Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header</td>
<td>1</td>
</tr>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>Plain Language Summary</td>
<td>2</td>
</tr>
<tr>
<td>Background</td>
<td>2</td>
</tr>
<tr>
<td>Objectives</td>
<td>4</td>
</tr>
<tr>
<td>Methods</td>
<td>4</td>
</tr>
<tr>
<td>Results</td>
<td>6</td>
</tr>
<tr>
<td>Discussion</td>
<td>8</td>
</tr>
<tr>
<td>Authors’ Conclusions</td>
<td>9</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>9</td>
</tr>
<tr>
<td>References</td>
<td>10</td>
</tr>
<tr>
<td>Characteristics of Studies</td>
<td>13</td>
</tr>
<tr>
<td>Data and Analyses</td>
<td>19</td>
</tr>
</tbody>
</table>
Interventions for cutaneous molluscum contagiosum

Johannes C van der Wouden1, Sander Koning2, Lisette WA van Suijlekom-Smit3, Marjolein Berger2, Christopher Butler4, Jack Menke2, Sanjay Gajadin5, Marjolein JA Tasche6

1Department of General Practice, Erasmus MC - University Medical Center Rotterdam, Rotterdam, Netherlands. 2Department of General Practice, Erasmus MC, University Medical Center, Rotterdam, Netherlands. 3Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, Netherlands. 4Department of Primary Care and Public Health, School of Medicine, Cardiff University, Cardiff, UK. 5Erasmus MC, University Medical Center, Rotterdam, Netherlands. 6c/o Cochrane Skin Group, University of Nottingham, Nottingham, UK

Contact address: Johannes C van der Wouden, Department of General Practice, Erasmus MC - University Medical Center Rotterdam, PO Box 1738, Rotterdam, Zuid-Holland, 3000 DR, Netherlands. j.vanderwouden@erasmusmc.nl.

Editorial group: Cochrane Skin Group.
Review content assessed as up-to-date: 5 December 2005.

Copyright © 2009 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Abstract

Background
Molluscum contagiosum is a common skin infection, caused by a virus, which will usually resolve within months in people with a normal immune system. Many treatments have been promoted for molluscum contagiosum but a clear evidence base supporting them is lacking.

Objectives
To assess the effects of management strategies (including waiting for natural resolution) for cutaneous, non-genital molluscum contagiosum in healthy people.

Search strategy
We searched the Skin Group Specialised Register (March 2004), the Cochrane Central Register of Controlled Trials (2004, Issue 2), MEDLINE (from 1966 to March 2004), EMBASE (from 1980 to March 2004) and LILACS (from 1982 to March 2004) databases. We also searched reference lists and contacted pharmaceutical companies and experts in the field.

Selection criteria
Randomised controlled trials for treatment of molluscum contagiosum were investigated. Trials on sexually transmitted molluscum contagiosum and in people with lowered immunity (including those with HIV infection) were excluded.

Data collection and analysis
Study selection and assessment of methodological quality were carried out by two independent authors. As similar comparisons between two interventions were not made in more than one study, statistical pooling was not performed.
Main results

Five studies, with a total number of 137 participants, examined the effects of topical (three studies), systemic and homoeopathic interventions (one study each). Limited evidence was found for sodium nitrite co-applied with salicylic acid compared to salicylic acid alone (risk ratio (RR) 3.50, 95% confidence interval (CI) 1.23 to 9.92). No statistically significant differences were found for topical povidone iodine plus salicylic acid compared to povidone iodine alone (RR of cure 1.67, 95% CI 0.81 to 3.41) or compared to salicylic acid alone. Also no statistically significant differences were found for potassium hydroxide compared to placebo; systemic treatment with cimetidine versus placebo or systemic treatment with calcarea carbonica, a homoeopathic drug, versus placebo (RR 5.57, 95% CI 0.93 to 33.54).

Study limitations included no blinding (two studies), many dropouts (three studies) and no intention-to-treat analysis (two studies); small study sizes may have led to important differences being missed. None of the evaluated treatment options were associated with serious adverse effects.

Authors’ conclusions

No single intervention has been shown to be convincingly effective in treating molluscum contagiosum.

PLAIN LANGUAGE SUMMARY

There is not enough evidence to show that any particular treatment is effective for treating molluscum infection.

Molluscum contagiosum, in healthy people, is a self-limiting, relatively harmless viral skin infection. It affects mainly children and adolescents. People may seek treatment, however, for social and aesthetic reasons and because of concerns about spreading the disease to others. This review found that many common treatments for molluscum, such as physical destruction, have not been adequately evaluated. Since most lesions will resolve within months without leaving scars, molluscum contagiosum can be left to heal naturally until better evidence on treatment options emerges.

BACKGROUND

Description of the condition

Molluscum contagiosum is a viral skin infection most frequently encountered in children. The infection is caused by the molluscum contagiosum virus (MCV), which is classified within the family of poxviruses (Poxviridae). Infection follows contact with infected people or contaminated objects. Molluscum contagiosum usually presents as single or multiple (usually no more than 20) painless, spherical, shiny, pearly white papules (pimples) that classically have a central dimple. Their size may vary from tiny 1 mm papules to large nodules over 1 cm in diameter (Rogers 1998).

As well as the common form of benign skin tumours (mostly found in children), there is also a sexually transmitted variant of molluscum contagiosum which occurs on genital, perineal, pubic and surrounding skin. Molluscum contagiosum lesions may also appear in or around the mouth (Whitaker 1991). Molluscum contagiosum has also been observed with other diseases in people with a damaged immune system (Gottlieb 1994). People with HIV infection are particularly prone to molluscum contagiosum and prevalence in this population may be as high as 5 to 18% (Matis 1987; Hira 1988; Husak 1997). The focus of this review will be the common form of molluscum contagiosum only.

Epidemiology

Molluscum contagiosum occurs worldwide but is much more frequent in certain areas with warm climates, like Fiji, Congo and Papua New Guinea. Infection is rare under the age of one year, and typically occurs in the two to five year age group (Rogers 1998). The age of peak incidence is reported as being between two and three years in Fiji (Postlethwaite 1967), and between one and four years in the Congo (former Zaire) (Torfs 1959). In Papua New Guinea the annual attack rate for children under 10 years of age was 6% (Sturt 1971). For developed countries, population-based occurrence rates are scarce. In a large questionnaire study among parents of children attending kindergartens and elementary schools the reported prevalence of molluscum contagiosum...
was 5.6% and 7.4% respectively (Niizeki 1984). Much higher prevalence rates have been reported during outbreaks in closed communities (Overfield 1966).

In the United States, from 1990 to 1999 the estimated number of physician visits for molluscum contagiosum was 280,000 per year (Molino 2004). One out of six Dutch children aged 15 years have visited their doctor for molluscum contagiosum at least once (Koning 1994). There is generally no difference in incidence between males and females (Sturt 1971; Relyveld 1988; Koning 1994). However, an unequal sex ratio was found in studies from Japan (Niizeki 1984), Alaska (Overfield 1966) and Fiji (Hawley 1970), where boys were affected more often. This is probably due to habits associated with the spread of the infection, such as swimming (Postlethwaite 1967; Niizeki 1984). Outbreaks may occur among children who bathe or swim together. A history of eczema was found in 62% of children with molluscum contagiosum in Australia (Braue 2005). In the adolescent and adult age groups sexual transmission becomes important.

Natural history

The estimated incubation period varies from 14 days to 6 months. Lesions enlarge slowly and may reach a diameter of 5 to 10 mm in 6 to 12 weeks (Sterling 1998). After trauma (for example, scratching), or spontaneously after several months, inflammatory changes result in the production of pus, crusting and eventual destruction of the lesions. However, new lesions tend to appear as the old ones resolve as a consequence of the virus spreading to other areas of skin. The duration both of the individual lesion and of the entire episode is highly variable. Crops of molluscum may appear to come and go for several months, and although most cases are self-limiting and resolve within six to nine months, some may persist for more than three or four years. Follow-up studies (Liveing 1878; Hawley 1970) confirm these figures and show that individual lesions are unlikely to persist for more than two months. A Japanese study describes spontaneous resolution on average 6.5 months after infection in 205 out of 217 children (94.5%) affected by molluscum contagiosum (Takemura 1983). One month after the first consultation with the dermatologist, 23% of the children were cured.

Particularly in atopic people (who are prone to asthma, hay fever or eczema), there is a tendency for a patch of eczema (which is often particularly itchy) to develop around one or more of the lesions a month or more after their onset (De Oreo 1956; Beaulieu 2000). Erythema annulare centrifugum (a widespread rash of red inflammatory rings) has also been reported (Vasily 1978). Chronic conjunctivitis and superficial punctate keratitis may similarly complicate lesions on or near the eyelids (Haellmigk 1966; Redmond 2004). The eczema and conjunctivitis subside spontaneously when the molluscum lesion is removed. Molluscum contagiosum behaves differently in HIV-infected individuals. As immunodeficiency progresses, molluscum contagiosum becomes more common and resistance to therapy increases. Frequently, multiple lesions in atypical areas such as the face and neck can be found. Only limited data are available on the course of the disease in this group of people.

Description of the intervention

Molluscum contagiosum is a self-limiting disease in people with an uncompromised immune system. Therapy is not necessary for recovery and awaiting spontaneous resolution is an important management strategy. Most lesions resolve within months without scarring in otherwise healthy people (Ordoukhanian 1997). Treatment is intended to accelerate this process. Destruction of the lesions and the production of an inflammatory response (Sterling 1998) are methods by which resolution of the lesions could be hastened.

Reasons to treat molluscum contagiosum include:
(a) alleviating discomfort, including itching;
(b) cosmetic reasons;
(c) social stigma associated with many visible lesions;
(d) limiting it’s spread to other areas of the body and to other people;
(e) preventing scarring and secondary infection;
(f) preventing trauma and bleeding of lesions.

A large number of treatment options are used for molluscum contagiosum. These can be divided into three major categories:
(a) physical destruction of the lesions;
(b) topical agents (i.e. those applied directly to the lesions);
(c) systemic treatment (i.e. those affecting the whole body).

Physical destruction is recommended as the preferred method for treatment of molluscum contagiosum by most authors. Dermatology textbooks mention removal of the lesion with a sharp curette or the application of liquid nitrogen (cryotherapy) as being simple, painless and usually effective treatments (Sterling 1998; Lowy 1999). Gentle squeezing or pricking with a sterile needle (Berger 1996) are alternative recommended destructive therapies. Most of these therapies will have to be repeated at three to four weekly intervals. Treatment is often painful and may result in scarring (Friedman 1987). Squeezing of lesions may even lead to the formation of large abscesses due to the disruption of virus into the deeper layer of the skin (dermis) (Brandrup 1989).

Topical preparations such as podophyllotoxin, liquefied phenol, tretinoin, cantharidin or potassium hydroxide can be used to produce a local inflammatory response. In children, prior application of local anaesthetic cream may reduce the pain of treatment involving physical destruction or local inflammation (Rodsah 1988; de Waard 1990). Other proposed topical treatments include immune response modifiers such as imiquimod and cidofovir.

Systemic treatment with cimetidine has been suggested as a possible treatment because of its systemic immunomodulatory effects; it increases lymphocyte proliferation and inhibits suppressor T-cell function (Orlow 1993; Sterling 1998).
Why it is important to do this review
Molluscum contagiosum is a common reason for consultation in family practice and dermatology. There are many treatment options available, some of which are painful and some may leave scars. A decision may be made in favour of active therapy to prevent further spread, relieve symptoms, prevent scarring and for cosmetic and social reasons. Indeed, many parents are concerned about the stigma associated with the lesions. Children with molluscum may be excluded from attending nursery and from participating in physical activities such as swimming. However, the scientific basis for treatment is unclear. Consequently, many practitioners find themselves in a dilemma as to whether or not to promote active treatment and, if they do decide on an active treatment strategy, are unclear as to the best option. We have carried out this systematic review to evaluate treatment options for molluscum contagiosum.

OBJECTIVES
To assess the effects of management strategies, including waiting for natural resolution, for cutaneous, non-genital molluscum contagiosum in healthy people.

METHODS
Criteria for considering studies for this review

Types of studies
Randomised controlled trials (RCTs) for treatment of molluscum contagiosum. Trials on sexually transmitted molluscum contagiosum and in people with lowered immunity (including those with HIV infection) were excluded.

Types of participants
People with a diagnosis of molluscum contagiosum, except for those with lowered immunity or sexually transmitted molluscum contagiosum.

In general, treatment is based on a clinical diagnosis only as molluscum contagiosum is an easy diagnosis to make and confusion is rare among clinicians. Therefore additional diagnostic criteria, such as histological examination and laboratory investigations, were considered unnecessary.

Types of interventions
All treatments aimed at eradicating molluscum contagiosum lesions, including:
• physical interventions;
• systemic treatments;
• topical agents;
• awaiting natural resolution.

Studies on other aspects of the treatment of molluscum contagiosum, for example on reducing pain in the studies that used analgesic EMLA cream (Juhlin 1980; de Waard 1990), were excluded.

Types of outcome measures

Primary outcomes
Short-term clinical cure
One month from last day of treatment, or in the case of different follow-up durations, the measurement point closest to one month (plus or minus one week).
Clinical cure was defined as complete disappearance of elevated molluscum contagiosum skin lesions, as assessed by a physician.

Secondary outcomes
(a) Medium and long-term clinical cure (after three months and six months, respectively)
(b) Medium and long-term improvement (after three months and six months, respectively)
(c) Time to cure
(d) Recurrences after 3, 6 and 12 months
(e) Adverse effects of treatment such as pain, blistering, sensitisation, scarring, erosion and pigmentary changes
(f) Spread to other people
(g) Disease-related quality of life

Measures (b) and (g) were not initially specified in the protocol, but were added afterwards since clinical cure at the end of the study was the most commonly reported outcome measure, and disease-related quality of life was considered to be a relevant additional measure.

Search methods for identification of studies

Electronic searches
Relevant trials were identified from:
(a) The Cochrane Skin Group Specialised Register (March 2004)

The following search term was used: 'Molluscum'.

(b) The Cochrane Central Register of Controlled Trials (CENTRAL) (2004, Issue 2)

The following search strategy was used: "Molluscum contagiosum/ OR molluscum contagiosum.ti, ab".
#1 molluscum contagiosum in All Fields in all products
#2 MeSH descriptor Molluscum Contagiosum explode all trees in MeSH products
#3 (#1 OR #2)

(c) MEDLINE (from 1980 to March 2004)

Search terms, as given in the Cochrane Handbook (Higgins 2005), appendix 5b.3. See Appendix 1.

(d) EMBASE (from 1980 to March 2004)

See Appendix 3.

(e) LILACS (Latin American and Caribbean Health Service Information database) (from 1982 to March 2004)

See Appendix 2.

Searching other resources

Ongoing trials

We searched the metaRegister of Current Controlled Trials on http://www.controlled-trials.com (March 2004).

References lists

Reference lists of each selected article or relevant review article were checked to identify additional studies.

Correspondence

Further relevant published and unpublished trials were obtained via correspondence with selected pharmaceutical companies and authors of recent publications.

Language

No language restrictions were imposed

Data collection and analysis

Selection of studies

Two authors (JCvdW, SG or JM) independently read all abstracts or titles of identified trials. If one of the authors considered the article potentially relevant, a full-text copy of the article was obtained for further consideration. Two authors (SK, LvSS) independently examined all full text copies to determine whether or not they met our inclusion criteria. Disagreements were resolved by discussion between the authors, with referral to a third author (JCvdW or JM) when necessary. Trials on sexually transmitted molluscum contagiosum and in people with lowered immunity (including those with HIV infection) were excluded, in order to increase homogeneity of studies. If the full text of studies was not available published abstracts were considered for the review. If an RCT included a variety of skin diseases, including molluscum contagiosum, the number of molluscum participants needed to be at least five in the active treatment and placebo groups. This criterion was added after the protocol was approved when a study was found which included 10 molluscum participants with a 9:1 distribution over the two treatment groups (Caballero 1996).

Data extraction and management

Two authors (MYB and SK) independently carried out data extraction using specially developed and piloted data extraction forms. Discrepancies were resolved by a third author (JCvdW). Missing data were obtained from authors where possible. One of two authors (JM or JCvdW) checked and entered the data.

Assessment of risk of bias in included studies

Two authors (MYB and JCvdW) independently assessed the methodological quality of the trials. The authors were not blinded to the names of authors, journals or institutions. A third author (JM) acted as arbitrator when necessary. The quality assessment included an evaluation of the following components:
(a) the method of generation of the randomisation sequence;
(b) the method of allocation concealment - it was considered 'adequate' if the assignment could not be foreseen;
(c) who was blinded / not blinded (participants, clinicians, outcome assessors);
(d) how many participants were lost to follow up in each arm (split into post-randomisation exclusions and later losses if possible), and whether participants were analysed in the groups to which they were originally randomised (intention-to-treat);
(e) additional 'review specific' quality criteria, such as unit of analysis in the case of multiple lesions.
Data synthesis

Trials relevant to the focus of this review were examined in greater detail. We provide a narrative synthesis of included trials, presenting the characteristics of trials and their results. For studies with a similar type of intervention, meta-analyses were planned to calculate a weighted treatment effect across trials using a random-effects model (DerSimonian and Laird model). Similar comparisons between two interventions were not made in more than one study, therefore, we summarised data for each trial. For dichotomous outcomes, we expressed the results as risk ratios (RR) with 95% confidence intervals (CI); and as a number needed to treat (NNT), where appropriate.

For continuous outcomes, the results were to be expressed as weighted mean differences (WMD) with 95% CI. For time to cure as an outcome, the results were to be expressed as weighted hazard ratios with 95% CI. This was to be achieved by either combining the estimates from the log rank tests (O-E and V) using a modified version of Peto's method (Yusuf 1985) or by combining the log hazard ratio and variance from Cox proportional hazard models given in the publications using the generic inverse variance method. Where a mixture of these methods was used for the outcome the estimates from the log rank tests were to be converted to log hazard ratios and combined using the generic inverse variance method.

Heterogeneity between the studies was to be explored using I² and, if substantial heterogeneity (I² > 50%) existed between studies for the primary outcome, reasons for heterogeneity were to be explored, e.g., using sensitivity analyses to examine the effects of excluding studies with lower reported methodological quality. Cross-over trials and within-participant designed trials were to be analysed using techniques appropriate for paired designs, with the help of a statistician.

Non-randomised controlled studies and excluded studies are listed but not discussed further. Studies relating to adverse effects of treatments are described qualitatively.

RESULTS

Description of studies

See: Characteristics of included studies; Characteristics of excluded studies.

Results of the search

Seventeen abstracts were generated by searching the CENTRAL database: 131 abstracts from MEDLINE; 148 abstracts from EMBASE; and 45 from LILACS. From these 341 abstracts, some of which were duplicates, 18 studies were considered possibly to be RCTs and the full text was obtained. A further 17 studies were identified from the bibliographies of retrieved studies and the full text of these studies was also obtained. The papers discussed a variety of treatment options for molluscum contagiosum. (See for treatment options for molluscum contagiosum found in the literature.)

Most trials were reported in English. However, other languages included French, Chinese, Japanese and Spanish. Two of the Japanese papers and one Chinese study were translated. We read French and Spanish papers in their original language.

Included studies

Five studies were included in this review. The included studies involved a total of 137 molluscum participants, with numbers of participants in each study ranging from 20 to 38 (Antony 2001; Short 2002). Four of the five studies were obtained as full text articles. One study was available only as a published abstract (Antony 2001). Additional information was requested and obtained from the authors of three of the studies (Ohkuma 1990; Manchanda 1997b; Short 2002). One author did not reply to our request for additional information (Antony 2001). Three of the studies evaluated local therapies for molluscum contagiosum (Ohkuma 1990; Ormerod 1999; Short 2002). Two studies investigated systemic treatments (Manchanda 1997b; Antony 2001). The paper by Manchanda reported on two studies both making the same comparison but one in a cross-over design and one in a parallel design. We chose not to include the cross-over study because less than five participants were assigned to one of the treatment arms. All included studies were set in hospital outpatient or emergency departments. Only immunocompetent (non-HIV participants) and non-genital molluscum contagiosum participants were included in the studies. Participants therefore consisted primarily of children and young adults (adolescents).

Topical therapy

Ohkuma 1990 assessed the effect of application of 10% povidone iodine solution combined with 50% salicylic acid plaster. Treatment was continued until resolution of the lesions. There were three intervention arms, 10% povidone iodine solution combined with 50% salicylic acid plaster (n = 20), povidone iodine alone (n = 5) and salicylic plaster alone (n = 10). Participants were aged between two and nine years.

Ormerod 1999 assessed the effect of 5% sodium nitrite co-applied daily with 5% salicylic acid, under occlusion (n = 16). A control group received an identical cream with 5% salicylic acid but without sodium nitrite (n = 14). Treatment was for three months or until participants were cured or dropped out, if sooner. Thirty participants with a median age of six years participated in this study. Short 2002 assessed the application of a 10% potassium hydroxide solution (n = 10). The control group received saline (n = 10). The
age of included participants ranged from 2 to 12 years. Assessment of the therapeutic response took place up to 90 days after start of treatment or one month after clearance, or both.

Systemic therapy

Antony 2001 assessed the effect of 35 mg/kg/day of cimetidine given once daily as an oral suspension for three months. Thirty-eight participants, aged 1 to 16 years, were enrolled in the trial, but assignment details are only given for the 19 participants who completed the study. Eight of these were randomised into the treatment arm of the trial. The 11 participants in the control arm received a matched oral suspension. The follow-up period was four months from the start of treatment.

Manchanda 1997b evaluated different potencies of a homoeopathic drug called calcarea carbonica given daily for 15 days (n = 14). Six participants were randomised to receive plain sugar globules as a placebo. Participants’ ages ranged from 0 to 30 years. Follow-up duration was not reported.

Excluded studies

Thirty of the 35 studies did not fulfil our criteria. The most common reasons for exclusion were case series rather than RCTs, or because the participant groups were outside the focus of the review (see the Characteristics of excluded studies table).

Risk of bias in included studies

Table 1 gives the results of the quality assessment.

Method of generation of randomisation sequence

Three of the five studies were described in the text as randomised trials (Ormerod 1999; Antony 2001; Short 2002). Additional information was obtained from the authors of the other papers, who confirmed in writing that the participants were randomised into the different treatment groups (Ohkuma 1990; Manchanda 1997b). The way the randomisation sequence was generated was not described in any of the papers. In a personal communication, Manchanda informed us that in his study this was ‘generated manually’.

Allocation

None of the papers described whether the investigators took any precautions to conceal the allocation schedule from those involved in entering participants into the study.

Blinding

Four of five studies were described as double-blind (Manchanda 1997b; Ormerod 1999; Antony 2001; Short 2002). However, none of them provided information about the visual similarity of treatments, nor whether blinding was maintained throughout follow up. Ormerod reported brown staining on the skin in six participants with active treatment, but none of the controls, which may have unblinded the assessment of outcomes (Ormerod 1999).

Follow up and exclusions

In two out of the five included studies (Ormerod 1999; Short 2002) all participants who underwent random allocation were analysed according to group assignment (intention-to-treat). In two studies this was not the case (Manchanda 1997b; Antony 2001). One study did not report any loss to follow up (Ohkuma 1990).

Effects of interventions

Primary outcome

The primary outcome for this review was complete disappearance of elevated molluscum contagiosum lesions after one month. None of the selected trials reported on the difference between treatment and control groups after one month of treatment.

Secondary outcomes

Three studies reported on medium term clinical cure (after three or four months) (Ormerod 1999; Antony 2001; Short 2002) and two on time to cure (Ohkuma 1990; Short 2002), but Short 2002 only reported this outcome for the group with active treatment. Three reported on adverse effects (Ohkuma 1990; Ormerod 1999; Short 2002).

As the same comparison between two interventions was not made in more than one study, testing for homogeneity between studies was not relevant, nor was a meta-analysis appropriate.

(1) Topical treatments (Analyses 1 to 5)

Application of 10% povidone iodine solution and 50% salicylic acid plaster (Ohkuma 1990) was effective in curing 20/20 participants (100%) compared with 3/5 (60%) who received povidone iodine alone (RR 1.67, 95% CI 0.81 to 3.41) (Analysis 1.1) and 7/10 (70%) who received salicylic plaster alone (RR 1.43, 95% CI 0.95 to 2.14) (Analysis 2.1). Thus, povidone iodine plus salicylic acid plaster resulted in more participants being completely cured than with salicylic plaster or povidone iodine alone, although this did not reach statistical significance. In addition, the mean time to cure was shorter for iodine plus salicylic acid plaster (mean time to
cure of 26 days) than for either iodine alone (mean time to cure of 86 days) or salicylic plaster alone (mean time to cure of 47 days). All participants developed local redness of the skin at the treatment site within three to seven days after the start of the treatment. Duration was variable for each individual. The more marked the inflammation, the earlier the participant was cured.

Treatments with 5% sodium nitrite co-applied daily with 5% salicylic acid under occlusion (Ormerod 1999) resulted in significantly more participants with complete resolution of the lesions after three months: 12/16 (75%) compared with 3/14 (21%) participants in the control group, treated with an identical cream but omitting sodium nitrite (RR 3.50, 95% CI 1.23 to 9.92) (Analysis 4.1). This resulted in a number needed to treat of less than two (i.e. for each cure achieved, two people need to be treated). The mean number of treatment days was 38 (standard deviation (SD) 20) in the treatment group and 49 (SD 25) in the control group. Brown staining was reported in 6 of the 16 participants using the active treatment. Four out of 16 participants (25%) stopped the active treatment because of irritation and lack of efficacy. Two additional participants, who were cured, complained of significant irritation.

Treatment with 10% potassium hydroxide solution was successful after three months in 6/10 participants (60%) compared with 2/10 (20%) in the placebo group (RR 3.00, 95% CI 0.79 to 11.44), which is not statistically significant (Analysis 5.1) (Short 2002). The average time to resolution in the potassium arm was 40 days; however, this was not reported for the control arm. Mild stinging was reported by most participants and two participants developed post-inflammatory pigmentary changes at the treatment site. In the treatment arm two participants withdrew from the study due to discomfort of the skin at the application site.

(2) Systemic treatments (Analyses 6 to 7)

Treatment with systemic cimetidine 35 mg/kg/day (Antony 2001) cleared lesions completely in 4/8 participants (50%) after four months of treatment, compared with 5/11 (46%) given placebo in the same period (Analysis 6.1); however, the difference for this effect was not statistically significant (RR 1.10, 95% CI 0.43 to 2.84). No data were reported for the 50% (19/38) of participants who withdrew from the study.

Treatment with calcarea carbonica (Manchanda 1997b) resulted in improvement of 13/14 participants in the treatment arm and 1/6 in the placebo arm of the trial (RR 5.57, 95% CI 0.93 to 33.54) (Analysis 7.1). However, study duration, time to resolution and adverse events were not reported and the study was not analysed by the intention-to-treat principle. The number of dropouts (20/104 for whole trial, including other skin conditions) is unclear for the molluscum participants.

The majority of the studies we identified evaluating treatments for molluscum contagiosum could not be included in this review because they were uncontrolled case series. Only five RCTs were included. These studies examined the effects of five different interventions. Only one study (Ormerod 1999) found a statistically significant effect, comparing a combination of sodium nitrite with salicylic acid given under occlusion to an identical cream omitting sodium nitrite. The practical consequence of this finding is unclear as this study did not include a placebo treatment. Several of the studies suffered from major potential biases such as high drop out rates, no intention-to-treat analysis and unclear concealment of allocation making them very difficult to interpret. No treatment option was associated with serious adverse effects, although irritation was reported for some treatments.

All of the included studies were small in sample size with a median study size of 20 molluscum participants. Hence, all studies may have limited power, which was reflected in the wide confidence intervals around the risk ratios. In addition, many of the studies had large losses to follow up; the largest study had a 50% loss to follow up rate (Antony 2001). Furthermore, in two of the included studies the control used was not a placebo. In both of these studies, applying salicylic acid cream under occlusion, plaster alone and iodine alone, as the comparison treatment may have had some potential treatment effect. Therefore, it was difficult to compare the effect of interventions given the absence of a placebo group in most of the studies.

The lack of reported details on several methodological issues and follow up period, together with the small number of participants gives rise to doubts about the validity of the results of some of the studies.

We chose our primary outcome measure to be clinical cure after one month, calculated from the last day of treatment. However, this may not be the most appropriate outcome measure to cover the variety of treatments for molluscum. For example, when comparing a method of physical destruction (e.g. curettage) with a topical treatment that is applied during several days or weeks, our primary outcome measure would probably favour the first type of treatment. Although no clear-cut solution seems available, and so far no trials studied physical destruction, it is advisable to always consider multiple outcome measures and also to take the burden of treatment into account.

Several issues remain unclear due to lack of details in the published papers. For example, it is unclear whether duration of treatment, as used in Ormerod 1999, can be taken as a valid indicator for time to cure given dropouts and other possible reasons for stopping treatment. Although Antony 2001 did not report on adverse events, the 50% loss to follow up rate in the trial might have been caused by adverse effects of the treatment. It is unclear which dosing regimen was used in Manchanda 1997b when evaluating calcarea carbonica.

DISCUSSION

Interventions for cutaneous molluscum contagiosum (Review)
No evidence either for or against the most commonly used treatment options for molluscum contagiosum was found. For example, we did not find any study on curettage. Only one study on cryotherapy (Caballero 1996) and one on physical expression (squeezing) (Weller 1999) were identified. Neither of these studies could be included in this review. There is, therefore, an evidence gap regarding many commonly promoted and used treatment options for molluscum contagiosum. Furthermore, due to the small sample sizes of the studies that were included and which found no differences, clinically relevant differences might be found when treatments are evaluated in larger samples. The cure rates found by Weller for physical expression and for phenol ablation (75 and 77% of lesions respectively; after one month) (Weller 1999) compare favourably to the 23% of children found cured in the Japanese study on the natural history of the disease (Takemura 1983). This suggests a magnitude of effect for both therapies that would be worthy of proper testing in an RCT against placebo, although it should be noted that phenol ablation was found to show more scarring.

Several of the outcomes important to participants and clinicians were not used as outcome measures in the studies we found. These include recurrences, spread to other people, stigma and quality of life.

We were unable to perform meta-analyses in this review because none of the interventions were evaluated in more than one study. The evidence identified by this systematic review is, therefore, insufficient to propose any one intervention for molluscum contagiosum. Additional well-designed prospective blinded randomised controlled studies on common treatment options for molluscum contagiosum against a credible placebo or no intervention are needed to provide high quality evidence upon which to base clinical decision making. Additional well-designed prospective blinded randomised controlled studies on common treatment options for molluscum contagiosum against a credible placebo or no intervention are therefore needed, preferably assessing this after various follow-up times (e.g. 1, 3, 6, and 12 months). This will help guide decisions concerning the use of active treatments.

We excluded studies on genital molluscum contagiosum and in participants with lowered immunity. Our conclusions do not apply to these participant groups as the need for treatment is probably higher.

Authors’ Conclusions

Implications for practice

No reliable evidence based recommendations can be given for the treatment of molluscum contagiosum at present. We were unable to locate any randomised controlled trials that addressed physical destruction of molluscum lesions. Until robust evidence emerges for effective and safe treatment, clinicians should consider expectant management, i.e. awaiting spontaneous resolution of the molluscum lesions.

Implications for research

(a) Additional well-designed prospective blinded randomised controlled studies are needed to provide high quality clinical trial evidence upon which to base clinical decision-making. Future studies evaluating treatments for molluscum contagiosum should, as a priority, focus on commonly promoted and commonly used options for treatment (e.g. curettage and cryotherapy).

(b) Limited data on the natural history of molluscum contagiosum is available. Additional studies into the rate of resolution without active interventions are therefore needed, preferably assessing this after various follow-up times (e.g. 1, 3, 6, and 12 months). This will help guide decisions concerning the use of active treatments.

(c) Outcome measures of future trials should preferably include recurrence rates, spread of the disease to other people and disease-related quality of life.

(d) A standardised outcome measure (e.g. time to resolution of the lesions or resolution after three months) would make studies easier to compare.

(e) Statistical power must be considered in conjunction with outcomes that are meaningful for people with molluscum contagiosum. For example, it is likely that a treatment that results in statistically fewer lesions may not be considered worthwhile because this reduction may not be sufficient to improve appearance or quality of life. People should be enabled to weigh costs and benefits, taking into account resolution of lesions, adverse effects and treatment burden.

(f) Molluscum contagiosum is a common disease in immunocompromised people (e.g. people living with HIV). There is also a sexually transmitted variant that affects immunocompetent sexually active people, which was excluded from this review. There is a need for reviews of studies of treatments for these important subgroups of people with molluscum contagiosum.

Acknowledgements

The authors would like to thank Adrie Hollestein, Daan Muris, Kazutomo Ohkuma, Tony Ormerod, and Hywel Williams for drawing our attention to relevant studies.

Drs. Manchanda, Kazutomo Ohkuma and Tony Ormerod kindly provided additional information regarding their studies and Kate Short generously sent us her full paper before it was submitted for publication. The editorial base provided help in tracing and translating papers. We also thank Himiko Luiken for translating the unique study on the natural history of molluscum contagiosum by Tsukasa Takemura and colleagues, and Taixiang Wu for interviewing Dr He on details of her study design. We thank Philippa for...
Middleton, Tina Leonard, Jo Leonardi-Bee and Hywel Williams (all editorial base), Anthony Ormerod and Paula Beatty (content experts) and Jack Tweed (consumer) for their comments on earlier drafts of the review.

The editorial base would like to thank the following people who were external referees for this review: Anthony Ormerod and Paula Beatty (content experts) and Jack Tweed (consumer). They would also like to thank Philippa Middleton (methods editor) and Jo Leonardi-Bee (statistical editor) for their help with restructuring the review and analysing the data.

References

References to studies included in this review

Antony 2001 *(published data only)*

Manchanda 1997b *(published data only)*

Ohkuma 1990 *(published data only)*

Ormerod 1999 *(published data only)*

Short 2002 *(published data only)*
* Short KA, Fuller LC, Higgins EM. Double-blind, randomised, placebo-controlled trial of the use of topical 10% potassium hydroxide solution of molluscum contagiosum. Unpublished manuscript.

References to studies excluded from this review

Barba 2001 *(published data only)*

Barton 2002 *(published data only)*

Bayerl 2003 *(published data only)*

Behl 1970 *(published data only)*

Braue 2005 *(published data only)*

Caballero 1996 *(published data only)*

Cope 1915 *(published data only)*

Cunningham 1998 *(published data only)*

Davies 1999 *(published data only)*

Davis 1896 *(published data only)*
de Waard 1990 [published data only]

Dohil 1996 [published data only]

Funt 1961 [published data only]

Gräfe 2000 [published data only]
Gräfe A, Fischer S, Bohn M, Neumann Ch, Kölml K. Treatment of warts with NO releasing ointment [Die Behandlung von Dellwarzen mit einer NO-freisetzenden Creme (5% Natriumnitrit and 5% Zitronensäure in Basiscreme DAC)]. *Zeitschrift für Hautkrankheiten* 2000;75: 492.

Hammes 2001 [published data only]

He 2001 [published data only]

Hengge 2000 [published data only]

Hund 1975 [published data only]

Juhlin 1980 [published data only]

Liota 2000 [published data only]

Manchanda 1997a [published data only]

Markos 2001 [published data only]
Markos AR. The successful treatment of molluscum contagiosum with podophyllotoxin (0.5%) self-application. *Current Opinion in Infectious Diseases* 2001;12 (12):833.

Niizeki 1999 [published data only]

Quan 2000 [published data only]

Romiti 1999 [published data only]

Romiti 2000 [published data only]

Rosendahl 1988 [published data only]

Ross 2004 [published data only]

Sharma 1998 [published data only]

Silverberg 2000 [published data only]

Singh 1977 [published data only]

Skinner 2002 [published data only]

Syed 1994 [published data only]

Syed 1998 [published data only]
Syed TA, Goswami J, Ahmadpour OA, Ahmad SA. Treatment of molluscum contagiosum in males with an analog of imiquimod 1% in cream: a placebo-controlled,

Teilla-Hamel 1996 *(published data only)*

Toro 2000 *(published data only)*

Weller 1999 *(published data only)*

Wishart 1903 *(published data only)*

Yasher 1999 *(published data only)*

Zabawski 1999 *(published data only)*

References to studies awaiting assessment

Burke 2004 *(published data only)*

Leslie 2004 *(published data only)*

Additional references

Beaulieu 1996

Berger 1996

Brandrup 1989

De Oreo 1956

Friedman 1987

Funt 1979

Gottlieb 1994

Haeßlmg 1966

Hawley 1970

Hengge 2003

Higgins 2005

Hira 1988

Husak 1997

Koning 1994

Liveing 1878
Molluscum contagiosum: A review

Introduction

Molluscum contagiosum is a common viral skin infection that is characterized by the presence of small, painless, skin-colored or flesh-colored lesions. The infection is caused by the molluscum contagiosum virus, which belongs to the poxvirus family. The virus is transmitted via skin-to-skin contact and can infect individuals of all ages, although it is most commonly seen in children. The lesions can range in size from small papules to larger nodules and may be solitary or multiple. The lesions usually resolve spontaneously within a few months to a few years, but in some cases, they can persist for up to a year. The virus can also cause a more severe form of the disease known as molluscum contagiosum en steric situatie, which is characterized by the appearance of molluscum-like lesions on the palms and soles.

Etiology

The molluscum contagiosum virus is transmitted via direct skin-to-skin contact or via contaminated objects. The virus is shed in the skin lesions and can be transmitted to others through contact with these lesions. The virus is not transmitted through casual contact, such as kissing or hugging.

Pathogenesis

The molluscum contagiosum virus infects the basal cells of the epidermis, where it replicates and produces characteristic molluscum bodies. These bodies are the round, yellowish, histologically eosinophilic intracytoplasmic inclusions that are characteristic of the molluscum contagiosum virus. The virus then spreads to the dermis, where it induces the formation of the molluscum lesions.

Clinical Features

Molluscum contagiosum lesions are usually asymptomatic, but in some cases, they can be painful or itchy. The lesions can be found on any part of the body, but they are most commonly seen on the face, arms, and legs. The lesions can range in size from small papules to larger nodules and may be solitary or multiple. The lesions usually resolve spontaneously within a few months to a few years, but in some cases, they can persist for up to a year.

Diagnosis

The diagnosis of molluscum contagiosum is usually made based on the clinical appearance of the lesions. In some cases, a skin biopsy may be performed to confirm the diagnosis. A positive finding for the molluscum contagiosum virus on a skin biopsy is considered diagnostic.

Treatment

Molluscum contagiosum can usually be treated with a number of different treatments, including topical medications, cryotherapy, and surgical excision. The choice of treatment depends on the severity of the disease and the location of the lesions. Topical medications, such as podophyllotoxin, can be applied directly to the lesions, and cryotherapy involves the use of liquid nitrogen to freeze and destroy the lesions. Surgical excision involves the removal of the lesions with a scalpel or laser.

Prevention

There is no vaccine available for the prevention of molluscum contagiosum. However, avoiding close contact with individuals who have molluscum contagiosum can help to prevent the spread of the virus. In addition, good hygiene practices, such as washing hands frequently, can help to reduce the risk of transmission.

Conclusion

Molluscum contagiosum is a common viral skin infection that is transmitted via skin-to-skin contact. The disease is characterized by the presence of small, painless, skin-colored or flesh-colored lesions that usually resolve spontaneously within a few months to a few years. The virus can cause a more severe form of the disease known as molluscum contagiosum en steric situatie, which is characterized by the appearance of molluscum-like lesions on the palms and soles. The disease can be treated with a number of different treatments, and there is no vaccine available for its prevention.

References

* Indicates the major publication for the study
Characteristics of included studies [ordered by study ID]

Antony 2001

<table>
<thead>
<tr>
<th>Methods</th>
<th>Double-blind randomised placebo controlled trial. Method of generation of randomisation sequence is unclear, as is concealment of allocation. No intention-to-treat analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>Thirty-eight patients were enrolled, for 19 patients complete data were obtained, 8 of which had been randomised into the treatment arm. Nineteen patients withdrew from the study, no data on reasons for withdrawal</td>
</tr>
<tr>
<td>Interventions</td>
<td>35 mg/kg/day cimetidine, given once daily as oral suspension versus a matching placebo</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Complete clearance after four months treatment. Reduction of lesions. Adverse events: not mentioned</td>
</tr>
<tr>
<td>Notes</td>
<td>50% dropout rate. Published abstract only.</td>
</tr>
</tbody>
</table>

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>B - Unclear</td>
</tr>
</tbody>
</table>

Manchanda 1997b

<table>
<thead>
<tr>
<th>Methods</th>
<th>Double-blind randomised controlled trial, addressing various types of warts (n = 124), including molluscum contagiosum (n = 20). Randomisation sequence was generated manually, identity of the drugs was kept secret in a sealed cover (personal communication Dr Manchanda). No intention-to-treat analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>Fourteen molluscum patients randomised into the treatment arm, six patients were randomised to receive plain sugar globules as a placebo (personal communication Dr Manchanda). Ten patients were aged below 10 years, 7 from 10 to 20 and 3 were from the age group 21 to 30 years (personal communication Dr Manchanda)</td>
</tr>
<tr>
<td>Interventions</td>
<td>Different potencies of a homeopathic drug called calcarea carbonica daily for 15 days (n = 14) versus sugar globules (placebo). Unclear which patients received what potency</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Improvement (not clear after what period)</td>
</tr>
<tr>
<td>Notes</td>
<td>Paper reports on (1) cross-over study (2) parallel study. The cross-over study was excluded, because less than five patients in one of the arms</td>
</tr>
</tbody>
</table>

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
</table>
Ohkuma 1990

Methods
Randomised controlled trial (written correspondence Dr Ohkuma), the method of generation of randomisation sequence remained unclear, as was the concealment of allocation. It was also unclear if participants were analysed according to the group to which they were randomised (intention-to-treat analysis) and how blinding was performed.

Participants
Thirty-five patients with molluscum contagiosum, aged between two and nine years. Japan.

Interventions
Three interventions were compared: 10% povidone iodine solution combined with 50% salicylic acid plaster (n = 20), iodine alone (n = 5) and salicylic plaster alone (n = 10).

Outcomes
Time to cure.
Adverse events.
Study duration unknown.

Notes

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>B - Unclear</td>
</tr>
</tbody>
</table>

Ormerod 1999

Methods
Group sequential double blind randomised trial. All participants were analysed according to group assignment (intention to treat). Two patients did not complete the trial.

Participants
Thirty molluscum patients were enrolled, with 16 in the acidified nitrite group and 14 controls, with a median age of 6 years, 22 girls and 8 boys. Exclusion criteria were age below one year of age, pregnant or lactating women, and taking immunosuppressive drugs or known to have HIV infection.

Interventions
5% sodium nitrite co-applied daily with 5% salicylic acid under occlusion versus identical cream with 5% salicylic acid omitting sodium nitrite.

Outcomes
Time to complete resolution.
Adverse events.
Study duration three months.

Notes

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>B - Unclear</td>
</tr>
</tbody>
</table>
Allocation concealment? Unclear B - Unclear

Short 2002

Methods Double-blind randomised placebo controlled trial. The method of generation of the randomization sequence is unclear as is concealment of allocation. All participants were analysed according to group assignment (intention-to-treat analysis). 18/20 completed the study

Participants Twenty children from a paediatric dermatology clinic, age range 2 to 12 years. Exclusion criteria were known immunodeficiency and facial lesions

Interventions Application of 10% potassium hydroxide solution twice daily applied with a cotton swab, continued until the lesions showed signs of inflammation (n = 10). The control group received saline (n = 10)

Outcomes Time to resolution.
Adverse events.
Study duration three months.

Notes

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors' judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>B - Unclear</td>
</tr>
</tbody>
</table>

Characteristics of excluded studies [ordered by study ID]

<table>
<thead>
<tr>
<th>Study</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barba 2001</td>
<td>Uncontrolled case series (n = 13)</td>
</tr>
<tr>
<td>Barton 2002</td>
<td>HIV-infected patients (n = 40)</td>
</tr>
<tr>
<td>Bayerl 2003</td>
<td>Uncontrolled case series (n = 15)</td>
</tr>
<tr>
<td>Behl 1970</td>
<td>Uncontrolled case series (n = 33)</td>
</tr>
<tr>
<td>Braue 2005</td>
<td>Uncontrolled case series (n = 30)</td>
</tr>
<tr>
<td>Caballero 1996</td>
<td>RCT comparing two types of cryotherapy for cutaneous skin lesions: 124 patients, among which 10 molluscum patients, distributed 9:1 over two arms</td>
</tr>
<tr>
<td>Cope 1915</td>
<td>Uncontrolled case report (n = 1)</td>
</tr>
<tr>
<td>Study</td>
<td>Study Type</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Cunningham 1998</td>
<td>Uncontrolled case series (n = 14)</td>
</tr>
<tr>
<td>Davies 1999</td>
<td>Uncontrolled case report (n = 1)</td>
</tr>
<tr>
<td>Davis 1896</td>
<td>Uncontrolled case report (n = 1)</td>
</tr>
<tr>
<td>de Waard 1990</td>
<td>Study on analgesic effect of lidocaine/prilocaine (EMLA) cream before physical therapy. Not a focus of this review. (n = 83)</td>
</tr>
<tr>
<td>Dohil 1996</td>
<td>Uncontrolled case series (n = 13)</td>
</tr>
<tr>
<td>Funt 1961</td>
<td>Uncontrolled case series (n = 12)</td>
</tr>
<tr>
<td>Gräfe 2000</td>
<td>Uncontrolled case series (n = 4)</td>
</tr>
<tr>
<td>Hammers 2001</td>
<td>Uncontrolled case series (n = 20)</td>
</tr>
<tr>
<td>He 2001</td>
<td>Large parallel controlled study (n = 1656), with four arms, no randomisation (personal communication with Dr He through Taixiang Wu)</td>
</tr>
<tr>
<td>Hengge 2000</td>
<td>20% of molluscum patients were HIV positive and 20% of lesions were in androgenital area (n = 15)</td>
</tr>
<tr>
<td>Hund 1975</td>
<td>Case report (n = 1)</td>
</tr>
<tr>
<td>Juhlin 1980</td>
<td>Study on analgesic effect of lidocaine/prilocaine (EMLA) cream before physical therapy. Not a focus of this review (n = 24)</td>
</tr>
<tr>
<td>Liota 2000</td>
<td>Uncontrolled case series (n = 13)</td>
</tr>
<tr>
<td>Manchanda 1997a</td>
<td>Cross-over study with different types of warts (n = 43), 10 molluscum patients. One of the treatment arms (placebo first?) had less than two patients</td>
</tr>
<tr>
<td>Markos 2001</td>
<td>Single case report (n = 1)</td>
</tr>
<tr>
<td>Niizeki 1999</td>
<td>Uncontrolled retrospective study (n = 389)</td>
</tr>
<tr>
<td>Quan 2000</td>
<td>Single case report (n = 1)</td>
</tr>
<tr>
<td>Romiti 1999</td>
<td>Uncontrolled case series (n = 35)</td>
</tr>
<tr>
<td>Romiti 2000</td>
<td>Uncontrolled case series (n = 20)</td>
</tr>
<tr>
<td>Rosendahl 1988</td>
<td>Study on analgesic effect of lidocaine/prilocaine (EMLA) cream before physical therapy. Not a focus of this review, (n = 55)</td>
</tr>
<tr>
<td>Ross 2004</td>
<td>Uncontrolled case series (n = 16)</td>
</tr>
<tr>
<td>Reference</td>
<td>Study Design and Sample Size</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Sharma 1998</td>
<td>Uncontrolled case series (n = 2)</td>
</tr>
<tr>
<td>Silverberg 2000</td>
<td>Uncontrolled retrospective study (n = 300)</td>
</tr>
<tr>
<td>Singh 1977</td>
<td>Uncontrolled case series (n = 4)</td>
</tr>
<tr>
<td>Skinner 2002</td>
<td>Uncontrolled case series (n = 3)</td>
</tr>
<tr>
<td>Syed 1994</td>
<td>RCT, n = 150, mainly genital lesions, which is not a focus of this review</td>
</tr>
<tr>
<td>Syed 1998</td>
<td>RCT, n = 100, mainly genital lesions, which is not a focus of this review</td>
</tr>
<tr>
<td>Teilla-Hamel 1996</td>
<td>Uncontrolled case series (n = 8)</td>
</tr>
<tr>
<td>Toro 2000</td>
<td>Uncontrolled case series (n = 2)</td>
</tr>
<tr>
<td>Weller 1999</td>
<td>Controlled trial (n = 16), comparing phenol ablation and physical expression. Lesions were unit of treatment and analysis. No randomisation</td>
</tr>
<tr>
<td>Wishart 1903</td>
<td>Uncontrolled case series (n = 5)</td>
</tr>
<tr>
<td>Yasher 1999</td>
<td>Uncontrolled case series (n = 2)</td>
</tr>
<tr>
<td>Zabawski 1999</td>
<td>Uncontrolled case series (n = 2)</td>
</tr>
</tbody>
</table>
Comparison 1. Topical: 10% povidone iodine and 50% salicylic plaster vs. 10% povidone iodine alone

<table>
<thead>
<tr>
<th>Outcome or subgroup title</th>
<th>No. of studies</th>
<th>No. of participants</th>
<th>Statistical method</th>
<th>Effect size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Clinical cure at end of study (duration unknown)</td>
<td>1</td>
<td></td>
<td>Risk Ratio (M-H, Random, 95% CI)</td>
<td>Totals not selected</td>
</tr>
</tbody>
</table>

Comparison 2. Topical: 10% povidone iodine and 50% salicylic acid plaster vs. 50% salicylic plaster alone

<table>
<thead>
<tr>
<th>Outcome or subgroup title</th>
<th>No. of studies</th>
<th>No. of participants</th>
<th>Statistical method</th>
<th>Effect size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Clinical cure at end of study (duration unknown)</td>
<td>1</td>
<td></td>
<td>Risk Ratio (M-H, Random, 95% CI)</td>
<td>Totals not selected</td>
</tr>
</tbody>
</table>

Comparison 3. Topical: 10% povidone iodine vs. 50% salicylic acid plaster

<table>
<thead>
<tr>
<th>Outcome or subgroup title</th>
<th>No. of studies</th>
<th>No. of participants</th>
<th>Statistical method</th>
<th>Effect size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Clinical cure at end of study (duration unknown)</td>
<td>1</td>
<td></td>
<td>Risk Ratio (M-H, Random, 95% CI)</td>
<td>Totals not selected</td>
</tr>
</tbody>
</table>

Comparison 4. Topical: 5% sodium nitrite in 5% salicylic acid vs. 5% salicylic acid alone

<table>
<thead>
<tr>
<th>Outcome or subgroup title</th>
<th>No. of studies</th>
<th>No. of participants</th>
<th>Statistical method</th>
<th>Effect size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Clinical cure at medium term follow-up (3 months)</td>
<td>1</td>
<td></td>
<td>Risk Ratio (M-H, Random, 95% CI)</td>
<td>Totals not selected</td>
</tr>
</tbody>
</table>