First Ionization Potentials of Fm, Md, No, and Lr: Verification of Filling-Up of 5f Electrons and Confirmation of the Actinide Series

Tetsuya K. Sato,* Masato Asai,‡ Anastasia Borschevsky,‡ Randolf Beerwerth,§⊥ Yusuke Kaneya,†||
Hiroyuki Makii,† Akina Mitsukai,† Yuichiro Nagame,†,‡ Akihiko Osa,† Atsunori Toyoshima,†
Kazuaki Tsukada,† Minoru Sakama,# Shinsaku Takeda,# Kazuhiro Ooe,V Daisuke Sato,V
Yudai Shigekawa,⊗ Shin-ichi Ichikawa,♦ Christoph E. Düllmann,¶ Jessica Grund,#△
Dennis Renisch,#△ Jens V. Kratz,‡ Matthias Schädel,♦ Ephraim Eliav,△ Uzi Kaldor,△
Stephan Fritzschke,§⊥ and Thierry Stora

†Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195, Japan
‡The Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, 9700 AB Groningen, The Netherlands
§Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität, 07743 Jena, Germany
⊥Helmholtz-Institut Jena, 07743 Jena, Germany
#Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki 310-8512, Japan
##Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
VGraduate School of Science and Technology, Niigata University, Niigata 910-2181, Japan
Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
◆Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198, Japan
□Institut für Kernchemie, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
▲Helmholtz-Institut Mainz, 55099 Mainz, Germany
♦GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel
⊗ISOLDE, CERN, 1211 Geneva, Switzerland

Supporting Information

ABSTRACT: We report the first ionization potentials (IP1) of the heavy actinides, fermium (Fm, atomic number Z = 100), mendelevium (Md, Z = 101), nobelium (No, Z = 102), and lawrencium (Lr, Z = 103), determined using a method based on a surface ionization process coupled to an online mass separation technique in an atom-at-a-time regime. The measured IP1 values agree well with those predicted by state-of-the-art relativistic calculations performed alongside the present measurements. Similar to the well-established behavior for the lanthanides, the IP1 values of the heavy actinides up to No increase with filling up the 5f orbital, while that of Lr is the lowest among the actinides. These results clearly demonstrate that the 5f orbital is fully filled at No with the [Rn]5f147s2 configuration and that Lr has a weakly bound electron outside the No core. In analogy to the lanthanide series, the present results unequivocally verify that the actinide series ends with Lr.

Extending the periodic table and classifying newly discovered heavy elements are among the most fundamental and exciting aspects of the chemical sciences. This leads to architect the periodic table and revise its structure in the heavy element region. The most recent revision of the structure of the periodic table took place in the 1940s when Glenn T. Seaborg introduced the ground-breaking actinide concept, placing a new actinide series below the lanthanides. In this new series, the 5f electron shell is filled in a manner similar to the filling of the 4f electron shell in lanthanides. The actinide concept did not only allow for the immediate discoveries of the elements 95, americium, and 96, curium, but was also instrumental for the discovery of heavier ones. Chemical properties of weighable amounts of nuclear-reactor-produced actinides up to Fm have been extensively studied. However, much less is known about the heavier actinides due to stringent limitation on experimental procedures with increasing atomic number as these heavy elements are available in decreasing quantities of only one atom at a time.

The first ionization potential (IP1) of an atom is one of the most fundamental chemical and physical quantities of every element. The first measurements of IP1 of actinides were performed by a surface ionization technique. Then laser spectroscopy and resonance ionization mass spectroscopy of macroscopically available actinides up to einsteinium have been conducted to measure accurate IP1 values.

Received: September 7, 2018
Published: October 25, 2018
Recently, we reported the successful measurement of IP$_1$ of Lr in an atom-at-a-time scale experiment using a method based on surface ionization coupled to mass separation and α-particle detection techniques. The result suggested that Lr has the lowest IP$_1$ value of all actinide elements, although those of other heavy actinides, Fm, Md, and No, have not yet been determined experimentally. According to the systematic variation of the IP$_1$ values of heavy actinides, an increasing trend is anticipated up to No due to filling electrons up in the 5f orbital.

Nobelium is expected to have the highest IP$_1$ among the actinides due to the closed-shell structure of [Rn]5f147s2. Very recently laser resonance ionization spectroscopy of No, using 254No (half-life, $T_{1/2} = 51.2$ s) in one-atom-at-a-time quantities, was performed and the IP$_1$ has been measured to be 6.62621 ± 0.00005 eV, supporting the scenario of closed 5f and 7s atomic shells in No. However, to unequivocally confirm the filling of the 5f electron shell in the heavy actinides, it is indispensable to experimentally determine the successive IP$_1$ values from Fm to Lr.

In the present study, we applied the earlier developed surface-ionization method to determine the IP$_1$ values of Fm, Md, and No. In addition, IP$_1$ of Lr has been also measured to improve the accuracy of the previously reported IP$_1$. Surface ionization process takes place on a solid surface kept at a high temperature and can be described by the Saha equation,

$$I_{\text{eff}} = \frac{N \exp \left(\frac{-\phi - \text{IP}_1^*}{kT}\right)}{1 + N \exp \left(\frac{-\phi - \text{IP}_1^*}{kT}\right)},$$

(1)

where N is a parameter that depends on the effective number of atom–surface interactions in the cavity, and k is the Boltzmann constant. IP$_1^*$, the effective IP$_1$, is directly related to the IP$_1$ as

$$\text{IP}_1^* = \text{IP}_1 - kT \ln \left(\frac{Q_i}{Q_0}\right)$$

(2)

where Q_i and Q_0 are the partition functions for the ion and atoms at a given temperature, which can be calculated using excitation energies and statistical weights of their ground and excited states. Thus, IP$_1^*$ can be calculated from the experimentally determined I_{eff} value of the isotope of interest via eq 1. Then, IP$_1^*$ can be converted to IP$_1$ using eq 2.

To confirm the correlation between I_{eff} and IP$_1^*$ in the present system, I_{eff} values of short-lived lanthanides, an alkali metal, and a chromium isotope were measured. The short-lived isotopes, 145Sm, 142Sm, 143Eu, 148Sm, 153Tb, 153Er, 162Tm, 165Yb, 168Lu, 80Rb, and 49Cr were employed. Figure 1 shows the typical plot of the measured I_{eff} values vs IP$_1^*$ of these elements at $T = 3000$ K. The IP$_1^*$ values of the above elements were calculated via eq 2 using their known IP$_1$ values compiled in the National Institute of Standard and Technology (NIST) atomic spectra database (ASD). Low-lying excited states for the calculation of Q_i and Q_0 were also taken from NIST ASD. Values of the parameter N were obtained by a best-fit with eq 1 to the measured I_{eff} values for the isotopes; summarized with the other quantities in Table 1. The determination of IP$_1^*$ for No from $I_{\text{eff}} = 0.77\%$ at $T = 3000$ K is depicted in Figure 1. The I_{eff} vs IP$_1^*$ plot at 2900 K for Md and Fm is shown in Supplement Figure S.

Table 1. IP$_1^*$ Obtained from I_{eff} and N at Temperature T

<table>
<thead>
<tr>
<th>Element</th>
<th>T (K)</th>
<th>I_{eff} (%)</th>
<th>N</th>
<th>IP$_1^*$ (eV)</th>
<th>$kT \ln(Q_i/Q_0)$ (eV)</th>
<th>IP$_1$ (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>249Fm</td>
<td>2900 ± 100</td>
<td>1.3 ± 0.4</td>
<td>71 ± 20</td>
<td>6.39 ± 0.13</td>
<td>0.13 ± 0.02</td>
<td>6.52 ± 0.13</td>
</tr>
<tr>
<td>251Md</td>
<td>2900 ± 100</td>
<td>1.2 ± 0.3</td>
<td>71 ± 20</td>
<td>6.43 ± 0.13</td>
<td>0.16 ± 0.01</td>
<td>6.59 ± 0.13</td>
</tr>
<tr>
<td>257No</td>
<td>2850 ± 80 3000 ± 100</td>
<td>0.54 ± 0.09 0.77 ± 0.10</td>
<td>43 ± 8 34 ± 7</td>
<td>6.44 ± 0.08 6.45 ± 0.08</td>
<td>0.17 ± 0.01 0.18 ± 0.01</td>
<td>6.61 ± 0.08 6.63 ± 0.08</td>
</tr>
<tr>
<td>256Lr</td>
<td>2550 ± 50 2850 ± 50</td>
<td>23 ± 5 39 ± 6</td>
<td>35 ± 3 47 ± 3</td>
<td>5.31 ± 0.06 5.30 ± 0.06</td>
<td>−0.37 ± 0.05 −0.32 ± 0.06</td>
<td>4.99 ± 0.07 4.94 ± 0.07</td>
</tr>
</tbody>
</table>

“The IP$_1^*$ and the temperature-dependent correction factor, $kT \ln(Q_i/Q_0)$, give IP$_1$ (see text).
also applied to the lower excitation energies of the lanthanide within the IHFSCC approach. The methods used here were single, double, and perturbative triple excitations (CCSD(T)) for some of the levels the single reference coupled cluster with calculations of the atomic and ionic states of Md and No were taken from refs 28, 29, where they were also calculated used for the Fm atom and its ion. Excited states of No and Lr were determined to be 6.52 ± 0.13, 6.59 ± 0.13, and 6.62 ± 0.07 eV, respectively, where IP1 of No was obtained by taking a weighted average of our previous12 and present values. Errors in IP1 mainly come from counting statistics, surface temperature, and fitting procedure with eq 1.

Table 2. Experimental and Theoretical IP1 Values

<table>
<thead>
<tr>
<th>ref method</th>
<th>Fm (eV)</th>
<th>Md (eV)</th>
<th>No (eV)</th>
<th>Lr (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugar13</td>
<td>6.50</td>
<td>6.58</td>
<td>6.65</td>
<td></td>
</tr>
<tr>
<td>Rajnak and Shore14</td>
<td>6.46</td>
<td>6.57</td>
<td>6.67</td>
<td></td>
</tr>
<tr>
<td>Liu et al.15</td>
<td>QRPP-CASSCF+APCFd</td>
<td>6.26</td>
<td>6.10</td>
<td>6.14</td>
</tr>
<tr>
<td>Cao et al.31</td>
<td>RPP-CASSCF+APCFb</td>
<td>6.13</td>
<td>6.23</td>
<td>6.27</td>
</tr>
<tr>
<td>Borschevsky et al.12,28</td>
<td>IHFSCC</td>
<td>6.632</td>
<td>4.963(15)</td>
<td></td>
</tr>
<tr>
<td>Pantazis and Neese16</td>
<td>DKH2-B3LYPc</td>
<td>6.45</td>
<td>6.54</td>
<td>6.64</td>
</tr>
<tr>
<td>Dzuba et al.32</td>
<td>CI+SDd</td>
<td>6.743</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>present work</td>
<td>CCSD(T)</td>
<td>6.469</td>
<td>6.557</td>
<td>6.638</td>
</tr>
<tr>
<td>present work</td>
<td>MCDF</td>
<td>6.22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To calculate the IP1 values of Fm, Md, No, and Lr from their IP, values, excitation energies and statistical weights of the low-lying states of each atom and ion are required. As no experimental data on excited states in the heavy actinides are available, we calculated these values using relativistic computational methods. The intermediate-Hamiltonian Fock space coupled cluster (IHFSCC) method26 was applied to calculations of the atomic and ionic states of Md and No (for some of the levels the single reference coupled cluster with single, double, and perturbative triple excitations (CCSD(T)) was employed), while the Multi-Configuration Dirac–Fock (MCDF) method, as implemented in the Graps2k code,27 was used for the Fm atom and its ion. Excited states of No and Lr were taken from refs 28, 29, where they were also calculated within the IHFSCC approach. The methods used here were also applied to the lower excitation energies of the lanthanide homologues of the elements of interest (Er, Tm, Yb, and Lu). For the lighter elements, we can compare our results to the available experimental data, thus assessing the accuracy of our calculations and of our predictions for Fm through Lr. The obtained values are compiled in the Supplement Table 2. Although several low-lying states were found in Fm+, only one state should be considered for the Fm atom (Supporting Information). There are no excited states in the range of interest for Md, while one state is present for Md+. In No and No+, only the ground states are expected to contribute. The errors in the energy of the excited states were evaluated from relative errors of the calculated values compared to the experimental transition energies of the respective lanthanide homologues. The kT ln(Qi/Qf) values are presented in Table 1. For the case of Lr, the values were obtained in the same manner in ref 12. The IP1 values of Fm, Md, and No are determined to be 6.52 ± 0.13, 6.59 ± 0.13, and 6.62 ± 0.07 eV, respectively, where IP1 of No was obtained by taking a weighted average of the IP1 values listed in Table 1. A more accurate IP1 of Lr of 4.96 ± 0.05 eV was determined by also taking a weighted average of our previous12 and present values. Errors in IP1 mainly come from counting statistics, surface temperature, and fitting procedure with eq 1.

In parallel to the measurements, we calculated the IP1 values of Fm, Md, and No within the relativistic CCSD(T) approach, corrected for the Breit term and the higher order quantum electrodynamic (QED) corrections, using a similar scheme to that employed in ref 30. The experimental and theoretical IP1 values obtained in the present work are summarized in Table 2 together with earlier theoretical predictions12–16,28,31,32 and measurements.12,18,33 The present experimental values for Md and No agree with the semiempirical values13,14 as well as with the more recent relativistic calculations28 for No and the DKH2-B3LYP calculations16 for both atoms. Our result on IP1 of No also agrees with the recent value from laser-spectroscopic measurements,16 thus providing independent validation to our experimental method. The calculated IP1 of Er, the homologue

![Figure 2. Variation of the experimental IP1 values of heavy actinides and heavy lanthanides with atomic numbers. Closed circles indicate the values obtained in the present work.](Image)
of Fm, is 5.94 eV as obtained from the present MCFD calculation, that is significantly lower than the experimental value of 6.11 eV. Therefore, the MCFD prediction probably also underestimates the IP_1 value of Fm. The CCSD(T) + Breit + QED calculations of IP_1 agree well with the measurements for all elements investigated here.

The variation of the IP_1 values of the heavy actinides with atomic number in comparison with those of the heavy lanthanides is shown in Figure 2. As expected from the prediction, IP_1 values increase up to No via Fm and Md with filling of the 5f orbital in analogy to the heavy lanthanides. We take this as an indication that the 5f orbital is fully filled at No. The lowest IP_1 value of Lr is confirmed; the ground-state electronic configuration of the Lr atom has closed 5f^14 and 7s^2 shells with an additional weakly bound electron in the valence orbital. The results unambiguously confirm that the actinide series end with Lr.34

REFERENCES

Author Information

Corresponding Author

tsato.tetsuya@jaea.go.jp

ORCID

Tetsuya K. Sato: 0000-0002-5490-9178

Notes

The authors declare no competing financial interest.

Acknowledgments

The authors would like to thank the JAEA tandem accelerator crew for supplying intense and stable beams for the experiments. The 249Cf was produced in the form of 249Bk through the former Transplutonium Element Production Program at Oak Ridge National Laboratory (ORNL) under the auspices of the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division of US Department of Energy. It was made available by H. Nitsche of University of California, Berkeley, USA, and we acknowledge the LBNL Nuclear Science Division’s R. F. Fairchild II, N. E. Reeves, J. A. Van Wart, and the Radiation Protection Group of the Environmental Health and Safety Division for their support with the preparation and execution of the 249Cf shipment to Germany. Financial support by the Helmholtz-Institut Mainz is gratefully acknowledged. This work has been partly supported by the Grant-in-Aid for Scientific Research (A) No. 16H02130, (B) No. 26288028, and (C) No. 26390119 of the Ministry of Education, Science, Sports and Culture (MEXT).

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.8b09068.

Experimental details of the nuclear reactions for the production of the short-lived actinide isotopes, 249Fm, 251Md, 255No, and 257No and for production of various isotopes used to determine a relationship between IP_1 and L_{5f} in the present system; alpha spectra of 249Fm, 251Md, 255No, and 257No measured after mass-separation; and summary of computed low-lying level energies for the Fm, Md, and No atoms and ions together with those of respective lanthanide homologues, Er, Tm, and Yb (PDF).

Author Information

Corresponding author

tsato.tetsuya@jaea.go.jp

ORCID

Tetsuya K. Sato: 0000-0002-5490-9178

Notes

The authors declare no competing financial interest.
(34) A debate has emerged over the places of the last lanthanide Lu and the last actinide Lr in the periodic table: Jensen, W. B. The positions of lanthanum (actinium) and lutetium (lawrencium) in the periodic table: an update. Found. Chem. 2015, 17, 23. An IUPAC task group has been formed to make a recommendation regarding the membership of group 3 of the periodic table, Project No. 2015-039-2-200: Scerri, E. Which Elements Belong to Group 3 of the Periodic Table. Chem. Int. 2016, 38, 22.