Additional routes to chiral epoxides

Jan C. Hummelen and Hans Wynberg
Department of Organic Chemistry, The University
Groningen, The Netherlands
(Received in UK 13 January 1978; accepted for publication 30 January 1978)

In order to increase the scope of our recent synthesis of optically active epoxides we have studied alternate routes to this class of compounds. Optically active epoxides were obtained as products from the following reactions (Scheme I and II):

a) The epoxidation of α,β-unsaturated ketones using 28% sodium hypochlorite;
b) The Darzens condensation of chloroketones and aromatic aldehydes;
c) The ring closure of racemic halohydrins;
d) The addition of cyanide to α-haloketones and to an α-ketosylate.

Scheme I

Scheme II
All of the four reactions summarized (1-4) were conducted under phase-transfer conditions,
using quininium benzyl chloride (I = QUIBEC) as chiral catalyst:

```
\[ \text{H}_2\text{N} \quad \text{H} \quad \text{H} \]
```

\[\text{N} \quad \text{H} \quad \text{N} \]

\[\text{Quibec} \]

a) Sodium hypochlorite

The advantages of the use of hypochlorite ion in the preparation of racemic epoxides has
been recorded. We have found 28% sodium hypochlorite, using QUIBEC to be an effective
reagent in the synthesis of chiral epoxides. Several unsaturated ketones could be epoxi-
dised which failed to yield products under previously described conditions. Note that
the chalcone \[1 \text{ (R=R'=H)} \] gave the epoxide \[2 \text{ (R=R'=H)} \] of opposite configuration when 28%
NaOCl was used instead of 30% \[\text{H}_2\text{O}_2 \] (e.e. appears to be the same, however).

In a typical experiment 4 mmoles benzalacetophenone (1, R=R'=H) was treated with 8 ml of
a 1:1 mixture of toluene and 28% NaOCl (with two additions 1 4 ml portions of 28% NaOCl
after 2 hrs and 46 hrs) and 50 mg QUIBEC at room temperature with vigorous stirring for
72 hrs. The corresponding epoxide \[2 \text{ (R=R'=H)} \] was formed in 66% yield with \[\alpha = +53.1^\circ \text{ (c = 3.15, \text{CH}_2\text{Cl}_2)} \], optical purity 25±5%. Other epoxides were obtained in the
same manner.

b) The Darzens condensation

The reaction of \(p \)-chlorobenzaldehyde and phenacylchloride (2.5 mmoles of both in a mix-
ture of 2.5 ml 10% NaOH and 2.5 ml toluene, stirred for three hours at room temperature
with 6 mole percent catalyst QUIBEC) furnished the epoxyketone \[2 \text{ (R=Cl, R'=H)} \] in 68%
yield with \[\alpha = -24^\circ \text{ (c = 6.10, \text{CH}_2\text{Cl}_2)} \], optical purity 8±1%.

The same epoxide prepared by using 28% NaOCl was found to have an optical purity of 15±2%.
When less reactive aldehydes (i.e. benzaldehyde and piperonal) were treated with phenacyl-
chloride under these conditions, selfcondensation of the latter lowered the yield of the
desired epoxyketone.

c) Ring closure of halohydrins

Since all of the base catalysed epoxidations appear to involve the ringclosure of the
initial 1,4-adduct it appeared worthwhile to attempt kinetic resolution on an \(\alpha \)-halohydrin.
When the \(\pm \) erythro chlorohydrin \[2 \text{ (R=R'=H)} \] derived from racemic trans-benzalacetophenone
oxide \[2 \text{ (R=R'=H)} \] was treated with 10% NaOH in a \(\text{H}_2\text{O}/\text{toluene} \) mixture \{1:1\} with 6 mole
percent QUIBEC for ten minutes at room temperature, the trans-epoxide \[2 \text{ (R=R'=H)} \] was pro-
duced in 90% yield with \[\alpha = -12.5^\circ \text{ (c = 2.14, \text{CH}_2\text{Cl}_2)} \], optical purity 6±1%.

This appears to be a classical example of a kinetic resolution. Racemic epoxide was stable
under these conditions.
d) Epoxynitriles

Finally, it was found that another class of chiral epoxides, namely epoxynitriles, could be prepared by the following method (Scheme II):

α-bromoisobutyrophenone (2 mmoles) was stirred in a mixture of 2 ml 10% NaCN and 2 ml toluene with 50 mg QUIBEC for 18 hours at room temperature. The epoxynitrile 4 \((R=CH_3)\) was formed in 94% yield with \([\alpha]_{D}^{25} = -3.0^\circ\) (c = 3.25, CHCl_3). The optical purity of the epoxynitrile could be ascertained neither with the shift reagent Eu(dcm)_3 nor with Eu(tfc)_3.

DISCUSSION

The present and previous\(^1\) data shows clearly that both enantiomers of a variety of chiral epoxides are accessible using cinchona alkaloid salts under phase-transfer condition. Optimization experiments\(^2\) have shown that the best route to chalcone epoxides thusfar utilizes essentially our earlier\(^3\) conditions: an enantiomeric excess of 55±2% was achieved in some cases (\(\alpha\)b in ref. 3) when the reaction was carried out at 3° for 90 hours.

By itself it is remarkable that one chiral catalyst (quinine or QUIBEC) is capable of introducing a considerable degree of asymmetry into products from many different reactions, to wit: the Michael reaction\(^3\), Darzens condensation\(^4,5\), epoxidation by \(H_2O_2\), \(t\)-BuOOH, the thioladdition to \(\alpha,\beta\)-unsaturated ketones\(^6,7\), halohydrin ringclosure\(^8\) and cyanide addition to \(\alpha\)-haloketones\(^9\).

NOTES AND REFERENCES

2. a) Initial attempts to prepare optically active terreic acid\(^b\) using our phase-transfer technique\(^1\) failed, presumably due to the high solubility of terreic acid in the aqueous phase;
6. All reactions were worked up in the same manner: 50 ml 1:1 toluene/ethylacetate was added, the layers were separated, the organic layer was washed three times with 50 ml water, the solvent was removed at an evaporator and the residue was chromatographed on a silicagel column, using CHCl_3 as eluting solvent.
7. Higher chemical yields have been obtained, but the rotation of the product then tended to be lower.
8. In most cases the enantiomeric excess was determined, using Eu(dcm)₃ in CCl₄, for samples having a slightly different rotation from that reported here. Thus, the use of optical purity instead of enantiomeric excess.

9. Epoxidation by 28% NaOCl gave the following compounds from the corresponding α,β-unsaturated ketones: 2-benzylidenecyclohexanone-1-oxide, chemical yield 40%, \([\alpha]_{D}^{25} = -10.6^\circ \) (c = 2.50, CHCl₃) (absolute configuration (R, S): J. Muzart and I.P. Pête, Tetrahedron Lett., 303 (1977)); isophorone oxide, chemical yield 23%, \([\alpha]_{D}^{25} = -4.0^\circ \) (c = 1.54, CHCl₃) and 1,2-styrylbenzoyl-oxirane, chemical yield 78%, \([\alpha]_{D}^{25} = +17.6^\circ \) (c = 2.17, CHCl₃).

11. Under similar conditions epoxynitrile 4 (R=H) could be prepared:
 a) from phenacylchloride, reaction time 21 hrs, in 40% yield, \([\alpha]_{D}^{25} = -1.2^\circ \) (c = 3.4, CHCl₃) and
 b) from phenacyltosylate, reaction time 6 hrs, in 55% yield, \([\alpha]_{D}^{25} = -2.3^\circ \) (c = 1.6, CHCl₃).

 b) S. Colonna and R. Fornasier, unpublished results.

15. This study.