Off-line reaction monitoring of the oxidation of alkenes in water using drop coating deposition Raman (DCDR) spectroscopy

Abdolahzadeh, Shaghayegh; Boyle, Nicola M.; Draksharapu, Apparao; Dennis, Andrew C.; Hage, Ronald; de Boer, Johannes W.; Browne, Wesley R.

Published in:
Analyst

DOI:
10.1039/c3an00330b

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2013

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Off-line reaction monitoring with Raman spectroscopy of low concentration oxidation of alkenes in water using the dried drop concentration method

Shaghayegh Abdolahzadeh, Nicola M. Boyle, Apparao Draksharapu, Andrew Dennis, Ronald Hage, Johannes W. de Boer and Wesley R Browne*

Supporting information

Comments on the synthesis and characterisation of 4-oxirane-phenyl-sulfonate

The detergent properties of sodium alkylbenzene sulfonates frequently do not allow the use of conventional solvents and methods of organic chemistry for isolation and purification. The preparation of 4-oxirane-phenyl-sulfonate from styrene-p-sulfonate was achieved readily by epoxidation however, the generation of the unwanted diol product rendered separation and purification of the epoxide a challenge. The synthesis of the epoxide of styrene sulfonate was attempted in three ways.

Initially, the epoxidation of styrene sulfonate was carried out using a modified method described by Hage et al.1 Styrene sulfonate (2.06 g, 10 mmol) and [Mn\textsubscript{2}O\textsubscript{3}(tmtacn)\textsubscript{2}](PF\textsubscript{6})\textsubscript{2}.H\textsubscript{2}O (80 mg, 0.1 mmol, 1 mol\%) was dissolved in double distilled water (100 ml). The reaction mixture was stirred and cooled in ice for 30 min. Hydrogen peroxide (50 %, 2.83 mL, 50 mmol, 5 equiv.) was added dropwise over 1 h. The reaction mixture was stirred for a further 2 h and then the water removed by lyophilisation. 1H NMR and Raman spectroscopic analysis indicated the formation of both epoxide and diol products, however. This reaction was repeated but with only 0.1 mol\% (8 mg) of 1, and the ice bath was allowed to warm to room temperature over 19 h followed by lyophilisation. This did not lead to an improvement in selectivity.

Scheme 1 Modified method of Hage et al.1

A second method, that reported by Lam et al.2 was attempted. This method involves the direct oxidation of styrene sulfonate with mCPBA and is reported to form the epoxide after which the diol is formed in a subsequent reaction step by reaction in aqueous NaHCO\textsubscript{3}. In the present study a mixture of styrene sulfonate (340 mg, 1.65 mmol) and mCPBA (415 mg, 2.40 mmol) were dissolved in water/ethanol (40 cm3, 1:1, v/v). The reaction was stirred for 2 h at 65 °C and tested periodically with bromine water until the test was negative. The solution was allowed to cool and the solvent was evaporated in vacuo. Residual m-chlorobenzoic acid was dissolved in acetone (300 mL) and filtered off leaving a white solid. 1H NMR and Raman spectroscopic analysis confirmed that the diol product was obtained exclusively, indicating that hydrolysis with base was not in fact necessary. Inspection of the 1H NMR data provided by the Lam et al.2 revealed that the product reported as the epoxide was in fact the diol product, 4-(1,2-dihydroxyethyl)phenylsulfonate.

Ultimately the epoxide was obtained, despite the insolubility of styrene sulfonate in organic solvents, using the catalyst 1 in H\textsubscript{2}O/CH\textsubscript{3}CN under mildly acidic conditions (see main text for details).
\(^1H \) NMR Spectroscopy
The \(^1H \) NMR spectra of the sodium salts of 4-vinylbenzenesulfonate sodium salt (I), 4-oxirane-phenylsulfonate (II) and 4-(1,2-dihydroxyethyl)phenylsulfonate (III) are shown in Figure S1a, b and c, respectively. The differences are apparent as the double bond is converted to the epoxide and then the diol. The aromatic protons give rise to two doublets around 7.6 ppm as expected. The vinyl protons are give rise to three signals between 5 and 7 ppm. For the epoxide these protons are shifted upfield to 3 – 4.5 ppm. Ring opening of the epoxide to the diol results in a smaller shift in these proton signals.
Fig. S1 \(^1\)H NMR spectra of sodium salts of 4-vinylbenzenesulfonate sodium salt (I), 4-oxirane-phenyl-sulfonate (II) and 4-(1,2-dihydroxyethyl)phenylsulfonate (III) in D\(_2\)O.
Effect of surface treatment on deposit pattern and Raman spectra obtained

Fig. S2 Image of deposit from dried droplet containing 0.5 mM VBA in 0.1 M NaHCO₃(aq) and Raman spectra recorded from each spot.

Comparison of VBA, OBA and 4-formylbenzoic acid in the solid state and after deposition using the DCDR method

Fig. S3 Solid state Raman spectra of VBA, OBA and 4-formylbenzoic acid
Fig. S4 Raman spectra of VBA, OBA and 4-formylbenzoic acid obtained using DCDR method using 20 mM solutions in 0.1 M NaHCO₃(aq).
Effect on droplet size and concentration of analyte on spectra obtained by DCDR method

(a)

(b)
Fig. S5 Raman spectra of VBA obtained using DCDR method from 10 to 0.1 mM solutions (in 0.1 M NaHCO₃) using the DCDR method.
Uniformity of co-deposition of mixtures of VBA and SS as 0.2, 0.6 and 0.8 mole fraction mixtures

Figure S6 Raman spectra (after normalisation for area under the peak at 1600 cm⁻¹ and baseline correction) obtained at eight different points on deposition ring (mole fraction was 0.2 VBA/0.8 SS)

Figure S7 Average spectrum (blue) and standard deviation (red) from average spectrum obtained at eight different points on deposition ring (mole fraction was 0.2 VBA/0.8 SS).
Figure S8 Raman spectra (after normalisation for area under the peak at 1600 cm\(^{-1}\) and baseline correction) obtained at eight different points on deposition ring (mole fraction was 0.6 VBA/0.4 SS)

Figure S9 Average spectrum (blue) and standard deviation (red) from average spectrum obtained at eight different points on deposition ring (mole fraction was 0.6 VBA/0.4 SS)
Figure S10 Raman spectra (after normalisation for area under the peak at 1600 cm\(^{-1}\) and baseline correction) obtained at eight different points on deposition ring (mole fraction was 0.8 VBA/0.2 SS).

Figure S11 Average spectrum (blue) and standard deviation (red) from average spectrum obtained at eight different points on deposition ring (mole fraction was 0.8 VBA/0.2 SS).
References