Core-binding factor acute myeloid leukemia with t(8;21) Risk factors and a novel scoring system (I-CBFit)
Ustun, Celalettin; Morgan, Elizabeth; Moodie, Erica E. M.; Pullarkat, Sheeja; Yeung, Cecilia; Broesby-Olsen, Sigurd; Ohgami, Robert; Kim, Young; Sperr, Wolfgang; Vestergaard, Hanne

Published in:
Cancer medicine

DOI:
10.1002/cam4.1733

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 16-08-2019
Core-binding factor acute myeloid leukemia with t(8;21): Risk factors and a novel scoring system (I-CBFit)

Celalettin Ustun1 | Elizabeth Morgan2 | Erica E. M. Moodie3 | Sheeja Pullarkat4 |
Cecilia Yeung5,6 | Sigurd Broesby-Olsen7,8 | Robert Ohgami9 | Young Kim10 |
Wolfgang Sperr11 | Hanne Vestergaard8,12 | Dong Chen13 | Philip M. Kluin14 |
Michelle Dolan15 | Krzysztof Mrózek16 | David Czuchlewski17 | Hans-Peter Horny18 |
Tracy I. George17,19 | Thomas Kielsgaard Kristensen8,20 | Nam K. Ku4 | Cecilia Arana Yi17 |
Michael Boe Møller8,20 | Guido Marcucci21 | Linda Baughn13,15 | Ana-Iris Schiefer22 |
J. R. Hilberink14 | Vinod Pullarkat21 | Ryan Shanley23 | Jessica Kohlschmidt16,24 |
Janie Coulombe3 | Amandeep Salhotra21 | Lori Soma5,6 | Christina Cho25,26 |
Michael A. Linden15 | Cem Akin2,27 | Jason Gotlib28 | Gregor Hoermann29 |
Jason Hornick2 | Ryo Nakamura21 | Joachim Deeg5,6 | Clara D. Bloomfield16 |
Daniel Weisdorf1 | Mark R. Litzow30 | Peter Valent11 | Gerwin Huls31 |
Miguel-Angel Perales25,26 | Gautam Borthakur32 |

1Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
2Department of Pathology, Harvard Medical School, Brigham and Women’s Hospital, Boston, Massachusetts
3Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, Quebec, Canada
4Department of Pathology, University of California, Los Angeles, California
5Fred Hutchinson Cancer Research Center, Seattle, Washington
6University of Washington School of Medicine, Seattle, Washington
7Department of Dermatology and Allergy Centre, Odense Research Center for Anaphylaxis, Odense, Denmark
8Mastocytosis Center Odense University Hospital, Odense, Denmark
9Department of Pathology, Stanford University, Stanford, California
10Department of Pathology, City of Hope National Medical Center, Duarte, California
11Division of Hematology & Hemostaseology, Ludwig Boltzmann Cluster Oncology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
12Department of Hematology, Odense University Hospital, Odense, Denmark
13Department of Pathology, Mayo Clinic, Rochester, Minnesota
14Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
15Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
16The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
17Department of Pathology, University of New Mexico, Albuquerque, New Mexico
18Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
19Department of Pathology, University of Utah, Salt Lake City, Utah

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
INTRODUCTION

Acute myeloid leukemia (AML) with rearrangements involving genes encoding subunits of core-binding factor (CBF), a group of DNA-binding transcription factor complexes composed of α and β subunits, shares similar pathogenesis and clinical features and is considered as a distinct subset in AML.1-4 Translocation(8;21) (q22;q22) and inv(16)(p13q22), the most frequent cytogenetic abnormalities occurring in CBF-AML, lead to the creation of the fusion genes RUNX1/RUNX1T1 and CBFβ/MYH11 that disrupt, respectively, the α and β subunits of CBF, dysregulate hematopoiesis, and thus contribute to leukemogenesis.5
Although the prognosis of CBF-AML is better than other subtypes of AML, approximately 30%-40% of the patients still relapse and may require allogeneic hematopoietic cell transplantation (HCT).6,8 A scoring system to predict who has a higher risk of relapse at the time of diagnosis may be clinically valuable to guide decision-making. There have been only a few studies attempting to develop a scoring system for poor outcomes of CBF-AML (eg, relapse and disease-free survival [DFS]).6,8 The relative rarity of CBF-AML (approximately 15%-20% of AML cases) in adults9 and its relatively good prognosis may have limited these efforts. A useful prognostic system requires a large sample size and long follow-up time including all treatment data. This is challenging, even for large registries or cooperative groups. For example, the Center for International Blood and Marrow Transplant Research (CIBMTR) only has data of patients with CBF-AML receiving a HCT, while US cooperative groups may have too few patients with a long follow-up to examine outcomes after HCT. Moreover, recent studies clearly indicate that AMLs with t(8;21) (q22;q22) and AMLs with inv(16) (p13q22) are two different diseases regarding patient and disease characteristics.2,6,8,10-14 Each cytogenetic subgroup therefore should be evaluated separately to develop a specific prognostic scoring system.

In this multicenter study, we created an extensive database including US and European centers for CBF-AML patients with t(8;21) (q22;q22), and developed and validated a significant risk scoring system with high predictive probabilities.

2 | METHODS

Eleven centers in the US and Europe collaborated to collect data on 550 CBF-AML patients. Two-hundred and forty-seven of these patients had t(8;21)(q22;q22) and are the subject of this report. Inclusion criteria were as follows: (a) AML patients with t(8;21)(q22;q22) or RUNX1-RUNX1T1 confirmed by the reporting institutions; (b) cases diagnosed between July 1996 and January 2017. Data were uniformly collected by completing a predesigned data spreadsheet. The data form included the following: patient characteristics (age, sex, race); disease characteristics (date of diagnosis, white blood cell count [WBC] at diagnosis [×10⁹/L], cytogenetics, KIT D816V mutational status, primary or secondary AML); therapy characteristics (induction regimens and their number, consolidation regimens, and number of cycles); HCT (autologous or allogeneic, donor type, remission status at HCT); and events (relapse, death, or alive at last contact). Patients’ data were anonymously transferred to University of Minnesota where the main database was created and managed. This study was approved by the Institutional Review Board Human Subjects Committee at the University of Minnesota.

2.1 | Definitions

Secondary AML was assigned if a patient had a history of chemotherapy/radiation therapy for a malignancy and/or had a history of preleukemic disease (eg, myelodysplastic syndrome [MDS], myeloproliferative neoplasm [MPN]). In cytogenetic evaluation, a total number of 46 chromosomes were defined as pseudodiploidy in one clone or each clone (given this patients had translocation, it was not named diploidy), and if chromosome number was higher or lower than 46 chromosomes in any clone, it was defined, respectively, as hyperdiploidy and hypodiploidy.

2.2 | Statistical analysis

The sample of 247 patients was described using the median and range for continuous variables, and frequency and percentage for categorical variables.

The binary outcome was defined as death or relapse within 2 years of diagnosis. A total of 89 patients experienced death or relapse within 2 years, while 158 patients survived without relapse or were censored at the last contact alive (or in remission).

A set of potential predictors for our outcome of relapse-free survival was selected to build the risk score model, which were used to predict the probability of death or relapse in 2 years. The predictors included age, sex, race (Caucasian), WBC at diagnosis, -X, -Y, chromosome 5 or 7 abnormalities, chromosome 4 abnormalities, chromosome 9 abnormalities, trisomy 8, number of chromosomes, KIT D816V mutation, and primary AML. The missing values for the variable KIT D816V mutation were combined into the category nontested instead of imputing the variable, so as to allow risk prediction when this variable is missing. The remaining covariates that had missing values in the dataset were variables considered unlikely to be missing in clinical practice, and thus, multiple imputation was used so as to construct a clinically meaningful risk score that made full use of available patient information.

Full details of the statistical analysis are provided in the Appendix S1. In brief, forward stepwise logistic regression was used, with the binary outcome of two-year relapse or death and the predictors discussed above. The optimal threshold for binary predictions was chosen to maximize equally the sensitivity and specificity. A validation study was used to assess the performance of the risk score model using five-fold cross-validation to estimate specificity, sensitivity, accuracy, positive predictive value (PPV), and negative predictive value (NPV).

We performed three sensitivity analyses. In the first, patients were censored upon allogeneic HCT (alloHCT) at CR1, as this is not a standard therapy. In the second, we considered only survival (rather than disease-free survival). In the final sensitivity analysis, we imputed all missing values
computing the following linear score:

\[\text{I-CBFIT Score} = -3.05 + 0.03 \times \text{Age years} + 0.02 \times \text{WBC at diagnosis (} \times 10^9/L) + 1.47 \times \text{KIT D816V mutation positive} + 0.94 \times (\text{KIT D816V mutation nontested/missing}) + 0.94 \times \text{(pseudodiploidy)} \]

The full set of results of the validation study along with the sensitivity analysis results (the highest of the conditional probabilities was negative predictive value [NPV], 80%) are presented in Table S1. When I-CBFIT > 0, a patient is classed as being at high risk of death or relapse within 2 years. DFS rate at 2 years was 76% for patients with a low-risk I-CBFIT score compared with 36% for those with a high-risk I-CBFIT score (\(P < 0.0001 \)). Low- vs high-risk OS at 2 years was 89% vs 51%, \(P < 0.0001 \) (Figures 1 and 2).

DFS at 2 years was 80% for patients with I-CBFIT low risk not undergoing alloHCT in CR1, was 82% for patients with I-CBFIT low risk undergoing alloHCT in CR1, was 33% for patients with I-CBFIT high risk not undergoing alloHCT in CR1, and was 67% for patients with I-CBFIT high risk undergoing alloHCT in CR1, \(P = <0.0001 \) (Figure 3). OS at 2 years was 91% for patients with I-CBFIT low risk regardless of alloHCT in CR1, was 52% for patients with I-CBFIT high risk not undergoing alloHCT in CR1, and was 73% for patients with I-CBFIT high risk undergoing alloHCT in CR1, \(P < 0.0001 \) (Figure 4).

4 | DISCUSSION

In this large study with a long follow-up, we were able to create and validate the risk scoring system we are calling the “International CBF group index for t(8;21)” (I-CBFIT) in t(8;21) AML. We show that older age, higher WBC at diagnosis, and KIT D816V mutation were risk factors associated with treatment failure (relapse or death). In addition, we found that pseudodiploidy was also a risk factor in t(8;21), a novel finding. I-CBFIT had a high NPV (80%) and a modest specificity and accuracy for DFS, and the NPV was even higher for the prediction of OS.

Current treatment guidelines for CBF-AML with t(8;21) do not recognize heterogeneity in these patients, and thus, all t(8;21) AML patients generally receive the same induction and consolidation treatments. This might be appropriate for patients with a low-risk score who are predicted to have nearly an 80% chance of extended DFS. On the other hand, high-risk score patients may benefit from more intensive approaches in CR1. Current guidelines do not identify patients needing alloHCT in CR1. This new model may clarify this uncertainty, especially identifying patients who do not require intensive consolidations (eg, alloHCT) in CR1 given its high NPV. Although patients receiving alloHCT in CR1 was limited, when we analyzed the impact of alloHCT it seemed that patients with an I-CBFIT low-risk score had similar DFS and OS regardless of alloHCT.

KIT mutations have been reported in 15%-46% of adults patients with t(8;21) CBF-AML.\(^{13,15-18}\) KIT D816V mutations were reported in 4%-28% and strongly associated with poorer DFS (6%-48%).\(^{15,16,19,20}\) In pediatric populations, KIT mutations clustered in exon 17 and exon 8 were identified in 20-30% of the CBF-AML patients,\(^{21-23}\) yet its effect on
A meta-analysis indicated KIT mutation increased relapse risk (RR at 2 years 1.76 [95% CI: 1.45-2.12]) and decreased OS 1.35 (95% CI: 1.09-1.66). Chromosomal abnormalities secondary to t(8;21), mostly involving loss of a sex chromosome, -Y in men and -X in women, trisomy 8, and deletion of the long arm of chromosome 9 [del(9p)] are frequently reported. In our

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>247</td>
</tr>
<tr>
<td>Age, median (range) y</td>
<td>47.0 (2.0-81.0)</td>
</tr>
<tr>
<td>Missing, n (%)</td>
<td>1 (0.4%)</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td>101 (40.9%)</td>
</tr>
<tr>
<td>Female</td>
<td>132 (53.4%)</td>
</tr>
<tr>
<td>Missing, n (%)</td>
<td>14 (5.6%)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td>176 (71.3%)</td>
</tr>
<tr>
<td>Caucasian</td>
<td>48 (19.4%)</td>
</tr>
<tr>
<td>Missing, n (%)</td>
<td>23 (9.3%)</td>
</tr>
<tr>
<td>Year of diagnosis, median (range)</td>
<td>2009 (1995-2017)</td>
</tr>
<tr>
<td>Missing, n (%)</td>
<td>2 (0.8%)</td>
</tr>
<tr>
<td>WBC at diagnosis, median (range) ×10⁹/L</td>
<td>11.7 (1.3-139.9)</td>
</tr>
<tr>
<td>Missing, n (%)</td>
<td>19 (7.7%)</td>
</tr>
<tr>
<td>AML, n (%)</td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>194 (78.5%)</td>
</tr>
<tr>
<td>Missing, n (%)</td>
<td>10 (4.0%)</td>
</tr>
<tr>
<td>Secondary</td>
<td>43 (17.4%)</td>
</tr>
<tr>
<td>Cytogenetics</td>
<td></td>
</tr>
<tr>
<td>-X, n (%)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>206 (83.4%)</td>
</tr>
<tr>
<td>Yes</td>
<td>33 (13.4%)</td>
</tr>
<tr>
<td>Missing, n (%)</td>
<td>8 (3.2%)</td>
</tr>
<tr>
<td>-Y, n (%)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>192 (77.7%)</td>
</tr>
<tr>
<td>Yes</td>
<td>48 (19.4%)</td>
</tr>
<tr>
<td>Missing, n (%)</td>
<td>7 (2.8%)</td>
</tr>
<tr>
<td>Chromosome 9 abnormalities, n (%)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>210 (85.0%)</td>
</tr>
<tr>
<td>Yes</td>
<td>29 (11.7%)</td>
</tr>
<tr>
<td>Missing, n (%)</td>
<td>8 (3.2%)</td>
</tr>
<tr>
<td>Chromosome 4 abnormalities, n (%)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>232 (94.0%)</td>
</tr>
<tr>
<td>Yes</td>
<td>7 (2.8%)</td>
</tr>
<tr>
<td>Missing, n (%)</td>
<td>8 (3.2%)</td>
</tr>
<tr>
<td>Chromosome 5 or 7 abnormalities, n (%)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>210 (85.0%)</td>
</tr>
<tr>
<td>Yes</td>
<td>28 (11.3%)</td>
</tr>
<tr>
<td>Missing, n (%)</td>
<td>9 (3.6%)</td>
</tr>
<tr>
<td>+8, n (%)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>211 (85.4%)</td>
</tr>
<tr>
<td>Yes</td>
<td>28 (11.3%)</td>
</tr>
<tr>
<td>Missing, n (%)</td>
<td>8 (3.2%)</td>
</tr>
</tbody>
</table>

AlloHCT, allogeneic hematopoietic cell transplantation; CR, complete remission; DFS, disease-free survival; OS, overall survival; WBC, white blood cell count.
patients, additional cytogenetic abnormalities were common, as in other reports.14,18,26 Sex chromosome loss was reported as favorable for two-year event-free survival (66.9\% vs 43.0\%, \(P = 0.031\)).18 In contrast, DFS was shorter for male patients with loss of the Y chromosome. In another study,8 loss of a sex chromosome was associated with increased CR rates in CBF-AML.14 We found no particular chromosomal abnormality to be associated with poor outcome. However, consistent with findings of Krauth et al18 loss of a sex chromosome had a modestly favorable, but not significant effect on DFS. We also found that the chromosome number was important, with patients with pseudodiploid karyotypes having worse outcome compared with those with hypodiploidy or hyperdiploidy.

Higher WBCs were found to be associated with poorer outcomes.8 Schlenk et al8 described a scoring system using two factors, high WBC, and low platelet counts, to be prognostic. Low platelet count was also a poor prognostic factor in a CALGB/Alliance study.6 In our study, we did not find a correlation between \(K\text{IT}\) mutation and WBC.

An earlier CALGB/Alliance study showed that age was associated with shorter overall survival (OS).6 In a more recent CALGB/Alliance study,27 3-year OS rate was 61\% for adults younger than 60 years vs only 47\% for those at least 60 years old. Appelbaum et al14 showed that age is associated with a shorter OS.

We were able to collect data over a two-decade period and believe this long time period does not adversely impact the validity of the study as (a) the type and number of induction or consolidation therapies did not have an impact on outcomes and (b) the most widely used treatments (7 + 3 in induction phase and high-dose cytarabine in consolidation phase) have not changed over this time. Although this is a retrospective study, we find the data robust and substantial given the lengthy time period of patient follow-up. In fact, long-term follow-up allowed complete evaluation in this relatively good prognostic disease.

Another limitation is that molecular abnormalities, including mutations in the \(K\text{IT}\) and \(FLT3\) genes, were not uniformly tested. As a result, information on \(K\text{IT}\) mutational status is missing in approximately one-third of the patients. However, \(K\text{IT}\) mutation was associated with significantly decreased survival compared with \(K\text{IT}\) wild type, whereas outcomes of patients with the \(K\text{IT}\) mutational status untested fell between outcomes of patients with \(K\text{IT}\) mutations and those with wild-type \(K\text{IT}\); this might be expected given that some but not all untested patients would have mutated \(K\text{IT}\). This strongly supports the adverse effect of a \(K\text{IT}\) mutation.

Table 2

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Risk ratio</th>
<th>(P)-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>1.031</td>
<td>0.0017</td>
</tr>
<tr>
<td>(K\text{IT}) D816V mutation positive (Ref = negative)</td>
<td>4.331</td>
<td>0.0018</td>
</tr>
<tr>
<td>(K\text{IT}) D816V mutation nontested/missing (Ref = negative)</td>
<td>2.567</td>
<td>0.0036</td>
</tr>
<tr>
<td>WBC at diagnosis</td>
<td>1.018</td>
<td>0.0361</td>
</tr>
<tr>
<td>Number of chromosomes (Ref = nonpseudodiploidy)</td>
<td>2.552</td>
<td>0.0035</td>
</tr>
</tbody>
</table>

WBC indicates white blood cell count.

Figures

Figure 1 Patients with a low I-CBFIt score (red curve with 95% CI) had significantly higher DFS compared with those who had a higher score (green curve with 95% CI).

Figure 2 Patients with a low I-CBFIt score (red curve with 95% CI) had significantly higher OS compared with those who had a higher score (green curve with 95% CI).
FIGURE 3 DFS is stratified by alloHCT and I-CBFit score. AlloHCT did not have an impact on DFS in patients with a low I-CBFit score (red and green curves); however, patients with high I-CBFit-risk had improved DFS after alloHCT compared with those who did not undergo alloHCT (purple and green curves).

FIGURE 4 OS is stratified by alloHCT and I-CBFit score. AlloHCT did not have an impact on OS in patients with a low I-CBFit score (red and green curves); however, patients with high I-CBFit risk had improved OS after alloHCT compared with those who did not undergo alloHCT (purple and green curves).
This new scoring system, I-CBFit, uses known and novel risk factors to provide a binary prediction of the risk of death or relapse within 2 years. Importantly, all factors and thus the scoring system can easily be determined at diagnosis. Although its validation by other studies is needed, I-CBFit can contribute to current treatment of patients with t(8;21) and tailor consolidation treatments for individual patients in the spirit of precision medicine to identify those who do not need intensified management including alloHCT during CR1.

CONFLICT OF INTEREST
The authors have no conflict of interest relevant to the study to disclose.

ORCID
Celalettin Ustun ID http://orcid.org/0000-0001-6896-6213
Cecilia Yeung ID http://orcid.org/0000-0001-6799-2022

REFERENCES

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Ustun C, Morgan E, Moodie EEM, et al. Core-binding factor acute myeloid leukemia with t(8;21): Risk factors and a novel scoring system (I-CBFit). *Cancer Med.* 2018;7:4447-4455. https://doi.org/10.1002/cam4.1733