Incorporation of Pure Fullerene into Organoclays: Towards C_{60}-Pillared Clay Structures

Theodoros Tsoufis, a* Vasileios Georgakilas, [b] Xiaoxing Ke, [c] Gustaaf Van Tendeloo, [c] Petra Rudolf, [a] and Dimitrios Gournis [d]

Abstract: In this work, we demonstrate the successful incorporation of pure fullerene from solution into two-dimensional layered aluminosilicate minerals. Pure fullerenes are insoluble in water and neutral in terms of charge, hence they cannot be introduced into the clay galleries by ion exchange or intercalation from water solution. To overcome this bottleneck, we organically modified the clay with quaternary amines by using well-established reactions in clay science in order to expand the interlayer space and render the galleries organophilic. During the reaction with the fullerene solution, the organic solvent could enter into the clay galleries, thus transferring along the fullerene molecules. Furthermore, we demonstrate that the surfactant molecules, can be selectively removed by either simple ion-exchange reaction (e.g., interaction with Al(NO_3)_3 solution to replace the surfactant molecules with Al^{3+} ions) or thermal treatment (heating at 350°C) to obtain novel fullerene-pillared clay structures exhibiting enhanced surface area. The synthesized hybrid materials were characterized in detail by a combination of experimental techniques including powder X-ray diffraction, transmission electron microscopy, X-ray photoemission, and UV/Vis spectroscopy as well as thermal analysis and nitrogen adsorption-desorption measurements. The reported fullerene-pillared clay structures constitute a new hybrid system with very promising potential for the use in areas such as gas storage and/or gas separation due to their high surface area.

Keywords: clays · fullerenes · hybrids · organoclays · pillared clays

Introduction

Buckminsterfullerene (C_{60}) with its perfect icosahedral symmetry still remains deeply fascinating as a building block for the construction of complex architectures. Fullerenes have been extensively studied during the past two decades, especially after the development of methods to overcome one of their major drawbacks, namely the limited solubility of these all-carbon cages in polar solvents, and their consequent incorporation into various solid matrices (such as polymers and glasses) as well as porous materials (such as layered double hydroxides and molecular sieves). In recent years, one-, two-, and three-dimensional assemblies where order and organization follow supramolecular principles, have assumed remarkable importance. The challenge to be achieved is to control the organization of the assemblies and therefore their physical and chemical properties, through simple external parameters or variables, with the intent of creating new tailored materials. Among the tools exploitable for the creation of new assemblies are hydrophilic and hydrophobic forces. In addition to the magnitude of the forces, the formation of one particular spatial arrangement over another is also governed by the geometrical features of the chosen building blocks.

Smectite clays are a class of layered aluminosilicate minerals with a unique combination of swelling, intercalation, and ion-exchange properties that make these nanostructures valuable in diverse fields. They consist of an octahedral alumina layer fused between two tetrahedral silica layers to constitute 9.6 Å thick platelets, which stack on top of each other separated by galleries. The cation-exchange capacity of a particular clay depends on the substitution of low-valence ions, for example, Mg^{2+} for Al^{3+} in the octahedral sheet and Al^{3+} for Si^{4+} in the tetrahedral sites. As a consequence, each layer has a fixed negative charge and neutrality is obtained for example, by hydrated cations present in the galleries between the sheets. The intercalation process in these systems is equivalent to an ion exchange, and unlike for intercalation compounds of graphite, it does not necessarily involve charge transfer between the guest and host species. The charge on the platelets affects many fundamental
properties of the clays, including cation fixation, swelling ability, water sorption, and the available specific surface area. These materials have the natural ability to adsorb organic or inorganic cationic guest species (and even neutral molecules) from solutions, and it is this cation “storage” that renders clay minerals uniquely suitable as catalysts[8] for the immobilization of molecules, or as components for composite materials.[9] The nature of the microenvironment between the aluminosilicate platelets regulates the topology of the intercalated molecules and affects possible supramolecular rearrangements or reactions, such as self-assembly processes that are usually not easily controlled in solution.[10]

Pillared clays are microporous solids formed by the intercalation of robust cations in the galleries (interlayers) of the smectite clays and similar 2:1-layered silicate-type structures.[7] By adjusting the size of the pillaring cations and the separation between them, one can vary the pore size distribution over a broad range and thereby design micro- and nanoporous environments different from those afforded by conventional three-dimensional materials for example, zeolites. Thus, pillared clays provide a tunable intra-crystalline space valuable for shape-selective adsorption and catalysis.[12]

Recently, we described the intercalation of positively charged fulleropyrrolidine monoadduct[13] and a bisadduct[14] derivatives into aluminosilicate minerals through ion-exchange reactions and studied the effect of spatial confinement on the properties of these molecules. We found that a sizable amount of charge transfer takes place between the host and the guests but that not all the clay galleries were filled with the fullerene derivatives—probably due to the low solubility of the guest molecules. The type of the host clay strongly influenced the chemical form, the amount, and the conformation of the guest molecule in the cases where the C_{60} chemical derivatives were inserted into the galleries of the phyllosomorphic materials. However, in all cases covalent chemical functionalization of fullerene was necessary in order to achieve partial or full solubility in water and thus ion-exchange-driven intercalation into the clay. This covalent chemical functionalization breaks the perfect icosahedral symmetry of C_{60}, thereby strongly influencing its properties.[15] In addition, this complicated, environmental unfriendly and costly chemical functionalization is restricting for up-scaling the synthesis of the final hybrid materials.

In this work, we report for the first time the successful intercalation of pure, non-functionalized C_{60} from organic solution into previously modified organophilic clays. C_{60} is a neutral molecule, insoluble in water, and hence cannot be introduced into the clay galleries by ion exchange or intercalation from water solution. To overcome this bottleneck, we organically modified the clay with quaternary amine by using well-established reactions in clay science prior to reaction with the C_{60} solution. The surfactant has two functions, namely to render the interlayer space organophilic and to expand the distance between the clay platelets. The expansion of the interlayer space allows the organic solvent (toluene) to enter into the clay galleries transferring along the fullerene molecules. Furthermore, we demonstrate the possibility to selectively remove the surfactant molecules either by simple ion-exchange reactions or by thermal treatment as to form novel pillared C_{60} clay structures. These novel C_{60}-pillared clays are very promising novel materials for gas storage and/or gas separation applications because they possess a high surface area (considerably higher than previously reported pillared clays).

Results and Discussion

In the first part of our study, the Na^{+} exchangeable cations were replaced by a cationic surfactant to enhance the organophilicity of the parent clay and increase the interlayer spacing so that the organic solvent with the C_{60} could enter more easily. To prove that the interlayer spacing of the clay was indeed expanded by the introduction of organic cations and to demonstrate that the surfactant-exchanged clay can be intercalated with C_{60}, we employed X-ray diffraction to determine the d_{001} spacing. The powder XRD patterns of the surfactant-exchanged clay (sample denoted hereafter as Organo-SW_{...}) and of the fullerene-intercalated organoclay (sample denoted hereafter as C_{60}@Organo-SW_{...}) are shown in Figure 1.

![Figure 1. Powder X-ray diffraction patterns of a) Organo-SW_{...} and b) C_{60}@Organo-SW_{...}](image-url)

For Organo-SW_{...}, we found a d_{001} value of (21.5 ± 0.3) Å, which corresponds to a separation between clay platelets of Δ = 21.5–9.6 Å = 11.9 Å, where 9.6 Å is the thickness of an individual clay platelet. This value implies that the flexible alkyl groups of the cationic surfactant adopt an inclined conformation when sandwiched between the clay surfaces. After the insertion of the fullerene, the Δ value of the re-
resulting C_{60}@Organo-SW_{y-1} was found to be 19.4 Å. This value is increased by 7.5 Å with respect to the corresponding value of Organo-SW_{y-1}. Noticeably, this value is very close to the size of the fullerene. As suggested by the recorded d_{001} values, the organic surfactant kept the interlayer space expanded and helped the toluene to penetrate, carrying along the neutral fullerene molecules. The latter stay embedded after evaporation of the organic solvent, being trapped by the previously intercalated surfactant molecules. A similar mechanism for the intercalation of chemically functionalized fullerene derivatives into the interlayer space of organoclays has been proposed in the past. A schematic representation of the possible arrangement of the intercalated fullerene in Organo-SW_{y-1} is shown in Figure 3b assuming that the surfactant retains the conformation, which it acquired in the Organo-SW_{y-1} sample. According to the XRD results and the TEM results (see below) there is only one layer of fullerene entrapped in between the previously intercalated organic surfactant.

Another important information derived from the XRD pattern of C_{60}@Organo-SW_{y-1} was the absence of any reflection peaks of fullerite in the 2θ region 2–80°, indicating that molecules were not aggregated on the external clay surfaces after extensive washing of the product with toluene. This finding is further supported by the obtained TEM micrographs (see below). To further confirm the successful intercalation of C_{60} into the Organo-SW_{y-1}, the sample was annealed in order to selectively thermally remove the surfactant molecules. Diffraction patterns for various annealing temperatures are reported in Figure 2. When the C_{60}@Organo-SW_{y-1} sample was heated to temperatures above 150°C, the characteristic 001 diffraction peak shifted to higher 2θ values, indicating a collapse of the interlayer space due to the removal of the surfactant molecules. However, the most interesting finding was the value of the interlayer distance recorded after prolonged heating (for 24 h) at 350°C, a temperature where most of the surfactant molecules are thermally removed, but still considerably lower than the decomposition temperature of C_{60}. The recorded interlayer distance of approximately 7.4 Å coincides with the size of C_{60}. Moreover, both the position and the profile of the 001 diffraction peak remained the same even after cooling the sample to room temperature (Figure 2g), implying that the presence of C_{60} prevents the clay platelets from further collapsing. This proves that intercalation combined with heating results in a novel C_{60}-pillared clay structure (denoted hereafter as C_{60}@SW_{y-1}, Figure 3c).

To confirm the proposed model of C_{60} intercalation into the organoclay as well as the arrangement of the fullerene...
molecules within the interlayer space after the removal of the surfactant. High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) analysis was performed on C60@Organo-SW\(^{y=1}\). In the HAADF-STEM images, the intensity is proportional to the Z number of the materials. Therefore, the clay shows white contrast due to its higher atomic numbers of the composing elements, whereas the intercalated organic moieties and fullerene appears to be darker due to light elements.

The images of the synthesized C60@Organo-SW\(^{y=1}\) shown in Figure 4, clearly testify to the increment of the interlayer space (dark region) between the clay sheets (brighter regions) due to the incorporation of fullerene. The observed value of 30 Å is in agreement with the interlayer derived from the XRD measurements discussed above. On the contrary, the HAADF-STEM images collected on C60@Organo-SW\(^{y=1}\) after prolonged heating at 350°C (Figure 5) reveal a considerably reduced interlayer distance of about 15 Å, again in agreement with the XRD data discussed above. This confirms the selective removal of the organic molecules during the heat treatment and the formation of a C60-pillared clay structure.

We also explored the possibility to create a different kind of a C60-pillared clay structure by exposing the C60@Organo-SW\(^{y=1}\) sample overnight to a solution of Al(NO\(_3\))\(_3\), which should result in the selective removal of the organic surfactant from the interlayer space of the clay and its substitution by the inorganic cation (sample denoted hereafter as C60@Al-exchanged-SW\(^{y=1}\)). By employing the diffraction pattern of C60@Al-exchanged-SW\(^{y=1}\) (Figure S1b in the Supporting Information) the interlayer distance after the exchange reaction was found to be 7.3 Å. This value is significantly lower than that of C60@Organo-SW\(^{y=1}\) and very close to the size of the buckminsterfullerene, suggesting that the surfactant molecules were successfully exchanged with the much smaller Al\(^{3+}\) cations. The size of the latter is smaller than C60 and hence the observed value of the d spacing is dictated by the size of the intercalated fullerenes (Figure 3d).

The presence of fullerene in C60@Organo-SW\(^{y=1}\) was further confirmed by UV/Vis spectroscopy. The UV spectrum of pure C60 dissolved in cyclohexane (Figure S2a in the Supporting Information) showed the characteristic sharp peaks at \(\lambda = 257\) and 329 nm. The absorption spectrum of C60@Organo-SW\(^{y=1}\) (Figure S2b in the Supporting Information) showed a similar profile but with the characteristic fullerene peak broadened and red shifted by 7 nm (to \(\lambda = 264\) nm) compared to the solution of pure fullerene. This result is in agreement with previous absorption studies in various media, where C60 or C60 derivatives are situated in the vicinity of polar interfaces\(^{[13,16]}\).

We also performed an elemental analysis by XPS to study the composition of the organoclay and of C60@Organo-SW\(^{y=1}\). In the case of Organo-SW\(^{y=1}\), the characteristic Si 2p peak originating from the aluminosilicate framework\(^{[17]}\) was recorded at a binding energy of 102.9 eV (Figure 6a, left). The C 1s photoemission line was found to comprise two components (Figure 6a, right); the major component, at a binding energy of 285.0 eV, is attributed to the C–C bonds of the methyl groups due to the intercalated surfactant molecules and accounts for 76% of the total carbon area, whereas the second peak at 286.6 eV originates mainly from the C–N bonds of the amine groups of the same surfactant molecules. The presence of the surfactant molecules was also evidenced by a single component at 402.9 eV in the N 1s spectrum (Figure 6b), which originates from the protonated amine end-tails of the surfactant.\(^{[18]}\) In the case of C60@Organo-SW\(^{y=1}\) the Si 2p peak is unchanged, whereas the C 1s photoemission line now requires four components in the deconvolution (Figure 7a, higher binding energy side). The first peak at 285.0 eV is assigned to the C–C bonds of the C60 cage and of the methyl groups of the surfactant molecules that are still present within the interlayer space as discussed above. The second peak at 286.6 eV is due to C–N bonds of the surfactant molecules. The two additional peaks at higher binding energies (288.6 and 291.0 eV) are attributed to the characteristic shake-up features of the C60 cage.\(^{[19]}\) The nitrogen spectrum of C60@Organo-SW\(^{y=1}\) (not shown) did not reveal any significant differences compared to that of the organoclay.
This implies that the intercalation of the C$_{60}$ between the clay platelets did not change the chemical environment of the protonated amine end-groups of the surfactant, a suggestion that is in agreement with the XRD and TEM results discussed above, which suggested that C$_{60}$ is sandwiched between the methyl end-groups of the intercalated surfactant and far away from the positively charged amine end-groups that interact with the negatively charged clay surfaces. XPS provides not only qualitative but also quantitative information because the peak areas, normalized by the atomic sensitivity factors, are proportional to the amount of the corresponding atoms within the sampling depth. Within this context, the recorded relative ratio of the C 1s to the Si 2p peak areas of C$_{60}$@Organo-SW$_{y-1}$ was found to be considerably higher (4.3) than the corresponding value of Organo-SW$_{y-1}$ (2.6). This increase in the overall carbon content further confirms the incorporation of the C$_{60}$ into the organoclay.

To further confirm the successful intercalation of the C$_{60}$ and to probe the stability of the synthesized compounds, thermogravimetric analysis (TGA) of both Organo-SW$_{y-1}$ and C$_{60}$@Organo-SW$_{y-1}$ was performed in air. The TGA curve of Organo-SW$_{y-1}$ (Figure S3a in the Supporting Information) showed an approximately 22% weight loss between 150 and 350°C, which is attributed to the thermal removal of the surfactant molecules from the clay galleries. Very similar weight loss of about 21% was recorded in the case of C$_{60}$@Organo-SW$_{y-1}$ (Figure S3b in the Supporting Information). However, the thermal profiles of the two samples were totally different in the temperature region between 550 and 750°C where fullerene is expected to be thermally removed.

Nitrogen adsorption–desorption measurements (at 77 K) were performed on C$_{60}$-pillared clay, C$_{60}$@SW$_{y-1}$, obtained after heating C$_{60}$@Organo-SW$_{y-1}$ to 350°C. The results are displayed in Figure 8. The observed shape of the hysteresis loop is typical for small, slit-shaped pores of layered materials resulting from the re-arrangement of the thin platelets of the fullerene-pillared montmorillonite after heating. The surface area of the C$_{60}$@SW$_{y-1}$ sample was calculated by using the Brunauer, Emmett, and Teller (BET) equation and found to be 149 m2g$^{-1}$. This value is considerably higher than the corresponding BET surface area value of the
parent montmorillonite clay, which is reported within the
20–40 m² g⁻¹ range,[24] confirming the successful pillaring
from the incorporated fullerene molecules and revealing the
great potential of the novel synthesized hybrids due to their
increased surface area.

Conclusion

In conclusion, we report the successful incorporation of
pure C₆₀ from organic solution into clay. Because C₆₀ is
water insoluble, we organically modified the clay with qua-
ternary amines prior to reaction with C₆₀ solution in order
to expand the galleries between the clay platelets and to
modify their character from hydrophilic to organophilic.
Furthermore, we demonstrated that the selective removal of
the surfactant molecules either by simple ion-exchange rea-
tion or by thermal treatment results in novel C₆₀-pillared
clay. XRD, TEM, XPS, UV/Vis, and TGA measurements
were employed to characterize the synthesized fullerene/ clay hybrids and confirmed the successful intercalation of
C₆₀ into the interlayer space of the organoclay as well as the
heating-induced pillaring process. The enhanced surface area
deduced from porosimetry measurements of the C₆₀-pil-
larred clay, together with its high thermal stability, inferred
from TGA, are very promising for the use in gas storage and separation applications (e.g., as novel molecular sieve).

Experimental Section

Host layered material: The clay used was a natural Wyoming sodium
montmorillonite (SW₄₋₁) obtained from the Source Clay Minerals Repo-
sitory, University of Missouri (Columbia, MO), with a cation-exchange
capacity (CEC) equal to 80 mequiv per 100 g clay. The clay was frac-
tioned to < 2 μm by gravity sedimentation and purified by well-establish-
ed procedures in clay science. Sodium-exchanged samples (Na⁺-SW₄₋₁)
were prepared by immersing the clay into a 1 M solution of sodium chlo-
ride. Cation exchange was completed by washing and centrifuging four
times with dilute aqueous NaCl solution. The samples were finally
washed with deionized double-distilled water and transferred into dialysis
tubes to obtain chloride-free clays and then dried at room temperature.

Preparation of organoclay: To prepare the organoclay, a solution of the
surfactant (trimethyl hexadecylammonium chloride) in water (3 × CEC)
was added to a stirred clay suspension of Na⁺-SW₄₋₁ (100 mg) in deion-
ized double-distilled water (3 mL). The mixture was stirred, centrifuged,
washed with deionized double-distilled water three times, and finally
dried in air.[25]

Preparation of fullerene/organoclay: A purple-colored solution of C₆₀
(15 mg) in toluene was mixed with a dispersion of organoclay (50 mg) in
the same solvent (50 mL) and the mixture was heated to reflux at 110°C
for seven days. The solid was separated by centrifugation and washed
several times with toluene in order to remove any unreacted fullerene
residue that has crystallized on the external surfaces of the clay and final-
ly dried in air.

Preparation of fullerene/Al-exchanged clay: A sample of the fullerene/
organoclay (10 mg) was suspended in water (20 mL) and an excess of an
aqueous Al(NO₃)₃ solution (1 M) was added. The mixture was stirred 48 h
at ambient conditions, washed with deionized double-distilled water
three times, and finally dried in air.

Powder X-ray diffraction (XRD): The XRD patterns were collected with
a Philips PANanalytical X'Pert MRD diffractometer with a CuKα radiation
(λ = 1.5418 Å) by using an anode voltage of 40 kV and a current of
40 mA, a 0.25° divergent slit and a 0.125° anti-scattering slit. The patterns
were recorded in a 2θ range from 1 to 10°, in steps of 0.01° with a count-
time of 15 s each. Samples were in the form of films supported on
SiO₂ substrates. For the preparation of the films, aqueous suspensions of
C₆₀/clay nanocomposites were deposited on the SiO₂ plates, and the sol-
vent was allowed to evaporate slowly at ambient temperature.

FTIR spectroscopy: Infrared spectra in the region ν = 400–4000 cm⁻¹
were measured with a Bruker EQUINOX 55S infrared spectrometer,
equipped with a deuterated triglycine sulfate (DTGS) detector. Each
spectrum was the average of 200 scans collected at a resolution 2 cm⁻¹.
Samples were in the form of KBr pellets containing approximately
2 wt% sample.

UV/Vis spectroscopy: Transmission UV/Vis spectra on dilute solutions of
the samples in cyclohexane were obtained by a Shimadzu UV-1240 spec-
trophotometer.

X-ray photoemission spectroscopy (XPS): For the XPS measurements,
evaporated gold films supported on mica were used as substrates. Pure
clays or clay/fullerene nanocomposites were dispersed in deionized
double-distilled (1 wt%) water, and after short stirring for 30 min, a
small drop of the suspension was deposited on the Au substrate and left
to dry in air. Samples were introduced through a load lock system into a
SSX-100 (Surface Science Instruments) photoelectron spectrometer with
a monochromatic AlKα X-ray source (hv = 1486.6 eV). The base pressure
in the spectrometer was 1 × 10⁻¹⁰ Torr during all measurements. The energy
resolution was set to 1.16 eV to minimize the measuring time.
The photoelectron take-off angle was 37°. An electron flood gun provid-
ing 0.3 eV kinetic energy electrons in combination with an Au grid
placed 1 mm above the sample was used to compensate for sample charg-
ing. All binding energies of the C₆₀/clay composites were referenced to
the Si 2s core level of smectite clay at 102.8 eV.[26] Spectral analysis in-
cluded a Shirley background subtraction[27] and peak deconvolution em-
ploying mixed Gaussian–Lorentzian functions, in a least squares curve-
fitting program (WinSpec) developed at the LISE, University of Namur,
Belgium.
Incorporation of Pure Fullerene into Organoclays

Thermogravimetric (TGA) measurements: TGA measurements were recorded by using a Thermo Scientific thermogravimetric analyzer. Samples of approximately 10 mg were heated in air from 25 to 950°C at a rate of 5°C/min.

Transmission electron microscopy: High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) was performed to investigate the interlayer distance of fullerene-intercalated clay. The HAADF-STEM was performed by using a FEI Titan 50-80 cubed microscope fitted with an aberration-corrector for the imaging lens and another for the probe forming lens as well as a monochromator. The HAADF-STEM investigation was operated at 120 kV in order to minimize possible beam damage to the intercalated structure including fullerene. The STEM convergence semi-angle was 21.4 mrad, providing a probe size of approximately 15 Å at 120 kV.

Acknowledgements

This work was carried out within the Top Research School Program of the Zernike Institute for Advanced Materials under the Bonus Incentive Scheme (BIS) of the Netherlands Ministry of Education, Science and Culture and received financial support from the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organization for Scientific Research (NWO), and from the BreedeStrategie program of the University of Groningen. X. Ke and G. Van Tendeloo are grateful to the ERC grant “COUNTATOM” and the EC project ESML.

Received: January 16, 2013
Published online: April 15, 2013