Relationship between Granger non-causality and network graph of state-space representations
Jozsa, Monika

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Chapter 5

Granger causality and innovation transfer matrices

The results on LTI–SS representations presented in Chapters 2, 3 and 4 have direct implications on the transfer matrices between the input and output processes of LTI–SS representations. Note that in Chapters 2, 3, and 4 we studied Kalman representations, i.e., LTI–SS representations where the noise process is the innovation process of the output process. Therefore, to present these implications, we introduce a class of transfer matrices between processes and their innovation processes, called innovation transfer matrices. Among innovation transfer matrices, we focus on those that have transitive acyclic directed graphs (TADGs) as their network graphs. In the main results, we show that an innovation transfer matrix of a process has network graph G, where G is TADG, if and only if the components of this process satisfy conditional Granger causality conditions that are consistent with G and coincide with the conditions presented in Chapter 4 as G-consistent causality structure.

The paper (Caines and Wynn, 2007) is the closest one to the results in this chapter. The cited paper presents results on transfer matrices of Gaussian processes. These transfer matrices form a subclass of the transfer matrices discussed in the present chapter with additional assumptions on the covariance matrix of the noise process. Accordingly, the existence of these transfer matrices are formalized by conditional orthogonal conditions which are stronger than the conditional orthogonality condition that are counterparts of the conditional Granger causalities proposed in this chapter (and in Chapter 4). Note that (Caines and Wynn, 2007) do not provide proofs for the results on transfer matrices. The results of this chapter are based on the conference paper (Jozsa et al., 2017b).

First, transfer matrices and innovation transfer matrices of ZMSIR processes are introduced. Then, network graphs of innovation transfer matrices are related to a collection of conditional Granger causality conditions among the components of the output process. At last, we give an example to illustrate the results. The proofs of the statements can be found in Appendix 5.A. Note that this chapter presents its statements and proofs independently from Chapters 2, 3, and 4.
5.1 Innovation transfer matrix

To begin with, we introduce transfer matrices of ZMSIR processes. Consider an LTI–SS representation \((A, B, C, D, v)\) of a ZMSIR process \(y\). Then the transfer matrix between \(y\) and \(v\) is the rational matrix function
\[
G(z) = C(zI - A)^{-1}B + D,
\]
see (Anderson and Moore, 1979, Appendix C & D). Consider the Laurent series expansion of \(G(z)\), i.e. let
\[
G_k = \sum_{k=0}^{\infty} G_k z^{-k}
\]
for all \(z \in \mathbb{C}\). Note that for any ZMSIR process \(z\), the expression
\[
G_k z^{-k}
\]
converges in the topology of \(H_z\) (Anderson and Moore, 1979, Theorem 4.1). In the sequel, we will write
\[
G(z) = \sum_{k=0}^{\infty} G_k z^{-k}.
\]
That is, \(G(z)\) can be interpreted as a causal linear filter which transforms \(z\) to the process \(zG(z)\).

From now on, we will assume that the processes considered in this chapter are ZMSIR and coercive (see (Lindquist and Picci, 2015, Definition 9.4.1)).

Assumption 5.1. All the processes are ZMSIR and coercive.

Below we define a class of transfer matrices, called innovation transfer matrices. To this end, consider a process \(y\) and its covariance sequence
\[
\Lambda_k = E[y(t+k)y^T(t)]
\]
for all \(k \in \mathbb{Z}\). Then \(y\) has a spectral density function
\[
\Phi_y(z) = \sum_{k=-\infty}^{\infty} \Lambda_k z^{-k}
\]
defined for all \(z \in \mathbb{C}\) such that \(|z| = 1\). It is well known (Lindquist and Picci, 2015; Anderson and Moore, 1979) that \(\Phi_y(z)\) admits a unique decomposition
\[
\Phi_y(z) = P(z)\Omega P^T(z^{-1}), \quad |z| = 1
\]
with the conditions: \(\Omega\) is a positive definite symmetric matrix, \(\lim_{z \to \infty} P(z) = I\), and \(P(z)\) and its inverse \(Q(z) = P^{-1}(z)\) are transfer matrices between the input \(v\) and output \(y\) processes of a finite-dimensional deterministic exponentially stable LTI–SS representation such that \(y(t) = P(z)v(t)\) and \(v(t) = Q(z)y(t)\) (Anderson and Moore, 1979, Section 9.4, Theorem 4.1).

In view of Assumption 5.1, note that coercivity of \(y\) is equivalent to \(P(z)\) being minimum phase, that is \(P(z)\) has a stable rational proper inverse. Note that
\[
P(z)Q(z) = Q(z)P(z) = I
\]
for all \(z\) in the domain of definition of \(P\) and \(Q\).

Consider the innovation process \(e(t) = y(t) - E[y(t)|\mathcal{H}_{t-}]\) of \(y\). It is known (Lindquist and Picci, 2015, Section 4.1.3) that \(e\) is a white noise process for which
5.2. Granger causality and innovation transfer matrix

\[\mathcal{H}_{t_+}^Y = \mathcal{H}_{t_+}^Y. \]

From the properties of \(P(z) \) and \(Q(z) \) the expressions

\[
P(z) e(t) = \sum_{k=0}^{\infty} P_k e(t-k); \quad Q(z) y(t) = \sum_{k=0}^{\infty} Q_k y(t-k)
\]

are well defined, where \(P(z) = \sum_{k=0}^{\infty} P_k z^{-k} \) and \(Q(z) = \sum_{k=0}^{\infty} Q_k z^{-k} \) are the Laurent series expansions of \(P(z) \) and \(Q(z) \). Moreover, for all \(t \in \mathbb{Z} \),

\[
y(t) = P(z) e(t) \quad \text{and} \quad e(t) = Q(z) y(t).
\]

That is, \(P(z) \) and \(Q(z) \) define the relation between \(y \) and its innovation process \(e \).

Definition 5.2. The transfer matrix \(P(z) \) that satisfies (5.1) is called the innovation transfer matrix of \(y \).

The innovation transfer matrix \(P(z) \) is a causal linear filter which transforms the innovation process \(e \) into \(y \) and \(Q(z) \) is a causal linear filter which transforms \(y \) into the innovation process \(e \). Therefore, the transfer matrix of a Kalman representation coincides with the innovation transfer matrix \(P(z) \) of \(y \).

The innovation transfer matrix of \(y \) has the following interpretation in terms of LTI–SS representations. Consider an LTI–SS representation \((A, B, C, D, v) \) of \(y \). Note that the transfer matrix \(G(z) = C(zI - A)^{-1} B + D \) between \(y \) and \(v \) satisfies \(\Phi_y(z) = G(z) E[v(t)v^T(t)]G^T(z^{-1}) \). Moreover, \(G(z) \) has Laurent series expansion \(G(z) = \sum_{k=0}^{\infty} G_k z^{-k} \) for any \(z \in \mathbb{C}, \|z\| \geq 1 \), where \(G_0 = D \) and \(G_k = CA^{k-1}B, k \geq 1 \), thus

\[
y(t) = G(z) v(t) = \sum_{k=1}^{\infty} C A^{k-1} B v(t-k) + D v(t).
\]

If we consider an LTI–SS representation of a coercive process (see Assumption 5.1) then its transfer matrix \(G(z) \) has a stable rational proper inverse (it is minimum phase). Then it can be shown that there exists an invertible matrix \(M \), such that \(v(t) = Me(t) \) for all \(t \in \mathbb{Z} \). Therefore, \(G(z) \) can be obtained from the innovation transfer matrix by multiplying it with \(M^{-1} \) from the right. Accordingly, the results presented in this chapter on innovation transfer matrices extend to transfer matrices of linear minimum phase systems.

5.2 Granger causality and innovation transfer matrix

Below, we present results on innovation transfer matrices and Granger causality that are direct implications of results in Chapter 4 for coercive processes. The general
question of that we try to answer is: what properties of an innovation transfer matrix of a process can mean conditional Granger non-causalties among the components of that process.

Partitioning a process y into two components, such that $y = [y_1^T, y_2^T]^T$, it is well known that Granger non-causality from y_1 to y_2 is equivalent to the innovation transfer matrix of y being in block triangular form ((Caines, 1976; Caines and Chan, 1975; Gevers and Anderson, 1982) and (Caines, 1988, Theorem 2.2)) or in other words, to the Wold decomposition of y being in block triangular form. In the next theorem, we present this result for the class of ZMSIR processes, see e.g., (Caines, 1976, Theorem 2.2 (1) $$\implies$$ (6)).

Theorem 5.3. Consider a process $y = [y_1^T, y_2^T]^T$. Then y_1 does not Granger cause y_2 if and only if the innovation transfer matrix $P(z)$ of y has the form of

$$P(z) = \begin{bmatrix} P_{11}(z) & P_{12}(z) \\ 0 & P_{22}(z) \end{bmatrix},$$

(5.2)

where $P_{ij}(z)$ is an $r_i \times r_j$ block of $P(z)$, for $i, j = 1, 2$, and r_i is such that y_i takes values in \mathbb{R}^{r_i}, $i = 1, 2$.

Remark 5.4. Assume that the innovation transfer matrix $P(z)$ is in the form of (5.2). Then, the inverse transfer matrix $Q(z) = P^{-1}(z)$ has the form of

$$Q(z) = \begin{bmatrix} Q_{11}(z) & Q_{12}(z) \\ 0 & Q_{22}(z) \end{bmatrix},$$

where $Q_{ij}(z)$ is an $r_i \times r_j$ dimensional transfer matrix for $i, j \in \{1, 2\}$.

Consider a process $y = [y_1^T, y_2^T]^T$ and let $e = [e_1^T, e_2^T]^T$ be its innovation process such that $e_i \in \mathbb{R}^{r_i}$ for $i = 1, 2$. Then (5.2) is equivalent to

$$y_1(t) = P_{11}(z)e_1(t) + P_{12}(z)e_2(t)$$
$$y_2(t) = P_{22}(z)e_2(t)$$

Next, we generalize Theorem 5.3 for processes partitioned into $n \geq 2$ components. More precisely, we generalize Theorem 5.3 for processes $y = [y_1^T, \ldots, y_n^T]^T$ with G-consistent causality structure, where $G = (V, E)$ is TADG, and, correspondingly, for a more complex zero structure of the transfer matrices. Recall that y has G-consistent causality structure if $(i, j) \notin E$ implies that y_i conditionally does not Granger cause y_j with respect to y_{I_j}, where $I_j = \{i \in V | (i, j) \in E\}$ denotes the set of parent nodes of j, see Definition 4.11.
5.2. Granger causality and innovation transfer matrix

Let $P(z)$ be the innovation transfer matrix of a process $y = [y_1^T, \ldots, y_n^T]^T$. Assume that $y_i \in \mathbb{R}^r$, $i = 1, \ldots, n$ and consider the following decomposition of $P(z)$

$$P(z) = \begin{bmatrix}
P_{11}(z) & P_{12}(z) & \cdots & P_{1n}(z) \\
P_{21}(z) & P_{22}(z) & \cdots & P_{2n}(z) \\
\vdots & \vdots & \ddots & \vdots \\
P_{n1}(z) & P_{n2}(z) & \cdots & P_{nn}(z)
\end{bmatrix},$$

(5.3)

where $P_{ij}(z)$ is a $(r_i \times r_j)$ block of $P(z)$. In other words, if $e = [e_1^T, \ldots, e_n^T]^T$ is the innovation process of y such that $e_i \in \mathbb{R}^{r_i}$ then, for $i = 1, \ldots, n$ $y_i(t) = \sum_{j=1}^n P_{ij}(z)e_j(t)$.

Definition 5.5. We say that the transfer matrix $P(z)$ has G-zero structure if $(j, i) \notin E$ implies that the block $P_{ij}(z)$ of $P(z)$ is zero.

Roughly speaking, if the (j, i)-element of the adjacency matrix of G is zero then the (i, j)-block of the transfer matrix $P(z)$ is zero. Notice that if a transfer matrix has G-zero structure than its network graph, regarding the appropriate decomposition of $P(z)$, equals G. In fact, $P(z)$ can be viewed as a network of subsystems where each subsystem generates a component of $y = [y_1^T, \ldots, y_n^T]^T$. Let $S_j, j = 1, \ldots, n$ be the subsystem generating y_j, i.e.,

$$y_j(t) = \sum_{i \in S_j} P_{ij}(z)e_i(t).$$

(5.4)

Notice that if $(i, j) \in E$, i.e., i is a parent node of j, then subsystem S_j takes e_i as an inputs from subsystem S_i. In contrast, if $(j, i) \notin E$, then S_j does not take input from S_i. Intuitively, it means that the subsystems communicate with each other as it is allowed by the edges of the graph G.

For instance, take the TADG graph $G = (\{1, 2, 3, 4\}, \{(4, 1), (4, 2), (3, 1), (2, 1)\})$ and a process $y = [y_1^T, y_2^T, y_3^T, y_4^T]^T$ with innovation process $[e_1^T, e_2^T, e_3^T, e_4^T]^T$. Then the innovation transfer matrix $P(z)$ of y with G-zero structure is given by

$$\begin{bmatrix}
y_1(t) \\
y_2(t) \\
y_3(t) \\
y_4(t)
\end{bmatrix} = \begin{bmatrix}
P_{11}(z) & P_{12}(z) & P_{13}(z) & P_{14}(z) \\
0 & P_{22}(z) & 0 & P_{24}(z) \\
0 & 0 & P_{33}(z) & 0 \\
0 & 0 & 0 & P_{44}(z)
\end{bmatrix} \begin{bmatrix}
e_1(t) \\
e_2(t) \\
e_3(t) \\
e_4(t)
\end{bmatrix}.$$

(5.5)

where $P_{ij}(z)$ is an $r_i \times r_j$ block of $P(z), i, j = 1, 2, 3, 4$. The network graph of $P(z)$
5. Granger causality and innovation transfer matrices

Figure 5.1: Network graph of the innovation transfer matrix (5.5) with G-zero structure

is the network of the subsystems S_1, S_2, S_3, S_4 defined in (5.4), generating y_1, y_2, y_3 and y_4, respectively. See Figure 5.1 for illustration of this network graph.

The next theorem is a generalization of Theorem 5.3 for transfer matrices with TADG-zero structure.

Theorem 5.6. Consider a process $y = [y^T_1, \ldots, y^T_n]^T$ and a TADG $G = (V, E)$ where $V = \{1, \ldots, n\}$. The innovation transfer matrix $P(z)$ of y has a G-zero structure if and only if y has G-consistent causality structure.

The proof can be found in Appendix 5.A.

Informally, Theorem 5.6 can be explained as follows: knowing which components help to predict which components in a process y, is equivalent to knowing how the information flows between y and its innovation process.

Remark 5.7. It is worth mentioning that we started from a fixed partition of the output process and investigated the conditional non-causality structure between the chosen components. In fact, Theorem 5.6 holds for any partitioning of the output process for which the output has G-consistent causality structure with a TADG G, or equivalently, for which the innovation transfer matrix has G-zero structure. The more detailed partition we choose, the more information we have about the causality structure of the output process.

Theorem 5.6 relies on the property of transfer matrices having TADG-zero structure that they are closed under multiplication and inversion.

Lemma 5.8. Consider a process $y = [y^T_1, \ldots, y^T_n]^T$ and a TADG $G = (V, E), V = \{1, \ldots, n\}$. If the innovation transfer matrix $P(z)$ of y has G-zero structure then the inverse transfer matrix $Q(z) = P^{-1}(z)$ has also G-zero structure.

The proof can be found in Appendix 5.A.
5.3 Example for non-TADG and TADG-zero structures

Note that if the graph-zero structure is non-TADG of a transfer matrix then in
general, the inverse of the transfer matrix does not have the same zero structure as
the transfer matrix itself. Moreover, the zero blocks of such transfer matrices do not
necessarily define any non-causal relation among the components of y, even if they
are innovation transfer matrices. Next, we will show and example to illustrate the
result of Theorem 5.6.

5.3 Example for non-TADG and TADG-zero structures

To illustrate the results of Theorem 5.6 and explain Remark 5.7 in more details,
we will now present an example. In Remark 5.7 we mentioned that the compon-
ents of the process for which we observe the causality relations can be chosen
in several ways. Take the simplest non-transitive directed graph $G_1 = (\{1, 2, 3\},
\{(3, 2), (2, 1)\})$. Suppose that the innovation transfer matrix $P(z)$ of a process $y =
[y_1^T, y_2^T, y_3^T]^T$ has G_1-zero structure as follows:

$$P(z) = \begin{bmatrix}
P_{11}(z) & P_{12}(z) & 0 \\
0 & P_{22}(z) & P_{23}(z) \\
0 & 0 & P_{33}(z)
\end{bmatrix}, \quad (5.6)$$

where $P_{ij}(z)$ is an $r_i \times r_j$ block of $P(z)$, $i, j = 1, 2, 3$. If y_2 is further decomposed into
$y_2 = [y_{21}^T, y_{22}^T]^T$, then it can happen that the transfer matrix of $[y_1^T, y_{21}^T, y_{22}^T, y_3^T]$ has
a TADG-zero structure, for example with the graph $G_2 = (\{1, 2, 3, 4\}, (4, 2), (3, 2), (3, 1))$:

$$P(z) = \begin{bmatrix}
P_{11}(z) & 0 & P_{13}(z) & 0 \\
0 & P_{22}(z) & P_{23}(z) & P_{24}(z) \\
0 & 0 & P_{33}(z) & 0 \\
0 & 0 & 0 & P_{44}(z)
\end{bmatrix}, \quad (5.7)$$

where $P_{ij}(z)$ is a $q_i \times r_j$ block of $P(z)$ for $i, j = 1, 2, 3, 4$ such that $q_1 = r_1$, $q_2 +
q_3 = r_2$ and $q_4 = r_4$. Naturally, it can also happen that the transfer matrix of $[y_1^T, y_{21}^T, y_{22}^T, y_3^T]$ has non-TADG structure (there might be for other partitioning of
y), for example with the graph $G_3 = (\{1, 2, 3, 4\}, (4, 2), (2, 3), (3, 1))$:

$$P(z) = \begin{bmatrix}
P_{11}(z) & 0 & P_{21}(z) & 0 \\
0 & P_{22}(z) & 0 & P_{24}(z) \\
0 & P_{32}(z) & P_{33}(z) & 0 \\
0 & 0 & 0 & P_{44}(z)
\end{bmatrix}, \quad (5.8)$$
where again $P_{ij}(z)$ is a $q_i \times r_j$ block of $P(z)$. Figure 5.2 illustrates the above-mentioned three cases: when $P(z)$ has G_1-zero structure, G_2-zero structure and G_3-zero structure.

To illustrate the results of Theorem 5.6, we give an example for the case when $P(z)$ is as in (5.7), i.e., when the innovation transfer matrix of y has TADG-zero structure. We define the innovation transfer matrix from the following Kalman representation of a $\mathbf{y} = [\mathbf{y}_1^T, \mathbf{y}_2^T, \mathbf{y}_3^T, \mathbf{y}_4^T]^T$ process:

$$
\begin{bmatrix}
\mathbf{x}_1(t+1) \\
\mathbf{x}_2(t+1) \\
\mathbf{x}_3(t+1) \\
\mathbf{x}_4(t+1)
\end{bmatrix} =
\begin{bmatrix}
0.8 & 0 & 0 & 0 \\
0 & 0.6 & 0 & 0 \\
0 & 0 & 0.7 & 0 \\
0 & 0 & 0 & 0.7
\end{bmatrix}
\begin{bmatrix}
\mathbf{x}_1(t) \\
\mathbf{x}_2(t) \\
\mathbf{x}_3(t) \\
\mathbf{x}_4(t)
\end{bmatrix}
+
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\mathbf{e}_1(t) \\
\mathbf{e}_2(t) \\
\mathbf{e}_3(t) \\
\mathbf{e}_4(t)
\end{bmatrix}
$$

$$
\begin{bmatrix}
\mathbf{y}_1(t) \\
\mathbf{y}_2(t) \\
\mathbf{y}_3(t) \\
\mathbf{y}_4(t)
\end{bmatrix} =
\begin{bmatrix}
0.9 & 0 & 0.7 & 0 \\
0 & 0.5 & 0.4 & 0.3 \\
0 & 0 & 0.5 & 0 \\
0 & 0 & 0 & 0.8
\end{bmatrix}
\begin{bmatrix}
\mathbf{x}_1(t) \\
\mathbf{x}_2(t) \\
\mathbf{x}_3(t) \\
\mathbf{x}_4(t)
\end{bmatrix}
+
\begin{bmatrix}
\mathbf{e}_1(t) \\
\mathbf{e}_2(t) \\
\mathbf{e}_3(t) \\
\mathbf{e}_4(t)
\end{bmatrix}
$$

The innovation transfer matrix $P(z) = C(I - zA)^{-1}K + I$ of the process \mathbf{y} is then given by

$$
P(z) =
\begin{bmatrix}
\frac{z+0.1}{z-0.3} & 0 & \frac{0.7}{z-0.7} & 0 \\
0 & \frac{z+0.1}{z-0.6} & \frac{0.4}{z-0.7} & \frac{0.3}{z-0.7} \\
0 & 0 & \frac{z-0.2}{z-0.7} & 0 \\
0 & 0 & 0 & \frac{z+0.1}{z-0.7}
\end{bmatrix}
$$

Notice that with the TADG $G = \{(1, 2, 3, 4), (4, 2), (3, 2), (3, 1)\}$ and the partitioning $[\mathbf{y}_1^T, \mathbf{y}_2^T, \mathbf{y}_3^T, \mathbf{y}_4^T]^T$ of \mathbf{y}, $P(z)$ has G-zero structure. Note that from Lemma 5.8 we also know that the inverse transfer matrix $Q(z) = P(z)^{-1}$ has also G-zero structure.

Figure 5.2: TADG (b) and non-TADG (a), (c) zero structures of $P(z)$ for different partitioning of $P(z)$ as in (5.6)–(5.8), respectively.
Indeed,

\[
Q(z) = \begin{bmatrix}
\frac{z-0.8}{z+0.1} & 0 & \frac{-0.7z+0.56}{z^2-0.1z-0.02} & 0 \\
0 & \frac{z-0.6}{z+0.1} & \frac{-0.4z+0.24}{z^2-0.3z+0.02} & \frac{-0.3z+0.18}{z^2-0.04} \\
0 & 0 & \frac{-0.7}{z+0.2} & 0 \\
0 & 0 & 0 & \frac{-0.7}{z+0.1}
\end{bmatrix}.
\]

From Theorem 5.6, the \(G\)-zero structure of \(P(z)\) is equivalent to the following (conditional) Granger causality conditions:

(i) \(y_1, y_2, y_3\) do not Granger cause \(y_4\)

(ii) \(y_1\) conditionally does not Granger cause \(y_2\) with respect to \([y_3^T, y_4^T]^T\)

(iii) \(y_1, y_2, y_4\) do not Granger cause \(y_3\)

(iv) \(y_2, y_4\) conditionally do not Granger cause \(y_1\) with respect to \(y_3\).

Remark 5.9. Defining \(z_1 = y_1\), \(z_2 = [y_2^T, y_3^T]^T\) and \(z_3 = y_4\), the process \(z = [z_1^T, z_2^T, z_3^T]^T\) has the transfer matrix as in (5.6). Then, we can deduce the following from conditions (i)–(iv): (1) from (i) it follows that \(z_1, z_2\) do not Granger cause \(z_3\); (2) from (ii) we can derive that \(z_1\) conditionally does not Granger cause \(z_2\) with respect to \(z_3\) and finally, (3) from (iv) we have that \(z_3\) conditionally does not Granger cause \(z_1\) with respect to \(z_2\). Note that partitioning \(z\) into two components such that the first one is \([z_1^T, z_2^T]\) and the second one is \(z_3\), Theorem 5.3 implies (1). However, without looking at the more detailed partition of \(z_2\), that is \(y_2\) and \(y_3\), conditions (2) and (3) do not follow from the zero-structure of the \(3 \times 3\) block transfer matrix in (5.6), see also Remark 5.7.

5.4 Conclusions

In this chapter, we have studied transfer matrices of ZMSIR process with certain network graphs and related them to conditional Granger causality conditions among the components of their output processes. In particular, considering a TADG \(G\), we studied so-called innovation transfer matrices with \(G\)-zero structure whose zero blocks are determined by \(G\). We then showed that an innovation transfer matrix has \(G\)-zero structure if and only if the output process has \(G\)-consistent causality structure.
5. Granger causality and innovation transfer matrices

5.A Proofs

Before the proof of Theorem 5.6 we present the proof of Lemma 5.8.

Proof of Lemma 5.8. Consider two transfer matrices
\[
P(z) = \begin{bmatrix} P_{11}(z) & \cdots & P_{1n} \\ \vdots & \ddots & \vdots \\ P_{n1}(z) & \cdots & P_{nn} \end{bmatrix}, \quad \tilde{P}(z) = \begin{bmatrix} \tilde{P}_{11}(z) & \cdots & \tilde{P}_{1n} \\ \vdots & \ddots & \vdots \\ \tilde{P}_{n1}(z) & \cdots & \tilde{P}_{nn} \end{bmatrix},
\]
where \(P_{ij}(z) \) and \(\tilde{P}_{ij} \) are \(r_i \times r_j \) dimensional transfer matrices. We start with proving that if \(P(z) \) and \(\tilde{P}(z) \) have \(G \)-zero structure with a TADG \(G = (V, E) \) then \(P(z)\tilde{P}(z) \) has also \(G \)-zero structure. Consider the \(ij \) component of \(P(z)\tilde{P}(z) \) given by
\[
(P(z)\tilde{P}(z))_{ij} = \sum_{k \in \{l \in V \mid (j, l), (l, i) \in E\}} P_{ik}(z)\tilde{P}_{kj}(z).
\]
From transitivity, if \(i, j, l \in V \) and \((j, l), (l, i) \in E \) then \((i, j) \in E \). It then follows that if \((j, i) \notin E \) then the set \(\{l \in V \mid (j, l), (l, i) \in E\} = \emptyset \) and hence \((P(z)\tilde{P}(z))_{ij} = 0 \). Consequently, \(P(z)\tilde{P}(z) \) has \(G \)-zero structure. Next, we use induction to prove that if \(P(z) \) has \(G \)-zero structure then any power of it has also \(G \)-zero structure. For the special case when \(\tilde{P}(z) = P(z) \), the deduction above implies that \(P^2(z) \) has \(G \)-zero structure. Assume that \(P^r(z) \) has \(G \)-zero structure for \(r = 1, \ldots, m \) then it follows that \(P^{m+1}(z) = P^m(z)P(z) \) is a product of two transfer matrices with \(G \)-zero structure thus if \((j, i) \notin E \)
\[
(P^{m+1}(z))_{ij} = \sum_{k \in \{l \in V \mid (j, l), (l, i) \in E\}} P^m_{ik}(z)\tilde{P}_{kj}(z) = 0.
\]
In this way we proved that \(P^r(z) \) has \(G \)-zero structure for all \(r \geq 1 \). Since \(P^{-1}(z) \) can be expressed as a polynomial of \(P(z) \), and taking linear combinations preserves the \(G \)-zero structure, the statement follows. \(\square \)

Proof of Theorem 5.6. Necessity: We start with proving that \(G \)-zero structure of innovation transfer matrices imply \(G \)-consistent causality structure in the output process. From Lemma 5.8, we know that the inverse of the innovation transfer matrix \(P(z) = \sum_{k=0}^{\infty} P_k z^{-k} \), denoted by \(Q(z) = \sum_{k=0}^{\infty} Q_k z^{-k} \) has \(G \)-zero structure. Take the decomposition of \(P(z) \) and \(Q(z) \) as in (5.3). From the \(G \)-zero structure of \(P(z) \) and \(Q(z) \) we obtain that for all \(i, j \in V \) if \((i, j) \notin E \) (or equivalently \(i \notin I_j \)) then \(P_{ji}(z) = Q_{ji}(z) = 0 \). Therefore, \(y_j(t) \) and \(e_j(t), j \in \{1, \ldots, n\} \) can be written as
follows

\[y_j(t) = e_j(t) + \sum_{i \in I_j} \sum_{k=1}^{\infty} (P_k)_{ji} e_i(t - k) \]

\[e_j(t) = y_j(t) + \sum_{i \in I_j} \sum_{k=1}^{\infty} (Q_k)_{ji} y_i(t - k). \]

(5.9)

Note that since \(e \) is the innovation process of \(y \) it follows that \(H_{t-}^{y} = H_{t-}^{e} \). Consider that \(e(t) \) is orthogonal to \(H_{t-}^{y} \) and \(e(t - k) \in H_{t-}^{y} \) for \(k > 0 \). Then, taking the projection of \(y_j(t) \) onto \(H_{t-}^{y} \) we obtain that

\[E_t[y_j(t)|H_{t-}^{y}] = \sum_{i \in I_j} \sum_{k=1}^{\infty} (P_k)_{ji} e_i(t - k) \in H_{t-}^{e_{1_j}}. \]

Note that \(e_{1_j}(t) \) is the innovation process of \(y_{1_j} \), unless the Granger causality condition that \(y_{(1, \ldots, n)\setminus I_j} \) does not Granger cause \(y_{1_j} \) hold. Notice that from (5.9) we have that \(e_{1_j}(t) \in H_{t-}^{y_{1_j}} \). From transitivity, if \(i \in I_j \) then \(I_i \subseteq I_j \) and thus \(e_i(t - 1) \in H_{t-}^{y_{i}} \) for all \(i \in I_j \). This leads to the following:

\[E_t[y_j(t)|H_{t-}^{y}] \subseteq H_{t-}^{y_{1_j}}. \]

As a consequence, \(E_t[y_j(t)|H_{t-}^{y}] = E_t[y_j(t)|H_{t-}^{y_{1_j}}] \) for \(j \in \{1, \ldots, n\} \). Likewise, the \(k \)-step prediction of \(y_j \) based on \(H_{t-}^{y} \) equals

\[E_t[y_j(t + k)|H_{t-}^{y}] = \sum_{i \in I_j} \sum_{l=k+1}^{\infty} (P_l)_{ji} e_i(t + k - l) \in H_{t-}^{y_{i}}. \]

This implies that \(E_t[y_j(t + k)|H_{t-}^{y}] = E_t[y_j(t + k)|H_{t-}^{y_{i}}] \), thus that \(y_j \) conditionally does not Granger cause \(y_j \) with respect to \(y_{1_j} \), for \(i \neq I_j \), or equivalently, for \((i, j) \notin E \).

Sufficiency: It remains to show that if \(y = [y_1^T, \ldots, y_n^T]^T \) has \(G \)-consistent causality structure with a TADG \(G = (V = \{1, \ldots, n\}, E) \) then its innovation transfer matrix has \(G \)-zero structure. From the conditions it follows that for any \((i, j) \notin E \)

\[E_t[y_j(t)|H_{t-}^{y_{i}}] = E[y_j(t)|H_{t-}^{y_{i}}]. \]

Since for every \(i \), either \((i, j) \in E \) holds and hence \(i \in I_j \) or \((i, j) \notin E \) holds and hence \(i \notin I_j \) by transitivity, it follows that \(E_t[y_j(t)|H_{t-}^{y}] = E_t[y_j(t)|H_{t-}^{y_{i}}] \), thus \(e_{1_j} \) is the innovation process of \(y_{1_j} \). From
y_j(t) = e_j(t) + \sum_{i=1}^{n} \sum_{k=1}^{\infty} (P_k)_{ji} e_i(t-k) we can deduce that
\[E[e_j(t) + \sum_{i=1}^{n} \sum_{k=1}^{\infty} (P_k)_{ji} e_i(t-k)|\mathcal{H}^Y_{t-}] = \sum_{i=1}^{n} \sum_{k=1}^{\infty} (P_k)_{ji} e_i(t-k) \in \mathcal{H}^Y_{t-} = \mathcal{H}^{e_j}_t. \]

Note that \(\mathcal{H}^Y_{t-} = \mathcal{H}^{e_j}_t \) holds since \(e_{ij} \) is the innovation process of \(y_{I_j} \). Considering that \(\sum_{i\in I_j} \sum_{k=1}^{\infty} (P_k)_{ji} e_i(t-k) \in \mathcal{H}^{e_j}_t \) and that
\[\sum_{i\in I_j} \sum_{k=1}^{\infty} (P_k)_{ji} e_i(t-k) = \sum_{i=1}^{n} \sum_{k=1}^{\infty} (P_k)_{ji} e_i(t-k) - \sum_{i\notin I_j} \sum_{k=1}^{\infty} (P_k)_{ji} e_i(t-k), \]
it follows that \(\sum_{i\notin I_j} \sum_{k=1}^{\infty} (P_k)_{ji} e_i(t-k) \in \mathcal{H}^{e_j}_t \). Considering that the one dimensional components of \(\{E[e_j(t)e_j^T(t)^{-1}]e_{I_j}(t-k)\}_{k=0}^{\infty} \) form an orthonormal basis for \(\mathcal{H}^{e_j}_t \), there exist \(\{\alpha_k\}_{k=0}^{\infty} \) such that
\[\sum_{i\notin I_j} \sum_{k=1}^{\infty} (P_k)_{ji} e_i(t-k) = \sum_{k=1}^{\infty} \alpha_k e_{I_j}(t-k). \] (5.10)

Denote the complementary index set of \(I_j \) by \(\hat{I}_j := \{1, \ldots, n\} \setminus I_j \) and for \(\hat{I}_j = \{i_1, \ldots, i_m\} \) denote the transfer matrix \(\{(P_k)_{ji_1}, \ldots, (P_k)_{ji_m}\} \) from \(e_{I_j} \) to \(y_j \) by \((P_k)_{j\hat{I}_j} \). Notice that (5.10) can be written as
\[\sum_{k=1}^{\infty} [(P_k)_{j\hat{I}_j}, -\alpha_k] e(t-k) = 0. \]

If we take the variance of the equation above and consider that \(e \) is a white noise process, we have that
\[\sum_{k=1}^{\infty} [(P_k)_{j\hat{I}_j}, -\alpha_k] E[e(t) e^T(t)] [(P_k)_{j\hat{I}_j}, -\alpha_k]^T = 0. \]

Since \(y \) is a weakly stationary full rank process, the variance of its innovation process at any time \(t \in \mathbb{Z}_r \), \(E[e(t) e^T(t)] \) is strictly positive definite. It then follows that \(\alpha_k = 0 \) and \((P_k)_{j\hat{I}_j} = 0 \) for all \(k \geq 0 \). Therefore, for any \(i \in \hat{I}_j \), or equivalently for any \(i \in V \) such that \((i,j) \notin E\), \((P_k)_{ji} = 0 \) for all \(k \geq 0 \) which, by definition, means that \(P(z) \) has \(G \)-zero structure. \(\square \)