New magnetic phase of the chiral skyrmion material Cu2OSeO3

Qian, Fengjiao; Bannenberg, Lars J.; Wilhelm, Heribert; Chaboussant, Gregory; Debeer-Schmitt, Lisa M.; Schmidt, Marcus P.; Aqeel, Aisha; Palstra, Thomas T. M.; Bruck, Ekkes; Lefering, Anton J. E.

Published in:
Science Advances

DOI:
10.1126/sciadv.aat7323

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
New magnetic phase of the chiral skyrmion material Cu$_2$OSeO$_3$

Fengjiao Qian1,*, Lars J. Bannenberg1, Heribert Wilhelm2, Grégoire Chaboussant3, Lisa M. Debeer-Schmitt4, Marcus P. Schmidt5, Aisha Aqeel6*, Thomas T. M. Palstra6*, Ekkes Brück1, Anton J. E. Lefering1, Catherine Pappas1,6, Maxim Mostovoy6, Andrey O. Leonov7,8

The lack of inversion symmetry in the crystal lattice of magnetic materials gives rise to complex noncollinear spin orders through interactions of a relativistic nature, resulting in interesting physical phenomena, such as emergent electromagnetism. Studies of cubic chiral magnets revealed a universal magnetic phase diagram composed of helical, conical spiral, and skyrmion crystal phases. We report a remarkable deviation from this universal behavior. By combining neutron diffraction with magnetization measurements, we observe a new multistate in Cu$_2$OSeO$_3$.

Just below the upper critical field at which the conical spiral state disappears, the spiral wave vector rotates away from the magnetic field direction. This transition gives rise to large magnetic fluctuations. We clarify the physical origin of the new state and discuss its multiferric properties.
RESULTS

First hints for the existence of the new phase came from the anomalous field dependence of the magnetization, M, and the ac magnetic susceptibilities, χ' and χ'', shown in section S1. A direct confirmation was provided by SANS, which probes correlations perpendicular to the incoming neutron beam wave vector k_i. For this reason, we performed our measurements in two crystallographic orientations and for each orientation in two complementary configurations, $H \perp k_i$ and $H \parallel k_i$, thus providing a full picture of the effect of the magnetic field on the magnetic correlations.

A selection of patterns obtained at $T = 2$ K is shown in Fig. 1 (A and B) for $H \parallel [110]$ and in Fig. 1 (C and D) for $H \parallel [001]$. At zero field, the SANS patterns show four peaks along the diagonal directions in Fig. 1 (A and D) for $k_i \parallel [001]$ and two peaks along the horizontal axis in Fig. 1 (B and C) for $k_i \parallel [110]$. These are the magnetic Bragg peaks of the helical spiral state with wave vectors along the three equivalent $\langle 001 \rangle$ crystallographic directions.

At $\mu_0H = 25$ mT, the scattered intensity vanishes for $H \parallel k_i$ (Fig. 1, B and D) because of the reorientation of the spiral wave vector along the magnetic field at the transition to the conical spiral phase. On the other hand, for $H \perp k_i$ and $H \parallel [110]$, Fig. 1A shows the coexistence of helical and conical spiral peaks (additional weak peaks are attributed to multiple scattering). Thus, the helical-to-conical transition for $H \parallel [110]$ is not a simple one-step process. Reorientation first occurs in the helical spiral domain with the wave vector perpendicular to the field direction $Q \parallel [001]$. It is followed by a gradual reorientation of the wave vectors of the other two helical spiral domains. Upon a further increase of the magnetic field, the conical spiral peaks weaken in intensity and disappear at the transition to the field-polarized collinear spin state, which, for $H \parallel \langle 110 \rangle$, occurs above 75 mT.

The unexpected behavior, a signature of the new phase, is seen in the evolution of SANS patterns for $H \parallel [001]$ in Fig. 1 (C and D). For $H \perp k_i$ (Fig. 1C), the Bragg peaks broaden along the circles with radius Q and eventually split into two well-defined peaks at 35 and 40 mT. This is surprising because, in this configuration, the two peaks along the horizontal axis correspond to the spiral with the wave vector parallel to both the magnetic field and the cubic axis. Thus, no reorientation is expected for the spiral domain favored by both the Zeeman interaction and magnetic anisotropy. In addition to the splitting of the Bragg peaks, in the complementary configuration of $H \parallel k_i$ shown in Fig. 1D, a broad ring of scattering develops well inside the circle with radius Q.

With increasing temperature, the splitting of the Bragg peaks becomes smaller and disappears at ~50 K, as shown in Fig. 2A. At $T = 10$ K, the scattered intensity on the circle with radius Q, which varies with temperature, and their difference reaches 30° at $T = 2$ K (Fig. 2C). The integrated intensities depicted in Fig. 2D show that peak 2, which splits away from the conical spiral peak 1, is by far the more intense one. Its intensity goes through a maximum at ~35 K and then decreases at low temperatures, possibly because the optimum Bragg condition is not fulfilled any longer as the peak moves away from the magnetic field direction.

Our experimental findings are summarized in Fig. 3, which shows contour plots of the real and imaginary susceptibilities, χ' and χ'', as well as the phase boundaries obtained by SANS. Close to T_c, the
Fig. 2. Temperature dependence of the tilt. (A) Temperature dependence of the SANS patterns and (B to D) the corresponding data analysis. The dashed circles on the SANS patterns are a guide to the eye and have a radius of $Q = 2\pi/\ell \sim 0.1$ nm$^{-1}$. The angular dependence of the scattered intensity along the circle with radius Q is given in (B) for $T = 10$ K. The solid lines indicate a fit with two Gaussian peaks labeled 1 and 2 in the SANS patterns. The temperature dependence of the angular positions and integrated intensities of the two peaks is shown in (C) and (D), respectively.

Fig. 3. Phase diagrams from ac magnetic susceptibilities. Contour plots of χ' and χ'' at a frequency of 10 Hz and phase boundaries obtained by SANS for $H \parallel [110]$ (A to C) and $H \parallel [001]$ (D to F). The units for χ' and χ'' are 10^{-4} and 10^{-6} m3/molCu, respectively. The helical, conical, A, tilted spiral (TS), and field-polarized (FP) phases are indicated in (C) and (F). The phase boundaries determined from the susceptibility are illustrated by the symbols and the dashed lines in (A), (B), (D), and (E). They correspond to the peaks of χ'', with the exception of μ_0H_{C2}, which is defined by the inflection point of χ' versus μ_0H. These criteria are the same as in our previous study (39). At low fields, two lines μ_0H_{C1} and $\mu_0H_{C1}^{(2)}$ are identified below 50 K. Just below μ_0H_{C2}, a red dashed line denoted as μ_0H_{CT} in (D) to (F) marks the onset of the “tilted spiral” state for $H \parallel [001]$. The phase boundaries determined from SANS are illustrated by the green symbols in (C) and (F). The shaded gray area just below μ_0H_{C2} in (F) marks the region where the ring of scattering emerges for $H \parallel [001] \parallel k$.
transition from the helical to the conical phase is marked by a single
\(\mu_0H_{C1}(T) \) line, which, at low temperatures, evolves into two lines,
\(\mu_0H_{C1}^{(1)}(T) \) and \(\mu_0H_{C1}^{(2)}(T) \), derived from the two adjacent \(\chi'' \) peaks
(see fig. S1, C and F, and the discussion in the Supplementary Materials).
The most prominent difference between the two field orientations
appears close to \(\mu_0H_{C2} \) below 30 K. In this field and temperature range,
clear maxima are seen in both \(\chi' \) and \(\chi'' \) for \(H \parallel [001] \). These define a new
line \(\mu_0H_{C2}(T) \) (red dashed line in Fig. 3, D to F), which shifts slightly to lower magnetic fields with decreasing temperature.
The boundaries determined from the SANS measurements, shown
in Fig. 3 (C and F), are in excellent agreement with those derived from
susceptibility. Furthermore, it is remarkable that the shaded area in Fig.
3F, which marks the region where the ring of scattering shown in Fig.
1D emerges for \(H \parallel \langle 001 \rangle \parallel k_o \), coincides with the maxima of \(\chi' \) and \(\chi'' \).

DISCUSSION

This remarkable behavior can be understood in terms of competing
magnetic anisotropies that are generic to cubic chiral magnets. This
competition is particularly tight in Cu_2OSeO_3 as explained below. Despite
the long history of studies of cubic chiral magnets (23, 24), the discussion of anisotropic magnetic interactions in these materials remains,
besides the knowledge, incomplete.

The starting point of our approach is a continuum model with the free energy per unit cell

\[
\varepsilon = \frac{J_1 a^2}{2} \sum_{i=x,y,z} \partial_i m \cdot \partial_i m + Dm \cdot \nabla m - a^3 \mu_0 Mm \cdot H + \varepsilon_a
\]

where \(m \) is the unit vector in the direction of the magnetization, \(M \) is the magnetization value, \(a \) is the lattice constant, and \(\varepsilon_a \) is the magnetic anisotropy energy. There are five terms of fourth order in the spin-orbit coupling, \(\lambda \), allowed by the P2_13 symmetry

\[
e_a = C_1 a^2 \left[\partial_x m_x \partial_x m_x + \partial_y m_y \partial_y m_y + \partial_z m_z \partial_z m_z \right]
+ C_2 a^2 \left[\partial_x m_y \partial_y m_x + \partial_y m_x \partial_x m_y + \partial_z m_y \partial_y m_z \right]
+ C_3 a^2 \left[\partial_y m_z \partial_z m_y + \partial_z m_y \partial_y m_z + \partial_z m_z \partial_z m_z \right]
+ \frac{1}{2} J a^4 \left[\partial_x^2 m \cdot \partial_x^2 m + \partial_y^2 m \cdot \partial_y^2 m + \partial_z^2 m \cdot \partial_z^2 m \right]
+ K \left(m_x^4 + m_y^4 + m_z^4 \right)
\]

Their importance can be understood by substituting into Eq. 1 the conical spiral Ansatz

\[
m = \cos \theta e_x + \sin \theta \cos(Qx)e_1 + \sin(Qx)e_z
\]

where \(\theta \) is the conical angle and \((e_1, e_2, e_3)\) are three mutually orthogonal unit vectors. If the magnetic anisotropy and Zeeman energies are
neglected, \(Qa = \frac{a}{2} \) is independent of the orientation of \(Q \). The applied
magnetic field favors \(Q \parallel H \) with the conical angle given by \(\cos \theta = \frac{1}{H_{C2}} \),
where \(\mu_0 MH_{C2} = \frac{a}{2} \) defines the critical field \(H_{C2} \).

The DM interaction originates from the antisymmetric anisotropic exchange between Cu ions, which is the first-order correction to the
Heisenberg exchange in powers of \(\lambda : D \sim J_1^2 \), where \(\zeta = 30^\circ \), \(\lambda \) being
the typical electron excitations on Cu sites (25, 32). The first three anisotropy terms in Eq. 2 result from the symmetric anisotropic exchange
between Cu ions and are proportional to the second power of the spin-orbit coupling (25, 32): \(C_1 \sim J_1^2 \). Since \(Qa = \frac{a}{2} = \zeta \), these anisotropy terms are of the order of \(J_1^2 \). The fourth term in Eq. 2 results from the expansion of the Heisenberg exchange interaction in powers of \(Qa \) and is also \(-J_1^2 \). The last term in Eq. 2 has the form of the fourth-order single-ion anisotropy allowed by cubic symmetry. In absence of the single-ion anisotropy for Cu ions with \(S = \frac{1}{2} \), this term emerges at the scale of the unit cell containing 16 Cu ions, which form a network of tetrahedra with \(S = 1 \) (30, 33). This last term appears either as a second-order correction to the magnetic energy in powers of the symmetric anisotropic exchange or as a fourth-order correction in the antisymmetric exchange, both \(\propto J_1^4 \). The intermediate states are excited states of Cu tetrahedra (34) with energy \(\sim J_1 \) rather than the electronic excitations of Cu ions with energy \(\Delta \). As a result, the last term is also \(-J_1^4 \). Therefore, the magnetic block structure of Cu_2OSeO_3 makes all anisotropy terms in Eq. 2 comparable, which can frustrate the direction of \(Q \). We note that the ferrimagnetic nature of Cu_2OSeO_3 does not play an important role: For the magnetic fields considered here and the large spin gap in the spin tetrahedron of about 275 K (30), the tilt angle between the two magnetic sublattices should be less than \(10^\circ \) and can be neglected.

Another important point is that the direction of \(Q \), favored by a magnetic anisotropy term, may vary with the strength of the applied magnetic field because it depends on the conical angle, \(\theta = \theta(H) \). Figure S6 shows the \(\theta \) dependence of the fourth-order effective anisotropy, \(K_{eff} = KB(\theta) \), which is negative for small \(\theta \) and for \(\theta \approx \zeta \), stabilizing the helical spiral with \(Q \parallel \langle 001 \rangle \), as it is the case for Cu_2OSeO_3 at zero field. However, for intermediate values of \(\theta \), \(K_{ef} \) is positive and the preferred direction of \(Q \) becomes (111). In this interval of \(\theta \), spins in the conical spiral with \(Q \parallel \langle 001 \rangle \) are closer to the body diagonals than to cubic axes, which makes this wave vector direction unfavorable (see section S4 for more details).

This effect gives rise to local minima of the conical spiral energy in \(Q \)-space. If only the fourth-order anisotropy is taken into account, the global energy minimum for \(H \parallel \langle 001 \rangle \) is still at \(Q \parallel H \). However, additional anisotropy terms can turn these local minima into global ones, such that, in some magnetic field intervals, the tilted conical spiral becomes the ground state. Figure 4 (A to F) shows the false color plot of the conical spiral energy as a function of \(Q \) for several values of the dimensionless magnetic field, \(h = H/H_{C2} \), applied along the \(\langle 001 \rangle \) direction. For simplicity, only two anisotropy terms are nonzero in this calculation: \(K = K_{eff} = -0.19 \) and \(\gamma_1 = \gamma_2 = -0.1 \). In zero field (Fig. 4A), there are three energy minima along \(\langle 001 \rangle \), that is, along the \(\langle 010 \rangle \) and \(\langle 001 \rangle \) directions, corresponding to three degenerate helical spiral domains in Cu_2OSeO_3. For \(h = 0.2 \) (Fig. 4B), the helical spiral states with \(Q \) along the \(\langle 001 \rangle \) and \(\langle 010 \rangle \) directions are metastable. For \(h = 0.3 \) (Fig. 4C), only the minimum with \(Q \parallel \langle 001 \rangle \) exists, corresponding to the conical spiral state. For \(h = 0.6 \) (Fig. 4D), the conical spiral with \(Q \parallel \langle 001 \rangle \) is unstable and there appear four new minima, corresponding to four domains with \(Q \) tilted away from the magnetic field vector along the \(\pm [1, 1, 0] \) directions, as can be seen more clearly in Fig. 4F showing the energy sphere seen from above. The relative energy changes in this
part are \(\sim 10^{-2} \), implying large fluctuations of the spiral wave vector, which can explain the diffuse scattering shown in Fig. 1D. Finally, Fig. 4E shows the field-polarized state at \(h = 1 \).

Figure 4 (G to L) shows the \(Q \) dependence of the conical spiral energy in several magnetic fields along the [110] direction, calculated for the same values of parameters as those in Fig. 4 (A to F). As the magnetic field increases, the helical spiral states with \(Q \) along the [001] and [010] directions merge into a single state with the wave vector parallel to \(H \), and the state with \(Q \parallel [001] \) ultimately disappears (see Fig. 4, G to L). This gives rise to the two-step transition from the helical to the conical phase observed experimentally. For this field direction, the multidomain tilted spiral state does not appear and there is only one global minimum with \(Q \parallel [110] \) for \(H > H_{C2} \). Nevertheless, one can see the strong vertical elongation of the energy contours in Fig. 4 (H to L), which is a result of the competition with the \(Q \parallel [11 \pm 1] \) states. At \(h = 1 \), the elongation changes from vertical to horizontal (see Fig. 4, K and L).

These conclusions drawn using the variational approach are confirmed by exact energy minimization of Eq. 1 including two competing anisotropy terms: the fourth-order anisotropy with \(\kappa = -0.2 \) and the anisotropic exchange \(\gamma_1 \). The case of \(H \parallel [110] \) is treated in section S5, which explains the two lines \(\mu_0 H_{C1}^{(2)} \) and \(\mu_0 H_{C1}^{(3)} \), for the transition from the helical to the conical spiral state, shown in Fig. 3 (A to C). For \(H \parallel [001] \), the field dependence of the angle, \(\phi \), between \(Q \) and the [001] cubic axis, which describes the tilt of \(Q \) toward the [111] directions, is shown in Fig. 5A. The tilted spiral state appears when \(|\gamma_1| \) exceeds a critical value, which is slightly lower than 0.1 for \(\kappa = -0.2 \). When the magnetic field increases, the tilt angle reaches its maximal value, \(\phi_{\text{max}} \), marked by the empty circles in Fig. 5A, and then decreases to 0. As shown in Fig. 5B, \(\phi_{\text{max}} = 0 \) for \(|\gamma_1| \leq 0.1 \). Thus, the state with \(Q \parallel [111] \) is stable at low anisotropies. However, as the exchange anisotropy increases, an intermediate state occurs, and finally, for \(|\gamma_1| \geq 0.28 \), the state with \(Q \parallel [111] \) is stabilized even at zero magnetic field.

In our diffraction experiment, we do not observe all four tilted spiral domains, which is likely related to a small misalignment of the sample: Because of a weak dependence of the spiral energy on \(Q \), even a tiny deviation of \(H \) from the [001] direction leads to the selection of one of the four domains. This suggests that the domain structure of the tilted state can also be controlled by an applied electric field using the multiferroic nature of Cu2OSeO3 (35–37). The electric polarization induced by the tilted spiral with the spin rotation axis \(l = (\frac{1}{\sqrt{2}} \sin \alpha, \frac{1}{\sqrt{2}} \sin \alpha, \cos \alpha) \) is given by

\[
\langle P \rangle = \lambda \frac{(3 \cos^2 \theta - 1)}{4\sqrt{2}} \left(\sin 2\alpha, \sin 2\alpha, \frac{1}{\sqrt{2}}(1 - \cos 2\alpha) \right)
\]

Fig. 5. Field-induced reorientation of the spiral wave vectors for the fourth-order anisotropy \(\kappa = -0.2 \) and the anisotropic exchange \(\gamma_1 < 0 \). (A) Magnetic field dependence of the angle \(\phi \) describing the tilt of the spiral wave vector \(Q \) away from \(H \parallel [001] \) toward the body diagonals for different values of \(|\gamma_1| \). Above the critical value, \(|\gamma_1| = 0.1 \), \(\phi \) increases from 0, which corresponds to the conical spiral phase, to a maximal value, \(\phi_{\text{max}} \) (empty circle), and then decreases back to 0 as the magnetic field strength, \(h \), increases. For \(|\gamma_1| \geq 0.28 \), \(Q \parallel [111] \) even at zero field and smoothly rotates toward [001] with increasing field. (B) Dependence of \(\phi_{\text{max}} \) for \(|\gamma_1| \leq 0.1 \) (green area), \(\phi_{\text{max}} = 0 \), which implies that \(Q \parallel [100] \). By increasing the strength of the anisotropic exchange, \(Q \) smoothly rotates toward [111] (purple area), and for \(|\gamma_1| \geq 0.28 \), \(Q \parallel [111] \) (blue area).
found in section S6). Since \(\phi \) does not exceed 30\(^\circ\), the induced electric polarization is almost normal to the applied magnetic field \(\mathbf{H} \parallel [001] \). The conical spiral with \(\alpha = 0 \) induces no electric polarization.

To summarize, we found a new high-field multidomain magnetic state that intervenes between the conical spiral and field-polarized phases and is stable in a broad temperature range. This major deviation from universal behavior has important consequences for the field of chiral magnetism, for example, the partial magnetic order observed in MnSi under pressure (28), electric polarization induced through the magneto-electric coupling, spin Hall magnetoresistance, and anomalies in the spin wave spectrum. The spiral tilt can also give rise to new topological magnetic defects, such as skyrmions, with interesting static and dynamic properties. Our theoretical model that takes into account all competing magnetic anisotropies is in a semi-quantitative agreement with experiment. For particular directions of the magnetic field, this competition may stabilize skyrmions (38) or new tilted phases. Although the spiral wave vector tilts toward the (111) directions, the energy difference with \(Q \) along the (100) directions is relatively small. Therefore, one may envisage the formation of a superstructure with smooth rotation from one spiral domain to another, that is, a conical spiral composed of tilted spirals.

MATERIALS AND METHODS

Magnetization and magnetic susceptibility measurements were performed on two single crystals of \(\text{Cu}_2\text{OSeO}_3 \) with dimensions of \(~1 \text{ mm} \times 1 \text{ mm} \times 1 \text{ mm} \) grown at the Zernike Institute for Advanced Materials. One crystal was oriented with a \((001) \) axis vertical, while the other one was oriented with a \((110) \) axis vertical. A third single crystal with dimensions of \(~3 \text{ mm} \times 3 \text{ mm} \times 4 \text{ mm} \) grown at the Max Planck Institute for Chemical Physics of Solids was used for the neutron scattering measurements. This sample was oriented with the \([1\overline{1}0]\) crystallographic axis vertical. All crystals were prepared by chemical vapor transport method, and their quality and structure were checked by x-ray diffraction.

Magnetization and magnetic susceptibility were measured with an MPMS 5XL SQUID using the extraction method. For the determination of the magnetization, a static magnetic field, \(\mu_0 \mathbf{H} \), was applied along the vertical direction. The real and imaginary parts of the magnetic ac susceptibility, \(\chi' \) and \(\chi'' \), were measured by adding to \(\mu_0 \mathbf{H} \) a vertical drive ac field, \(\mu_0 \mathbf{H}_{\text{ac}} \), with an amplitude of 0.4 mT. The frequency of \(\mathbf{H}_{\text{ac}} \) was varied between 0.1 and 1000 Hz.

The SANS measurements were performed on the instruments PA20 of the Laboratoire Léon Brillouin and GP-SANS of the Oak Ridge National Laboratory using neutron wavelengths of 0.6 and 1 nm, respectively. At both instruments, the magnetic field was applied either parallel or perpendicular to the incoming neutron beam wave vector \(\mathbf{k} \), using a horizontal magnetic field cryomagnet. The orientation of the crystal axes with respect to \(\mathbf{k} \), and to the magnetic field was varied by rotating the sample in the cryomagnet. The SANS patterns were collected for \(\mathbf{H} \parallel [1\overline{1}0] \) and \(\mathbf{H} \parallel [001] \) and, in each case, for \(\mathbf{H} \perp \mathbf{k} \) and \(\mathbf{H} \parallel \mathbf{k} \), by rotating both the sample and the magnetic field through 90\(^\circ\) with respect to \(\mathbf{k} \). Measurements at 70 K, where the magnetic scattering is negligible, were used for the background correction of the SANS patterns.

All measurements were performed after zero field cooling the sample through the magnetic transition temperature, \(T_c \), down to the temperature of interest. The magnetic field was then increased stepwise. The applied magnetic field, \(\mu_0 \mathbf{H}_{\text{ext}} \), was corrected for the demagnetizing effect to obtain the internal magnetic field, \(\mu_0 \mathbf{H}_{\text{int}} \) (in SI units)

\[
\mathbf{H}_{\text{int}} = \mathbf{H}_{\text{ext}} - NM
\]

where \(N = 1/3 \) is the demagnetization factor for our (nearly) cubic shape samples. The demagnetizing field correction also modifies the values of the magnetic susceptibility

\[
\chi_{\text{int}} = \frac{\chi_{\text{ext}}}{1 - \mu_0 V_N \chi_{\text{ext}}}
\]

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/4/9/eaat7323/DC1

Section S1. Temperature and magnetic field dependence of the magnetization and susceptibility

Section S2. Frequency dependence of the ac susceptibility

Section S3. Phase boundaries determined from SANS

Section S4. Effect of magnetic anisotropy on the direction of the spiral wave vector

Section S5. Numerical studies of spiral reorientation processes in the presence of competing anisotropies

Section S6. Electric polarization

Fig. S1. Magnetic properties of \(\text{Cu}_2\text{OSeO}_3 \).

Fig. S2. Temperature dependence of the magnetization.

Fig. S3. \(\chi' \) and \(\chi'' \) as a function of magnetic field.

Fig. S4. Frequency dependence of \(\chi' \) and \(\chi'' \) at \(T = 5 \text{ K} \).

Fig. S5. Magnetic field dependence of the SANS intensity at 6 K.

Fig. S6. Effective anisotropy.

Fig. S7. Spiral reorientation for \(\mathbf{H} \parallel [001] \).

Fig. S8. Spiral reorientation for \(\mathbf{H} \parallel [1\overline{1}0] \).

Fig. S9. Field-induced reorientation of the spiral wave vectors for \(\mathbf{H} \parallel [001] \) and for the fourth-order anisotropy \(\kappa = -0.2 \) and the anisotropic exchange \(\gamma_j < 0 \).

Reference (40)

REFERENCES AND NOTES

New magnetic phase of the chiral skyrmion material Cu$_2$OSeO$_3$

Fengjiao Qian, Lars J. Bannenberg, Heribert Wilhelm, Grégory Chaboussant, Lisa M. Debeer-Schmitt, Marcus P. Schmidt, Aisha Aqeel, Thomas T. M. Palstra, Ekkes Brück, Anton J. E. Lefering, Catherine Pappas, Maxim Mostovoy and Andrey O. Leonov

Sci Adv 4 (9), eaat7323.
DOI: 10.1126/sciadv.aat7323