employers provide a work environment where employees have access to all necessary means for goal and task achievement. Additionally, we recommend that employees proactively seek the necessary means that they need to achieve their work goals, for instance in form of job crafting (Tims, Bakker, & Derks, 2012). Finally, assuring that employees are generally satisfied with their jobs, facilitates the habitual use of all SOC strategies which have been proven to be beneficial in work performance (e.g., Demerouti et al., 2014; Müller, De Lange, Weigl, Oxfart, & Van der Heijden, 2013; von Bonsdorff et al., 2014). Thus, we further recommend that job satisfaction receives great attention from employers and practitioners to ensure successful work outcomes for the individual and for the organization.

Limitations

One of the main limitations of the present study is that the degree of freedom to make independent decisions regarding goal selection and goal pursuit was disregarded. Our sample represents a wide range of sectors of which some might have less freedom to, for instance, organize their goal hierarchies based on preference (e.g., manufacturer or customer service employees) while others can shape their workdays mostly according to their personal preferences and needs (e.g., manager). It should be noted that the reported relationships might differ to some extent for jobs that offer high vs. low decision-making autonomy or for job that pose very different demands on employees such as physical labor or noise. At this stage, SOC research cannot provide conclusive results that cover a very wide range of white- and blue-collar jobs.

Furthermore, it should be noted that affective well-being comprises many more aspects than merely fatigue and satisfaction. In that sense, the
present study can be considered as a starting point for future studies.

Finally, it could be argued that information regarding goal-selection and goal-pursuit is not conveying the whole picture if goal-achievement is not considered as well. In the present study, we did not assess whether selected goals were also achieved or whether job satisfaction differed depending on achievement status. Future studies may assess whether work goals set in the morning hours were achieved by the end of the work day or at the end of each week.

The present study also poses some questions that in turn open new avenues for future research. For instance, future research could investigate which specific aspect of loss-based selection leads to negative outcomes for employees. We showed that the use of loss-based selection is associated with lower levels of work satisfaction and higher levels of work fatigue. It remains unclear which mechanisms underlie these relationships. Future research should investigate whether it is the act of reorganizing goals or the preceding loss of a resource that causes the increased fatigue levels at the end of the workday.

Furthermore, it is unclear how the SOC model could be linked to other models that describe work behavior. For instance researchers have found a similar pattern as our results regarding loss-based selection and well-being outcomes. In a meta-analysis of job crafting and work outcomes the associations between the job crafting dimension “decreasing hindering demands” and work outcomes indicated that this strategy is rather maladaptive (Rudolph, Katz, Lavigne, & Zacher, 2017). Both strategies (i.e., loss-based selection and decreasing hindering demands) are aimed at reducing workload or problematic work situations. Thus, theoretically, one would expect positive relationships with well-being outcomes; yet, empirical results are contradictory. Future research should focus on the similarities between the SOC strategies and other self-regulation strategies (e.g., emotion regulation; Scheibe, Spieler, & Kuba, 2016) that can explain occupational well-being.
Conclusion

Occupational well-being fluctuates across the workday, and such within-day fluctuations are at least partly due to employees’ use of the action-regulation strategies of selection, optimization, compensation. Our results indicate that within-day change in fatigue may be mainly driven by the use of daily loss-based selection, but not by the other three strategies. Within-day change in satisfaction, in contrast, may be driven by optimization and compensation which lead to increased satisfaction levels and loss-based selection which decreased end-of-workday job satisfaction. Additionally, we showed that higher age does not change the daily interplay of SOC and well-being, yet it is associated with overall lower levels of fatigue and higher levels of job satisfaction. Finally, analyses testing the reversed temporal order between our study variables suggested that daily occupational well-being mostly affects SOC strategy use at the person-level. Specifically, employees who were more satisfied with their jobs at midday engaged more in all four SOC strategies during the afternoon; employees who were more fatigued at midday rather engaged in loss-based strategies in the afternoon. These results show that it is important to acknowledge the different motivational drives that precede the use of each individual SOC strategy and consider reciprocal effects between SOC strategies and occupational well-being.