Historical Perspective

Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth

Vera Carniello, Brandon W. Peterson, Henny C. van der Mei *, Henk J. Busscher

University of Groningen, University Medical Center Groningen, Department of BioMedical Engineering, Groningen, the Netherlands

A R T I C L E I N F O

Available online 24 October 2018

Keywords:
Biofilm
Surface-sensing
Physico-chemical interactions
Appendages
Tethers
EPS

A B S T R A C T

Biofilm formation is initiated by adhesion of individual bacteria to a surface. However, surface adhesion alone is not sufficient to form the complex community architecture of a biofilm. Surface-sensing creates bacterial awareness of their adhering state on the surface and is essential to initiate the phenotypic and genotypic changes that characterize the transition from initial bacterial adhesion to a biofilm. Physico-chemistry has been frequently applied to explain initial bacterial adhesion phenomena, including bacterial mass transport, role of substratum surface properties in initial adhesion and the transition from reversible to irreversible adhesion. However, also emergent biofilm properties, such as production of extracellular-polymeric-substances (EPS), can be surface-programmed. This review presents a four-step, comprehensive description of the role of physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth: (1) bacterial mass transport towards a surface, (2) reversible bacterial adhesion and (3) transition to irreversible adhesion and (4) cell wall deformation and associated emergent properties. Bacterial transport mostly occurs from sedimentation or convective-diffusion, while initial bacterial adhesion can be described by surface thermodynamic and Derjaguin–Landau–Verwey–Overbeek (DLVO)-analyses, considering bacteria as smooth, inert colloidal particles. DLVO-analyses however, require precise indication of the bacterial cell surface, which is impossible due to the presence of bacterial surface tethers, creating a multi-scale roughness that impedes proper definition of the interaction distance in DLVO-analyses. Application of surface thermodynamics is also difficult, because initial bacterial adhesion is only an equilibrium phenomenon for a short period of time, when bacteria are attached to a substratum surface through few surface tethers. Physico-chemical bond-strengthening occurs in several minutes leading to irreversible adhesion due to progressive removal of interfacial water, conformational changes in cell surface proteins, re-orientation of bacteria on a surface and the progressive involvement of more tethers in adhesion. After initial bond-strengthening, adhesion forces arising from a substratum surface cause nanoscopic deformation of the bacterial cell wall against the elasticity of the rigid peptidoglycan layer positioned in the cell wall and the intracellular pressure of the cytoplasm. Cell wall deformation not only increases the contact area with a substratum surface, presenting another physico-chemical bond-strengthening mechanism, but is also accompanied by membrane surface tension changes. Membrane-located sensor molecules subsequently react to control emergent phenotypic and genotypic properties in biofilms, most notably adhesion-associated ones like EPS production. Moreover, also bacterial efflux pump systems may be activated or mechanosensitive channels may be opened upon adhesion-induced cell wall deformation. The physico-chemical properties of the substratum surface thus control the response of initially adhering bacteria and through excretion of autoinducer molecules extend the awareness of their adhering state to other biofilm inhabitants who subsequently respond with similar emergent properties. Herewith, physico-chemistry is not only involved in initial bacterial adhesion to surfaces but also in what we here propose to call “surface-programmed” biofilm growth. This conclusion is pivotal for the development of new strategies to control biofilm formation on substratum surfaces, that have hitherto been largely confined to the initial bacterial adhesion phenomena.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Bacterial adhesion to surfaces usually forms the onset of major problems, such as microbially-influenced corrosion [1], contamination of drinking water systems [2], oral diseases like caries and gingivitis [3], failure of artificial implants in the human body [4,5] and several other industrial and environmental problems. Alternatively, in other applications like bacterial remediation of soil [6] or in the human microbiome at health [7,8], adhesion of bacteria is highly desirable. Although bacterial remediation of soil or in the human microbiome can be considered limited to the initial steps, including mass transport and reversible adhesion. Mass transport models have been forwarded assuming bacteria to be similar to inert colloidal particles and validated or invalidated in diverse flow displacement systems [9,15]. Contact angle measurements with liquids on substratum surfaces and bacterial lawns have enabled surface thermodynamic analyses of initial adhesion, also assuming bacteria to be inert colloidal particles [16]. The Derjaguin–Landau–Verwey–Overbeek (DLVO)-theory of colloidal stability has been frequently applied as well, particularly to understand the role of electrostatic double-layer interactions in adhesion [17].

However, bacterial diversity and the complexity of bacterial cell surfaces possessing arrays of surface appendages of different length and composition have impeded the development of a generalized physico-chemical model for bacterial adhesion to surfaces. The introduction of

![Diagram](image-url)

Fig. 1. Four distinct, physico-chemically controlled steps in biofilm formation. (1) Transport of bacteria towards a substratum surface, occurring through convective-diffusion or sedimentation. (2) Reversible bacterial adhesion to a substratum surface, that can be modeled by surface thermodynamics, Lifshitz-Van der Waals and electrostatic double-layer interactions as in the DLVO-theory and tether-coupling or “floating” adhesion models. (3) Transition from reversible to irreversible bacterial adhesion through physico-chemical bond-strengthening mechanisms. (4) After bond-strengthening, cell wall deformation occurs yielding emergent properties, characteristic of a mature biofilm.
the atomic force microscope (AFM) [18] and other instruments, like optical tweezers [19] and the quartz crystal microbalance (QCM) [20], have allowed to analyze the bond properties of bacteria with a substrate surface in terms of adhesion force and viscoelasticity [21,22]. Methods have become available that measure the nanoscopic deformation experienced by bacteria upon their adhesion to surfaces [23], alike the microscopically visible deformation of mammalian cells when they adhere to a surface [24]. Bacterial adhesion force-sensing, associated cell wall deformation and resulting membrane surface tension changes have been suggested to cause adhering bacteria to demonstrate emergent properties that program the properties of a mature biofilm [25], despite the fact that most bacteria in a biofilm are not directly adhering to a substrate surface [26]. Herewith, physico-chemistry can explain many more steps in biofilm formation than mass transport and initial adhesion, extending to emergent biofilm properties, as programmed by the physico-chemistry of the surface to which bacteria adhere.

The aim of this review is to summarize the physico-chemistry involved in the different steps of biofilm formation and integrate the more traditional physico-chemical approaches with new models to yield a comprehensive model of biofilm formation that encompasses mass transport, reversible adhesion, the transition to irreversible adhesion and emergent properties resulting in the formation of a mature biofilm, as programmed by the physico-chemistry of the substrate surface to which biofilm-inhabitants adhere.

2. Bacterial mass transport towards a surface

Biofilm formation begins with bacterial mass transport. In general, bacteria can be transported to a substrate surface as aerosols [27,28], or by sedimentation or convective-diffusion when in an aqueous suspension [9,29]. However, in most applications and experimental studies, bacterial mass transport towards substrate surfaces is studied in aqueous suspensions, and accordingly this review will be confined to bacterial mass transport by sedimentation or convective-diffusion from an aqueous suspension.

Under stagnant conditions, bacterial mass transport from an aqueous suspension is mostly due to sedimentation. In flow displacement systems and under laminar conditions, bacterial mass transport is due to a combination of sedimentation, convection and diffusion [9,30], while under turbulent flow conditions, convective mass transport prevails [31]. Turbulent conditions can be implied from the Reynolds number R_e given by

$$ R_e = \frac{U (w + h) \nu}{v} \quad (1) $$

in which U is the volumetric flow rate, w and h are width and depth of the flow displacement system, respectively, and ν is the fluid viscosity [31]. When the Reynolds number is smaller than 2000, fluid flow can be considered laminar and the convective-diffusion equation can be solved to calculate mass transport [31]. The generalized convective-diffusion equation reads

$$ \frac{\partial C}{\partial t} + \nabla \cdot \mathbf{J} = Q \quad (2) $$

in which C is the bacterial concentration, t is the time, \mathbf{J} is the flux vector of bacteria, and Q is a source or sink term [32]. Most solutions of the convective-diffusion equation are complicated to obtain and simplified, approximate solutions have been proposed [32]. In the Smoluchowski–Levich (SL) approximation, the contribution of gravity and interaction forces between depositing bacteria and a substrate surface are neglected and perfect-sink conditions are assumed. For a parallel plate flow chamber, these assumptions yield a theoretical SL-deposition rate of bacteria from a flowing suspension equal to

$$ j_v = \frac{0.538 \nu}{r} \frac{D_c}{R_e} \left(\frac{h \nu}{x} \right)^{1/3} \quad (3) $$

in which D_c is the bacterial diffusion coefficient, C is the bacterial concentration, Pe is the Peclet number expressing the ratio between convection and diffusion [33], r is the hydrodynamic radius of the bacterium and x is the distance from the inlet of the flow displacement system [31,32,34]. This implies that, in case of sedimentation or strong electrostatic double-layer attraction between negatively-charged bacteria and positively-charged substrate surfaces, the experimentally observed initial deposition rate may exceed the theoretical SL-deposition rate [35]. For bacterial deposition to negatively-charged substrate surfaces, experimental deposition rates are usually smaller than the SL-deposition rates, provided sedimentation is small [36]. For experiments conducted in a parallel plate flow chamber, it has been suggested to average bacterial deposition rates to the top and bottom plate in order to eliminate the influence of sedimentation [37]. Sedimentation also causes an increasing number of depositing and adhering bacteria on the bottom plate of a parallel plate flow chamber with increasing distance from the inlet of the flow chamber, from which bacterial sedimentation velocities can be calculated [38].

In the SL-approximation [32], increasing fluid flow rates yield higher theoretical SL-deposition rates. However, experimentally higher fluid flow rates invalidate the assumption of the substratum surface acting as a perfect-sink, as not all bacteria that are deposited to the substratum surface can withstand the higher shear stress at the surface which discourages their successful adhesion [39]. In Escherichia coli for instance, experimental initial deposition rates to a glass surface at low shear rate (1.5 s$^{-1}$) exceeded SL-deposition rates, while when the shear rate was increased to above 6 s$^{-1}$ the experimental initial deposition rate equaled the SL-deposition rate [15]. The possession of certain types of bacterial surface appendages like flagella enable bacterial swimming and promote faster mass transport to a surface [30,40], that is not accounted for in the SL-approximation. Other types of bacterial surface appendages such as pili, fimbriae or fibrils occurring in E. coli, Pseudomonas aeruginosa, Pseudomonas putida or streptococci, are used as a tether to approach a surface more closely. Their small appendage diameter enables them to overcome repulsive electrostatic double-layer interactions, yielding a higher percentage of depositing bacteria to successfully adhere [41–43]. However, also ubiquitously present loops of proteins, polysaccharides of DNA in bacterial EPS as well as patches of lipoteichoic acid may serve as tethers involved in bacterial adhesion to a surface.

Bacterial mass transport decreases as bacterial surface coverage increases and under most experimental conditions, deposition rates after prolonged periods of time reduce to zero, which can either imply absence of further successful deposition leading to adhesion, or a balance between detaching and reversibly adhering bacteria on a substratum surface. Absence of further successful adhesion is due to blocking of available adhesion sites on the substratum surface by already adhering bacteria [44,45], and usually a surface coverage of around 10% [38] is sufficient to cause stationary adhesion numbers. Under static conditions, blocked areas around an adhering bacteria are circular [46], but under flow depositing bacteria can be pushed into higher flow lines above a surface by collisions with adhering bacteria causing a symmetric blocked areas that are elongated in the direction of flow [46,47], as illustrated in Fig. 2. Accordingly, blocked areas increase with increasing fluid flow velocity [31,48] from 45% of the substratum surface area under static conditions [46] to 95% at high shear rate [15] and with increasing particle size, while decreasing with ionic strength [47] due to reduced electrostatic double-layer
The interfacial Gibbs free energies required can be calculated from contact angle measurements with liquids on the substratum surface and macroscopic lawns of bacteria deposited on membrane filters. The blocked area of S. salivarius adhering on glass, expressed as a local pair distribution function $g(x, y)$. In a low ionic strength suspension, strong electrostatic double-layer repulsion between flowing and adhering bacteria provoke acceleration of flowing bacteria to flow-lines higher above the surface, yielding an elongation of the blocked area in the direction of flow. The blocked area is evident from the region with $g(x, y)$ smaller than unity around an adhering bacterium located at the origin $(0, 0)$, while $g(x, y) = 1$ represents the average adhesion number over the entire substratum surface. Adapted from [40] with permission of the publisher, Elsevier.

Repulsion between flowing and adhering particles. Alternatively, in case bacteria adhere reversibly, a balance between depositing and successfully adhering bacteria and detaching bacteria may develop, giving rise to a true thermodynamic equilibrium. Importantly, blocking equally occurs in bacterial deposition as well as in the deposition of inert colloidal particles and represents a purely physico-chemical phenomenon [33,46].

3. Reversible bacterial adhesion to a substratum surface

3.1. Surface thermodynamic analysis

Bacterial adhesion is known to be initially reversible. Real-time analysis of bacterial adhesion has shown residence-time dependent desorption [50], while reduction of the bacterial concentration above a substratum surface is known to yield detachment [51], as does increasing fluid shear [52] or the passing of a liquid-air interface over adhering bacteria [53]. Accordingly, in a more traditional physico-chemical approach, initial bacterial adhesion has been regarded as a surface thermodynamic phenomenon for which the required interfacial free energies of adhesion can be acquired from measurement of contact angles with liquids on bacterial lawns, that contain hydrated but condensed bacterial adhesion. Bacteria without surface appendages cannot tether-couple to a substratum surface by piercing through the potential energy barrier. Overcoming the potential energy barrier results in irreversible adhesion, but as long as adhering bacteria reside in the secondary interaction minimum reversibility exists. Bacteria with surface appendages are difficult to capture in the DLVO-theory, as the concept of distance disappears when the cell surface possesses a multi-scale roughness due to surface appendages of different length and widths [73], such as fibrils and fimbriae.

3.2. (Extended) DLVO-theory

The DLVO-theory describes bacterial adhesion to surfaces as a result of Lifshitz-Van der Waals, electrostatic–double layer interactions and, in its extended version, acid-base binding [63]. DLVO-analyses are mostly presented as the interfacial Gibbs free energy of adhesion ΔG_{adh} as a function of the separation distance between a bacterium and substratum surface (Fig. 3B), but when taking its first derivative with respect to distance, it represents the interaction force as a function of distance that can be used for analysis of deposition kinetics. Lifshitz-Van der Waals interactions are virtually always attractive [64], while electrostatic double-layer interactions are usually repulsive as nearly all bacterial, synthetic and natural surfaces carry a net, negative surface charge under physiological conditions [65]. However, both bacterial cell surfaces as well as other surfaces can become positively charged depending on pH and ionic strength [66,67]. Acid-base interactions are also often repulsive due to strong electron-donating and relatively small electron-accepting properties of the surfaces involved in bacterial adhesion [68,69]. In the traditional DLVO-theory, the sum total of the Lifshitz-Van der Waals and electrostatic double-layer interactions is a shallow secondary interaction minimum at distances of up to 100 nm [70–72], separated from the substratum surface by an insurmountable primary potential energy barrier. Overcoming the potential energy barrier results in irreversible adhesion, but as long as adhering bacteria reside in the secondary interaction minimum reversibility exists. Bacteria with surface appendages are difficult to capture in the DLVO-theory, as the concept of distance disappears when the cell surface possesses a multi-scale roughness due to surface appendages of different length and widths [73], such as fibrils and fimbriae.

3.3. Tether-coupled versus floating adhesion

Owing to their small diameters [42], single surface appendages have been suggested to be able to “pierce through” the potential energy barrier when an entire bacterium is still in the secondary minimum. Thus surface tethers will reach the deep primary minimum, a few nm adjacent from the substratum surface [42,74] (see Fig. 3B and C). In tether-coupled adhesion, bacteria display harmonic oscillations in the direction perpendicular to the substratum surface [60] from which it can be concluded that surface appendages act as a spring, that also allows restricted motion in the direction parallel to the surface [75]. Tethering of a single cell surface appendage to a substratum surface by piercing through the potential energy barrier, however, likely yields insufficient binding to cause irreversible adhesion and it is usually considered that a single appendage tethered directly to a surface still yields reversible adhesion. Bacteria without surface appendages cannot tether-couple to a substratum surface and will “float” at 1.5 kT (i.e. the thermal energy of a colloidal particle) above a substratum surface, while being captured in the secondary interaction minimum [60]. According to the Boltzmann equation (Eq. 4) [76], their “spontaneous”, thermodynamically-driven chances to escape the secondary minimum are proportional with its depth

$$P(z_0 - \langle z \rangle) = A \exp \left(-\frac{G (z_0 - \langle z \rangle)}{k_B T} \right)$$

in which A is a normalization constant, $\langle z \rangle$ is the equilibrium position of the bacterium perpendicularly to the substratum surface and $G (z_0 - \langle z \rangle)$ is interfacial Gibbs free energy of adhesion.
4. Transition from reversible to irreversible bacterial adhesion

Both tether-coupled and floating adhesion allow bacteria to transit from a reversible to a more irreversible state of adhesion, as purely based on a variety of different physico-chemical mechanisms that do not yet involve programming of gene expression associated with new emergent properties to enforce binding, such as EPS production [77,78]. The time-scales required for the physico-chemical transition from reversible to more irreversible bacterial adhesion will first be discussed after which different mechanisms underlying the transition will be reviewed.

4.1. Bond-strengthening time-scales

Bond-strengthening time-scales to more irreversible adhesion have been derived over the past years for a number of different bacterial strains using a variety of entirely different methods that mainly comprise residence-time dependent, thermodynamically-driven desorption or otherwise driven bacterial detachment [34,50,79], residence-time dependent changes in QCM signals upon bacterial adhesion to the crystal surface [80], analysis of retract force-distance curves in bacterial probe AFM taken after different surface-delay times [81–83], calculations of the mean-squared distance traveled by adhering bacteria over a surface as a function of time [41,76] and total internal fluorescence microscopy [84,85] (Fig. 4).

Spontaneous desorption or detachment of adhering bacteria from a substratum surface has been demonstrated to depend on their residence-time on the surface according to [50,86].

$$\beta(t-\tau) = \beta_0 - (\beta_0 - \beta_c) \exp\left(-\frac{(t-\tau)}{\tau_c}\right)$$ \hspace{1cm} (5)$$

in which t is the actual time, τ is the time of arrival of the bacterium on the surface, $(t - \tau)$ is the residence-time, β_0 and β_c are initial and final desorption rate coefficients, respectively, and τ_c is the characteristic residence-time (Fig. 4A and B). A residence-time dependence similar to Eq. 5 has also been observed for dissipation signal ΔD when bacteria adhere to a QCM-D crystal surface [80].

$$\Delta D(t-\tau) = \Delta D_0 - (\Delta D_0 - \Delta D_c) \exp\left(-\frac{(t-\tau)}{\tau_c}\right)$$ \hspace{1cm} (6)$$

in which ΔD_0 is the dissipation shift caused by a single bacterium upon arrival on the surface, and ΔD_c is the final shift in dissipation. Although the interpretation of the dissipation signal in QCM-D is difficult [20,87,88], it is safe to interpret the signal as indicative of adhering bacteria becoming more closely and more firmly attached to a surface (Fig. 4C and D). Also the confined nanoscopic, Brownian motion of bacteria adhering to substratum surfaces shows a time-dependence, indicating strengthening of their bond,
tally, adhesion forces for adhesion and bond-maturation can be directly measured using AFM, while varying the surface-delay time, i.e. the time allowed for the adhesion forces to strengthen themselves. Usually, adhesion forces \(F(t) \) increase exponentially with time to a plateau level according to [89].

\[
F(t) = F_0 + (F_u - F_0) \exp\left(-\frac{t}{\tau} \right)
\]

in which \(F_0 \) and \(F_u \) are the adhesion forces before and after bond maturation, respectively, and \(\tau \) is the characteristic time constant (Fig. 4G). Note that adhesion forces as measured by AFM may be 10 to 1000-fold stronger than naturally occurring ones, because the bacterium is wrenched between the surface and the AFM cantilever before retraction of the cantilever [37]. Depending on the strain, substratum and ionic strength in which AFM is carried out, retract force-distance curves demonstrate an increasing number of minor adhesion peaks (Fig. 4H) with surface-delay time [82,90], also considered indicative for a transition towards more irreversible adhesion [91]. Poisson analysis of these minor adhesion peaks in AFM force-distance curves [21,92,93] can be applied to yield the magnitude of acid-base, \(F_{AB} \) and long-range, \(F_{LR} \) interaction forces when the average adhesion force \(\mu_f \) is plotted as a function of the variance \(\sigma_f^2 \) over the number of adhesion peaks from different force distance curves taken at one spot according to

\[
\sigma_f^2 = \mu_f F_{AB} - F_{AB} F_{LR}
\]

Poisson analyses of bacterial adhesion forces measured using AFM have indicated the progressive involvement of acid-base interactions over long-range interactions in the transition from reversible to irreversible adhesion [94].

Example results on bacterial bond-strengthening as listed in Table 1, are also shown in Fig. 4. As can be seen from these examples and the occurrence of exponentially decreasing functions in Eqs. (5), (6) and (8), the transition from reversible to irreversible adhesion will take time, dependent on environmental conditions such as fluid flow. Full loss of reversibility will theoretically require “infinite” time according to Eqs. (5), (6) and (8), and hence the expression “more irreversible” refers to a comparison with the very initial stages of adhesion, and may sometimes be preferable to use than the term “irreversible”. Table 1 summarizes the work currently known on time-scales for the physico-chemical transition of reversible towards more irreversible bacterial adhesion, according to different methods and for different bacterial strains, substratum surfaces and in different ionic environments. Importantly, in Table 1, bond-strengthening time-scales have also been presented for inert colloidal particles. Time-scales for inert particles do not differ grossly from those for bacteria, attesting to the physico-chemical nature of the transition towards irreversible bacterial adhesion in this stage of biofilm formation. From Table 1 it can be concluded that the physico-chemical transition from reversible to irreversible adhesion typically occurs on a time-scale of minutes. Surface hydrophobicity, charge and even nanostructuring of the substratum surfaces have only minor impact on the time-scales of bond-strengthening, and similar results are obtained on abiotic and biotic surfaces as well as for adhesion of bacteria to each other ((co-)aggregation).

4.2. Bond-strengthening mechanisms

Bond-strengthening as occurring over the first minutes after adhesion of bacteria to a substratum surface, is a physico-chemical process and there are a number of underlying mechanisms suggested in the literature that contribute to it, that we will now summarize.

4.2.1. Molecular mechanisms

Due to the small molecular size and low viscosity of water, the progressive removal of interfacial water likely takes place within seconds from the first contact of a bacterium with a substratum surface [113]. Removal of interfacial water enables closer approach and the formation of attractive acid-base interactions [80], and may occur more readily on hydrophobic substratum surfaces than on hydrophilic ones [43,81]. Removal of interfacial water to allow bacteria to adhere, may also be one of the reason why many bacteria have been equipped with hydrophobic surface structures to act as a broom removing water, despite being hydrophilic as a whole [114].

Adhesion forces between bovine-serum-albumin-coated microspheres and a substratum surface measured by AFM increased more than of non-coated microspheres [83], demonstrating that not only interfacial water removal but also conformational changes of proteins adjusting themselves to a new surrounding [115] may contribute to bond-strengthening [116,117]. Similarly, eDNA can re-arrange to a more elongated conformation to expose more binding sites towards a substratum surface [102], while finally an entire bacterium may rotate to expose its most adhesive sites to a surface, as occurs for “tufted” bacteria only carrying fibrils on one pole of the cell [118] or bacteria having a heterogeneous surface charge distribution [119]. Collectively, these molecular mechanisms (Fig. 5A) contribute to the progressive coupling of multiple tethers to a surface.

4.2.2. Multiple tether-coupling

Whereas the binding of a single tether does not yield irreversible adhesion of a bacterium to a substratum surface, several types of studies, most notably confined Brownian motion analyses (Fig. 4F) and AFM transition of reversible towards more irreversible bacterial adhesion, according to different methods and for different bacterial strains, substratum surfaces and in different ionic environments. Importantly, in Table 1, bond-strengthening time-scales have also been presented for inert colloidal particles. Time-scales for inert particles do not differ grossly from those for bacteria, attesting to the physico-chemical nature of the transition towards irreversible bacterial adhesion in this stage of biofilm formation. From Table 1 it can be concluded that the physico-chemical transition from reversible to irreversible adhesion typically occurs on a time-scale of minutes. Surface hydrophobicity, charge and even nanostructuring of the substratum surfaces have only minor impact on the time-scales of bond-strengthening, and similar results are obtained on abiotic and biotic surfaces as well as for adhesion of bacteria to each other ((co-)aggregation).
Table 1
Overview of time-scales for the physico-chemical transition from reversible bacterial adhesion towards (“more”) irreversible adhesion, for different bacterial strains adhering to substratum surfaces with different hydrophobic and charge properties and obtained using different methods.

<table>
<thead>
<tr>
<th>Substratum properties</th>
<th>Ionic strength (mM)</th>
<th>Time-scale (s)</th>
<th>Strain</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residence-time dependent desorption</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrophilic</td>
<td>10</td>
<td>0.9–1.1</td>
<td>Staphylococcus epidermidis</td>
<td>[50]</td>
</tr>
<tr>
<td>Hydrophilic</td>
<td>10</td>
<td>5–40</td>
<td>P. aeruginosa</td>
<td>[98]</td>
</tr>
<tr>
<td>Hydrophilic</td>
<td>40</td>
<td>30</td>
<td>S. epidermidis</td>
<td>[34]</td>
</tr>
<tr>
<td>Hydrophilic</td>
<td>40</td>
<td>40</td>
<td>Actinobacater calcoaceticus</td>
<td>[34]</td>
</tr>
<tr>
<td>Hydrophilic</td>
<td>40</td>
<td>50</td>
<td>Polystyrene particles</td>
<td>[34]</td>
</tr>
<tr>
<td>Hydrophilic</td>
<td>40</td>
<td>60</td>
<td>Streptococcus thermophilus</td>
<td>[34]</td>
</tr>
<tr>
<td>Hydrophilic</td>
<td>40</td>
<td>70</td>
<td>S. epidermidis</td>
<td>[34]</td>
</tr>
<tr>
<td>Hydrophobic</td>
<td>10</td>
<td>0.7–0.8</td>
<td>S. epidermidis</td>
<td>[50]</td>
</tr>
<tr>
<td>Hydrophobic</td>
<td>10</td>
<td>5–40</td>
<td>P. aeruginosa</td>
<td>[98]</td>
</tr>
<tr>
<td>Hydrophobic</td>
<td>40</td>
<td>40</td>
<td>A. calcoaceticus</td>
<td>[34]</td>
</tr>
<tr>
<td>Hydrophobic</td>
<td>40</td>
<td>40</td>
<td>S. epidermidis</td>
<td>[34]</td>
</tr>
<tr>
<td>Hydrophobic</td>
<td>40</td>
<td>50</td>
<td>Polystyrene particles</td>
<td>[34]</td>
</tr>
<tr>
<td>Hydrophobic</td>
<td>40</td>
<td>60</td>
<td>S. thermophilus</td>
<td>[34]</td>
</tr>
<tr>
<td>Hydrophobic</td>
<td>Growth medium, not specified</td>
<td>12–13</td>
<td>Caulobacter crescentus</td>
<td>[99]</td>
</tr>
<tr>
<td>Positively-charged</td>
<td>26</td>
<td>240–300</td>
<td>Staphylococcus aureus</td>
<td>[79]</td>
</tr>
<tr>
<td>Biopolymer-coated</td>
<td>167</td>
<td>0.9–1.2</td>
<td>S. aureus</td>
<td>[100]</td>
</tr>
<tr>
<td>Residence-time dependent QCM-d signal analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrophilic</td>
<td>57</td>
<td>50–60</td>
<td>Streptococcus salivarius</td>
<td>[80]</td>
</tr>
<tr>
<td>Hydrophilic</td>
<td>10–300</td>
<td>100–200</td>
<td>E. coli</td>
<td>[101]</td>
</tr>
<tr>
<td>Hydrophilic</td>
<td>10–300</td>
<td>100–200</td>
<td>Sphingomonas wittichii</td>
<td>[101]</td>
</tr>
<tr>
<td>Hydrophilic</td>
<td>Growth medium, not specified</td>
<td>1500–1800</td>
<td>P. aeruginosa</td>
<td>[64]</td>
</tr>
</tbody>
</table>

Confined nanoscopic, brownian motion as a function of time				
Hydrophilic	0.57	10	S. epidermidis	[41]
Hydrophilic	0.57	10	S. salivarius	[41]

Atomic force microscopy-adhesion forces as a function of surface-delay time				
Hydrophilic	1	10	Polystyrene particles	[83]
Hydrophilic	10	5–35	S. epidermidis	[89]
Hydrophilic	15	10	Streptococcus mutans	[102]
Hydrophilic	100	5	Polystyrene particles	[83]
Hydrophilic	150	90–120	S. mutans	[102]
Hydrophilic	167	1	S. epidermidis	[81]
Hydrophilic	167	2	Pseudomonas fluorescens	[81]
Hydrophilic	167	60–120	S. epidermidis	[89]
Hydrophobic	10	5–20	S. mutans	[102]
Hydrophobic	15	90	S. mutans	[102]
Hydrophobic	150	90–120	E. coli	[103]
Hydrophobic	167	10	Massilia timonae	[104]
Hydrophobic	167	30–60	Bacillus subtilis	[104]
Hydrophobic	167	30–60	P. aeruginosa	[104]
Hydrophobic	167	60–120	E. coli	[103]
Hydrophobic	167	10	S. aureus	[105]
Hydrophobic	167	10	S. epidermidis	[105]
Hydrophobic	167	120	S. thermophilus	[106]
Positively-charged	167	60–120	Lactococcus lactis	[107]
Nanopillared	167	10	Polystyrene particles	[83,108]
Nanopillared	167	10	S. aureus	[109]
Silicon nitride AFM tip	40	100	S. mutans	[110]
Biopolymer-coated	Low	5–10	P. aeruginosa	[104]
Biopolymer-coated	1	50–100	S. sanguinis	[110]
Biopolymer-coated	100	5–50	P. aeruginosa	[83,108]
Lactobacilli	167	30–60	S. aureus	[109]
Lactobacilli	167	60–120	S. mutans	[110]
S. aureus**	167	120	P. aeruginosa	[111]
Candida albicans hyphae	10	40–60	S. aureus	[82]

| Endothelial cells | Growth medium, not specified | 140 mM (pH 7.4) | | |

Atomic force microscopy-development over time of minor adhesion peaks				
Hydrophilic	TRIS-buffer, not specified	60	Streptococcus sanguinis	[112]
Saliva-coated enamel	57	90–120	Streptococcus mitis	[91]
Saliva-coated enamel	57	90–120	S. mutans	[91]
Saliva-coated enamel	57	90–120	S. sanguinis	[91]
S. mutans	167	120	Streptococcus sobrinus	[91]

Total internal reflection fluorescence microscopy				
Hydrophilic	Growth medium, not specified	0.5–2	P. aeruginosa	[64]
Hydrophilic	100	0.1–0.2	E. coli	[85]

* These experiments have been done using real-time imaging and time-resolution depends on the image-acquisition time.
** These experiments involve adhesion of bacteria to bacteria of the same (aggregation) or of a different strain or species (co-aggregation).
for the irreversible displacement of adsorbed small blood proteins from a surface by larger molecular weight ones [124]. As adsorption of large proteins is more irreversible than in small proteins, the increasing number of tethers will enhance the irreversibility of microbial adhesion through a similar mechanism.

4.2.3. Tether-collapse

Collapse of surface tethers of adhering bacteria to QCM-D crystal surfaces over time (Fig. 5C) [80] has been concluded from resident-time dependent dissipation monitoring according to Eq. 6. Streptococci with surface tethers, but not inert colloidal particles, showed decreases in dissipation shift that have been interpreted in terms of tether collapse and removal of interfacial water [80], similar as in protein adsorption studies with QCM-D [125,126]. The collapse of a surface tether will provide a larger contact area with the surface, that will increase the adhesion force and yields an elongated force plateau in retract AFM force-distance curves (Fig. 5D), due to gradual “peeling” of the collapsed tether from a substratum surface [120,127]. Tether collapse therewith contributes to more irreversible adhesion, contrary to extended tethers that convey higher mobility to an adhering bacterium and place it further away from the substratum surface, and depending on conditions, exposing it to higher fluid shear, which may lead to enhanced detachment [128].

5. Cell wall deformation and emergent biofilm properties

Nanoscopic cell wall deformation occurs in bacteria that are in direct contact with a substratum surface and is due to the adhesion forces felt by initially adhering bacteria as arising from the substratum surface (Fig. 6). Adhesion forces continue to deform a bacterial cell wall until balanced by the counterforces arising from the rigid peptidoglycan layer surrounding the cytoplasm and the intracellular pressure of the cytoplasm itself. Interestingly, until balanced, deformation increases the adhesion force because deformation brings more molecules, including molecules in the cytoplasm, closer to the substratum surface with enhancing their pair-wise molecular interaction with substratum molecules. Therewith, long-range Lifshitz-Van der Waals attractive forces [129] increase. In this perspective, cell wall deformation can be considered as another physico-chemical bond strengthening mechanism.

Adhesion force-sensing and associated cell wall deformation can make bacteria aware of the presence of a substratum surface and their adhering state through changes in lipid membrane surface tension to which membrane-located sensor molecules react to control emergent phenotypic and genotypic properties in biofilms [130]. Since adhering bacteria, depending on circumstances, block a much larger substratum surface area than their own geometric surface area (see Section 2), their number is relatively low and accordingly they must have means available to spread the information on the presence of a substratum surface and their adhering state to other bacteria in a biofilm. The bacterial reaction to direct adhesion-force sensing can be transmitted to other bacteria in the biofilm through quorum sensing, a communication system based on production and sensing of molecular autoinducers [131]. The “calling” distance over which bacteria can communicate through quorum sensing can vary widely between 5 μm [132] and 200 μm [133], depending on the autoinducer diffusion ability, adsorption to matrix components and the autoinducer threshold concentration required to obtain a response. Since under natural conditions, biofilms can reach thicknesses larger than 300 μm [10,11], adhesion-force sensing can generally be transmitted only to a limited number of bacterial layers close to the surface. Bacteria responding to molecular autoinducers will display emergent biofilm properties similar to as done by the initially adhering bacteria in direct contact with a substratum surface (Fig. 7) [25]. Therewith emergent properties are spread through a biofilm.
5.1. Extent of cell wall deformation in adhering bacteria

Unlike the microscopically visible deformation of mammalian cells upon adhesion to a surface [24] lacking a rigid peptidoglycan layer, adhering bacteria display nanoscopic cell wall deformations that have long remained unnoticed due to lack of experimental possibilities to visualize and quantify such small deformations.

Peak-force quantitative nanomechanical mapping AFM clearly visualized height reductions upon adhesion in *S. aureus*. The role of the peptidoglycan layer in maintaining bacterial shape upon adhesion follows from the much larger cell wall deformations observed in Δpbp4 mutants, lacking crosslinking of their peptidoglycan and that amounted up to 200 nm [129]. Focused-Ion-Beam tomography in combination with backscattered scanning electron microscopy (SEM) in *S. aureus* adhering to hydrophilic and hydrophobic surfaces also yielded direct visualization of cell wall deformations in *S. aureus* of between 30 nm to 100 nm [134], corresponding with AFM observations (Fig. 6B and C).

Microscopic methods, however, are time-consuming to analyze cell wall deformation in adhering bacteria. Surface enhanced fluorescence (SEF) can be used as an alternative that can measure adhering bacteria...
over a surface area up to several tens of square centimeters depending on the substratum surface and camera system employed, but as a drawback does not yield direct visualization and requires fluorescent bacteria and reflective, metal substratum surfaces. SEF is the fluorescence increase taking place once a fluorophore is in close proximity to a reflective, metal surface [135] and decreases exponentially with increasing distance from the surface, becoming negligible at distances >30 nm above the surface [136]. In the case of fluorescent bacteria, fluorescence enhancement relative to the fluorescence of planktonic bacteria is recorded upon bacterial adhesion and cell wall deformation, which bring more fluorophores within the bacterium in the range of SEF (Fig. 6A) [23]. SEF can be done real-time during adhesion and has shown that cell wall deformation is residence-time dependent and it increases until reaching a maximum value of about 100–150 nm after 3 h upon first contact of a bacterium with the surface [23]. SEF has also shown that EPS around an adhering bacterium may act as a “cushion” to temporarily delay cell wall deformation after first contact until the EPS that tethers the bacterium to the substratum has collapsed. Moreover, SEF has confirmed the role of peptidoglycan in maintaining bacterial shape upon adhesion while demonstrating cell wall weakening upon exposure of adhering S. aureus to antibiotics [137,138]. Also other environmental factors, like ionic strength variations [139] have been found to affect cell wall deformation.

5.2. Adhesion-induced emergent properties in biofilms

5.2.1. EPS production

While initial bond strengthening is a purely physico-chemical process taking place in both bacteria and abiotic colloidal particles, EPS production upon bacterial adhesion to surfaces is a biological process that contributes to strengthening of the bacterium–substratum bond. Adhesion has been described to stimulate EPS production in C. crescentus [140], while in P. aeruginosa, adhesion forces acting on pili induced gene expression changes and EPS production within 1–2 h after surface contact [141,142]. In 3–24 h old S. aureus biofilms, production of eDNA and poly-N-acetylglucosamine (PNGA), and the expression of genes responsible for their production, decreased with increasing adhesion forces [143], suggesting that bond-strengthening through EPS production only occurs according to environmental need to maintain an adhering state, i.e. in the absence of strong adhesion forces. A relation between production of EPS components and gene expression with adhesion forces was not observed in 1 h old biofilms, showing that time is required to spread information on adhesion forces from the initial colonizers to other bacterial layers [143]. Also for a Δpilp4 mutant, relations between production of EPS components and gene expression with adhesion forces were not observed, and accordingly intact peptidoglycan may be considered pivotal for adhesion force-sensing [143]. Bacteria adhering to nanopillared surfaces will experience high local stresses on the cell wall, that yield pressure-induced production of increased amounts of EPS [105] (Fig. 6D) that is transported towards the outer bacterial cell surface through membrane efflux pumps [144,145], in addition to other ways of release such as through secretion of membrane vesicles [146].

5.2.2. Efflux pumps

Efflux pumps also play a crucial role in removing antibiotic molecules from the cytoplasm and contribute to antibiotic tolerance [147]. Efflux pump activation follows chemical stress sensing by proteins located on the cytoplasmic membrane, but it is also dependent on surface adhesion. Upon exposure of S. aureus to nisin, activation of the two-component efflux system NsaRS, composed of an intra-membrane located histidine kinase NsaS and a response regulator NsaR, resulted in higher activation of the efflux pump NsaAB upon adhesion to surfaces generating stronger adhesion forces, concurrent with a higher antibiotic tolerance [148].

5.2.3. Mechano-sensitive channel gating

Mechano-sensitive channels can be formed by proteins located in the cytoplasmic membrane that enable bacterial exchange with the environment. Gating of mechano-sensitive channels occurs as a result of membrane surface tension changes [149–151] due hydrophobic mismatches in the membrane [150,152], after for instance a hypo-osmotic shock [153–155]. Opening of mechano-sensitive channels then allows water flow across the membrane to compensate for the undesirable changes in ionic strength. However, cell wall deformation due to adhesion can also generate changes in membrane surface tension, and it has been hypothesized that adhesion can also trigger mechano-sensitive channel gating, as part of the bacteria awareness of their adhering state on a surface [156].

5.3. Biofilm properties not induced by adhesion

Gene expression in biofilms is not controlled for all genes by the presence of a substratum surface and adhesion forces. Expression of cida in S. aureus for instance [143], a gene regulating apoptosis according to oxidation and reduction conditions of the cytoplasmic membrane [157,158], did not relate with adhesion forces. Although adhesion force controlled gene expression is in its infancy, this suggests that only genes directly involved in bacterial adhesion to a substratum surface are expressed under the influence of substratum surface to which they adhere.

6. Conclusion

This review uniquely demonstrates that the impact of physical-chemistry on biofilm formation ranges from initial bacterial adhesion to what we propose here to call “surface-programmed” biofilm growth, to indicate the role of the substratum surface in the development of emergent biofilm properties. Unfortunately due to the huge variability in different bacterial strains and species and the enormous battery of adhesion mechanisms they have at their disposal, physico-chemical models of bacterial adhesion and biofilm formation have not advanced to possess predictive power and their current use is confined to “understanding in hindsight”. Yet, for the initial stages of biofilm formation, such as bacterial mass transport and the transition from reversible to irreversible adhesion, comparison of bacterial behavior with colloidal particles indicates a pivotal role of bacterial cell surface tethers. Nanoscopic cell wall deformation in response to adhesion forces felt by initially adhering bacteria in direct contact with the substratum surface, controls emergent phenotypic and genotypic properties in biofilms. Therewith physico-chemistry explains many more aspects of biofilm formation, that have hitherto only been attributed to the microbiological domain. This conclusion is pivotal for the development of new strategies to control biofilm formation through modification of substratum surfaces, that have long focused on initial bacterial adhesion phenomena.

Acknowledgments

This study was entirely funded by the University Medical Center Groningen, Groningen, The Netherlands. H.J.B. is also a director of a consulting company, SASA BV. We declare no potential conflicts of interest with respect to authorship and/or publication of this article. The opinions and assertions contained herein are those of the authors and are not construed as necessarily representing the views of the funding organization or the authors’ employers.

References

V. Carniello et al. / Advances in Colloid and Interface Science 261 (2018) 1–14

Zeng G, Müller T, Meyer RL. Single-cell force spectroscopy of bacteria enabled by
Van der Westen J, Molenar E, Van der Me He, Busscher HJ. Floating and tethered-coupled adhesion of bacteria to hydrophobic and hydrophilic surfaces.
Olsson ALJ, Van der Mei HC, Busscher HJ. Novel analysis of bacterium-
Chao Y, Zhang T. Probing roles of lipopolysaccharide, type 1
Pimentel-Filho NJ, Martins MC, Nogueira GB, Mantovani HC, Vanetti MC. Bovicin
Vilinska A, Rao KH. Surface thermodynamics and extended DLVO theory of
Van der Mei HC, Handley PS, Busscher HJ. Depth pro
Jucker BA, Harms H, Zehnder AJ. Adhesion of the positively charged bacterium
Bos R, Van der Mei HC, Busscher HJ. Physico-chemistry of initial microbial adhesive
Van Oss CJ, Good RJ, Chaudhury MK. The role of Van der Waals forces and hydrogen