When two become one: Spontaneous pattern formation in side-by-side and hand-in-hand walking
Roerdink, Melvyn; van Ulzen, Niek R.; de Poel, Harke

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Publication date:
2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
When two Become One: Interpersonal Pattern Formation in Side-By-Side and Hand-In-Hand Walking

Melvyn Roerdink¹, Niek R. van Ulzen², & Harjo J. de Poel³

¹Department of Human Movement Sciences, Vrije Universiteit Amsterdam, The Netherlands
²Centre for Applied Research on Sports and Nutrition, Amsterdam University of Applied Sciences, The Netherlands
³Center for Human Movement Sciences, University Medical Center Groningen (UMCG), University of Groningen, The Netherlands

Introduction

When two persons are walking together, their footsteps sometimes spontaneously adjust to one another¹. Such episodes of entrainment likely enhance when holding hands²; the mechanical link affects arm-leg coordination of each walker and hence is expected to constrain between-walker stepping. We examined the effects of coupling strength (hand-in-hand vs. side-by-side) as well as detuning (pairs with either similar or different uncoupled cadences) on spontaneous pattern formation. Based on coupled oscillator dynamics we expected 1) higher occurrence of step synchronization in hand-in-hand than in side-by-side, and that 2) cadence-matched pairs synchronize steps more often than detuned pairs.

Due to the stronger (mechanical) coupling, hand-in-hand walking gives rise to enhanced between-person synchronization.

Sync-effects are much weaker in pairs with highly detuned individual cadences.

Preference for ipsilateral stepping mediated through lateral sway

Results and Discussion

As expected, there was greater occurrence of phase-locking for hand-in-hand than for side-by-side walking, especially for the low-detuning pairs (see Figures 2 and 3). Notably, for hand-in-hand synchronization of left and right legs (ipsilateral phase-locking: CRP ≈ 0°) occurred more often than synchronization of inner and outer legs (contralateral phase-locking: CRP ≈ 180°). This could be explained by the lateral sway that humans show at low walking tempos, much like waddling penguins (Figure 4). Due to such waddling, contralateral stepping involves strong reduction of interpersonal distance at instances of inner leg stance (Figure 4, left panel), with possible collision of the bodies and hence perturbation of the between-person pattern.

Conclusions

- Due to the stronger (mechanical) coupling, hand-in-hand walking gives rise to enhanced between-person synchronization.
- Sync-effects are much weaker in pairs with highly detuned individual cadences.
- Preference for ipsilateral stepping mediated through lateral sway

Methods

Based on the step frequency observed a priori in solo walking, we formed 8 low-detuning pairs (mean absolute difference of 0.37 steps/min) and 8 high-detuning pairs (mean absolute difference of 4.48 steps/min). Pairs walked ± 11 minutes on a huge treadmill (Figure 1) at a strolling tempo of 1.3km/h, alternating between episodes of 45 s. hand-in-hand (7 episodes) and side-by-side (7 episodes). Full-body 3D kinematics were captured at 30 Hz with Kinect v2 (see yellow inlay in Figure 1). From this data the continuous relative phase (CRP) between the displacements of a pair’s ipsilateral legs (i.e., left leg of one and left leg of other) was determined.

Results and Discussion

As expected, there was greater occurrence of phase-locking for hand-in-hand than for side-by-side walking, especially for the low-detuning pairs (see Figures 2 and 3). Notably, for hand-in-hand synchronization of left and right legs (ipsilateral phase-locking: CRP ≈ 0°) occurred more often than synchronization of inner and outer legs (contralateral phase-locking: CRP ≈ 180°). This could be explained by the lateral sway that humans show at low walking tempos, much like waddling penguins (Figure 4). Due to such waddling, contralateral stepping involves strong reduction of interpersonal distance at instances of inner leg stance (Figure 4, left panel), with possible collision of the bodies and hence perturbation of the between-person pattern.

Conclusions

- Due to the stronger (mechanical) coupling, hand-in-hand walking gives rise to enhanced between-person synchronization.
- Sync-effects are much weaker in pairs with highly detuned individual cadences.
- Preference for ipsilateral stepping mediated through lateral sway

Literature