Association Between Chromosome 9p21 Variants and the Ankle-Brachial Index Identified by a Meta-Analysis of 21 Genome-Wide Association Studies
Murabito, Joanne M.; White, Charles C.; Kavousi, Maryam; Sun, Yan V.; Feitosa, Mary F.; Nambi, Vijay; Lamina, Claudia; Schillert, Arne; Coassin, Stefan; Bis, Joshua C.

Published in:
Circulation-Cardiovascular Genetics

DOI:
10.1161/CIRCGENETICS.111.961292

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2012

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 26-02-2018
Association Between Chromosome 9p21 Variants and the Ankle-Brachial Index Identified by a Meta-Analysis of 21 Genome-Wide Association Studies

Joanne M. Murabito, MD, ScM*; Charles C. White, MPH*; Maryam Kavousi, MD, MSc*; Yan V. Sun, PhD*; Mary F. Feitosa, PhD*; Vijay Nambi, MD*; Claudia Lamina, PhD*; Arne Schilletter, PhD*; Stefan Coassin, PhD; Joshua C. Bis, PhD; Linda Broer, MSc; Dana C. Crawford, PhD; Nora Franceschi, MD, MPH; Ruth Frikke-Schmidt, MD, PhD; Margot Haan, MSc; Suzanne Holewijin, PhD; Jennifer E. Huffman, MSc; Shih-Jen Hwang, PhD; Stefan Kiechl, MD; Barbara Kollerits, PhD, MPH; May E. Montasser, PhD; Ilja M. Nolte, PhD; Megan E. Rudock, PhD; Andrea Senft, MSc; Alexander Teumer, PhD; Pim van der Harst, MD, PhD; Veronique Vitart, PhD; Lindsay L. Waite, MS; Andrew R. Wood, MRes; Christina L. Wassel, PhD; Devin M. Absher, PhD; Matthew A. Allison, MD, MPH; Najaf Amin, PhD; Alice Arnold, PhD; Folkert W. Asselbergs, MD, PhD; Yuriii Aulchenko, PhD; Stefania Bandinelli, MD; Maja Barbalic, PhD; Mladen Boban, MD, PhD; Kristin Brown-Gentry, MS; David J. Couper, PhD; Michael H. Criqui, MD; Abbas Dehghan, MD, PhD; Martin den Heijer, MD, PhD; Benjamin Dieplinger, MD; Jingzhong Ding, PhD; Marcus DörR, MD; Christine Espinola-Klein, MD; Stephan B. Felix, MD; Luigi Ferrucci, MD, PhD; Aaron R. Folsom, MD; Gustav Friedrich, PhD; Harry Campbell, MD; John P. Cooke, MD, PhD; Jacqueline de Graaf, MD, PhD; David Herrington, MD, MHS; Stefan Kiehl, MD; Barbara Kollerits, PhD; May E. Montasser, PhD; Ilja M. Nolte, PhD; Megan E. Rudock, PhD; Andreas Senft, MSc; Friedrich Oberhollenzer, MD, PhD; Jeffrey W. Olin, MD; Jeff O’Connell, PhD; Christopher J. O’Donnell, MD, MPH; Walter Palmas, MD, MS; Brenda W. Penninx, PhD; Astrid Petersmann, MD, PhD; Ozren Polasek, MD, PhD; Bruce M. Psaty, MD, PhD; Barbara Ranker, MD, PhD; Ken Rice, PhD; Fernando Rivadeneira, MD, PhD; Jerome J. Rotter, MD; Adrie Seldenrijk, PhD; Marietta Stadler, MD; Monika Summerer, PhD; Toshiko Tanaka, PhD; Anne Tybjaerg-Hansen, MD, DMSc; Andre G. Uitterlinden, PhD; Wieck H. van Gilst, PhD; Sita H. Vermeulen, PhD; Sarah H. Wild, MB, BCHir; Philipp S. Wild, MD; Johann Willett, MD; Tanja Zeller, PhD; Tatijana Zemunik, MD, PhD; Lina Zgaga, MD, PhD; Themistocles L. Assimes, MD, PhD; Stefan Blankenberg, MD; Eric Boerwinkle, PhD; Harry Campbell, MD; John P. Cooke, MD, PhD; Jacqueline de Graaf, MD, PhD; David Herrington, MD, MHS; Sharon L.R. Kardia, PhD; Braxton D. Mitchell, PhD; Anna Murray, PhD; Thomas Münzel, MD; Anne B. Newman, MD, MPH; Ben A. Ootra, PhD; Igor Rudan, MD, PhD, MPH; Alan R. Shuldiner, MD; Harold Snieder, PhD; Cornelia M. van Duijn, PhD; Uwe Völker, PhD; Alan F. Wright, PhD; H.-Erich Wichmann, MD, PhD; James F. Wilson, DPhil; Jacqueline C.M. Witterman, PhD; Yongmei Liu, MD, PhD*; Caroline Hayward, PhD*; Ingrid B. Borecky, PhD*; Andreas Ziegler, PhD*; Kari E. North, PhD*; L. Adrienne Cupples, PhD*; Florian Kronenberg, MD*

Background—Genetic determinants of peripheral arterial disease (PAD) remain largely unknown. To identify genetic variants associated with the ankle-brachial index (ABI), a noninvasive measure of PAD, we conducted a meta-analysis of genome-wide association study data from 21 population-based cohorts.

Methods and Results—Continuous ABI and PAD (ABI ≤0.9) phenotypes adjusted for age and sex were examined. Each study conducted genotyping and imputed data to the meta-analysis of genome-wide association study data from 21 population-based cohorts.

Conclusions—Genome-wide association studies in more than 40,000 individuals identified 1 genome-wide significant association on chromosome 9p21 with ABI. Two candidate genes for PAD and 1 SNP for coronary artery disease are associated with ABI. (Circ Cardiovasc Genet. 2012;5:100-112.)

Key Words: cohort study genetic association genome-wide association study meta-analysis peripheral vascular disease
Peripheral arterial disease (PAD) affects approximately 27 million people in Europe and North America,1 and is associated with increased risk for myocardial infarction, stroke, and mortality.2–6 Measurement of ankle and arm blood pressures with a Doppler device and calculation of the ankle-brachial index (ABI) is a simple and reliable method to detect PAD. An ABI \(\leq 0.90 \) is indicative of definite PAD.7 In previous work, the Ankle-Brachial Index Collaboration demonstrated a reverse J-shaped relationship of ABI with mortality and coronary events, with a low risk ABI ranging from 1.11 to 1.40.8

Clinical Perspective on p 112

Little is known about genetic susceptibility to PAD, but familial aggregation and heritability estimates suggest a significant genetic component.9–11 A study of 112 biological candidate genes identified only 2 single nucleotide polymorphisms (SNPs) in \(\text{NOS3} \) significantly associated with ABI.14 The candidate gene approach to identify novel genetic variants for PAD has been limited by modest study sample size, relatively small number of genes examined, and lack of replication in independent samples.13 Genome-wide association studies (GWAS) have led successfully to the discovery of novel genetic variants for several common diseases, including coronary artery disease (CAD).15 The association between genetic variants on chromosome 9p21 and CAD has demonstrated replication,16,17 persistent association across race or ethnicity,18 and association with other vascular diseases.19–21 Notably, GWAS of subclinical atherosclerosis phenotypes, such as intima-medial thickness or ABI, are sparse. Therefore, we conducted a meta-analysis of GWAS findings for ABI within an international consortium of 21 population-based cohort studies that included 41 692 participants of European ancestry, among whom 3409 participants had PAD (ABI \(\leq 0.90 \)). We conducted replication analyses of our strongest findings in over 16 000 individuals from population-based cohort studies and clinically based samples of PAD. We hypothesized that this approach would lead to the unbiased identification of genetic variants associated with ABI. Further, we hypothesized that some genetic variants for ABI would be identical to those reported to be associated with CAD or its risk factors given shared underlying biological pathways, while some genetic variants would be associated uniquely with PAD.

Methods

Discovery Studies

Our analyses were conducted within the international Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium,22 and included 4 of the 5 original CHARGE cohorts: Atherosclerosis Risk in Communities Study (ARIC, \(n=7630 \)), the Cardiovascular Health Study (CHS, \(n=3193 \)), the Framingham Heart Study (FHS, \(n=3572 \)), and the Rotterdam Study (RS-I, \(n=5169 \) and RS-II, \(n=1642 \)). Ten additional population-based cohorts joined the collaboration for analysis of ABI phenotypes: the Family Heart Study (FamHS, \(n=1736 \)), Genetic Epidemiology Network of Arteriopathy Study (GENOA, \(n=991 \)), Gutenberg Heart Study (GHS, \(n=3122 \)), Health, Aging, and Body Composition (Health ABC, \(n=1564 \)), the Invecchiare in Chianti Study (InCHIANTI, \(n=1130 \)), Cooperative Health Research in the Region of Augsburg (KORA F3, \(n=1581 \) and KORA F4, \(n=1407 \)), Netherlands Study of Anxiety and Depression (NESDA, \(n=1612 \)), Nijmegen Biomedical Study (NBS, \(n=544 \)), and the Study of Health in Pomerania (SHIP, \(n=543 \)). A further 6 studies derived from population isolates also were available for the analyses: Amish Study (Amish, \(n=1183 \)), Croatia-Vis (\(n=897 \)), Croatia-Korcula (\(n=851 \)), Croatia-Split (\(n=499 \)), Erasmus Rucphen Family Study (ERF, \(n=2133 \)), and the Orkney Complex Disease Study (ORCADES, \(n=693 \)). For all studies participating in the meta-analyses, each participant self-identified as European or European-American and provided written informed consent, and the Institutional Review Board at the parent institution for each respective cohort approved the study protocols. More detailed study-specific information is provided in the online-only Data Supplement Methods.

Ankle-Brachial Index Phenotypes

Ankle and brachial blood pressure measurements for each participating study were obtained from the baseline examination or the first examination in which the measurement was obtained. Details on the ABI protocol used and the calculation performed in each study are provided in online-only Data Supplement Table I. To calculate the ABI for each leg, the systolic blood pressure at each ankle was divided by the systolic blood pressure in the arm. If the systolic blood pressure was measured in both arms, the higher arm reading was used in the ABI calculation. If replicate readings were obtained, the mean of the 2 measurements for each limb was used to calculate the ABI, with the exception of InCHIANTI, which used the higher of the 2 readings of each measurement set to calculate the ABI. The lower of the ABIs from the 2 legs was used for analysis. In ARIC and FamHS, the ABI was measured in only 1 leg, chosen at random. Participants with an ABI >1.40 were excluded because this high ABI may represent medial sclerosis, fibrocalcific disease secondary to diabetes mellitus, or other causes of noncompressible vessels.

To maximize the sample size and the power to detect genetic variants with modest effects, and to examine the entire range of ABI values given the recent evidence of increased cardiovascular disease risk associated with ABI values up to 1.1,8 we examined the continuous range of ABI <1.40. As a secondary analysis to provide a clinical phenotype, we defined PAD as ABI \(\leq 0.90 \) and conducted a case (ABI \(\leq 0.90 \)/control; ABI >0.90 and <1.40) comparison analysis.

Genotyping and Imputation

Different genotyping platforms were used by the 21 studies (online-only Data Supplement Table II). Each study imputed the genotype “dosage” (0 to 2) for the expected number of alleles for \(\sim 2.5 \) million Phase II HapMap CEU SNPs for each participant using currently available imputation methods.23 CHS used BIMBAM (available at http://stephenslab.uchicago.edu/software.html),24 GHS, InCHIANTI, NESDA, and SHIP used IMPUTE,25 and all other cohorts used MACH (http://www.sph.umich.edu/csg/abecasis/MaCH/).

Statistical Analysis

We devised a GWAS analysis plan for the ABI and PAD phenotypes that each study independently implemented. Sex-specific and age-adjusted residuals of ABI were created from linear regression models and used as phenotypes in the analysis. No transformation of the ABI measure was performed before analysis. In FHS, residuals also were obtained separately in the original and offspring cohorts. Multi-site studies (ARIC, CHS, and FamHS) additionally adjusted for field study site. Each SNP was tested for association with ABI in additive genetic models using linear regression. The Amish Study, FamHS, FHS, and GENOA cohorts used linear mixed effects models to account for familial correlations. Croatia-Vis, Croatia-Korcula, Croatia-Split, ERF, and ORCADES used the “mmscore” function of the GenABEL package for R statistical software for the association test under an additive model. This score test for a family-based association takes into account pedigree structure and allows unbiased estimations of SNP allelic effect when relatedness is present between examinees. Logistic regression adjusting for age and sex was used to test each SNP for association with the PAD phenotype. The FamHS,
FHS, and GENOA cohorts used generalized estimating equations clustering on family to account for family correlations.

A genome-wide meta-analysis using a fixed effects approach with inverse variance weighting was then conducted in METAL.²⁶ [www.sph.umich.edu/csg/abecasis/metal] for 2,669,158 SNPs in the meta-analysis, excluding the population isolates (2,670,732 SNPs including the population isolates) that met imputation and quality control criteria (online-only Data Supplement Table II). Before meta-analysis, genomic control was applied to each study. The association of ABI per each additional risk allele was quantified by the regression slope (β), its standard error [SE(β)], and the corresponding probability value. We calculated a meta-analysis odds ratio for each of the most significant SNP associations for PAD. The meta-analysis odds ratio estimates the increase in odds of PAD for each additional copy of the risk allele of the SNP. SNP associations were considered to be significant on a genome-wide level at \(P < 5 \times 10^{-8} \). Standardized gene and SNP annotations were created using a PERL script.²⁸ We also tested for heterogeneity of study specific regression parameters using Cochran Q statistic. Because of concerns about heterogeneity, we conducted analyses of nonisolate studies and of the full group of studies. We selected SNPs for replication using results from the meta-analysis, excluding the population isolates, because the available replication samples did not include isolates. We excluded SNP association results if the total meta-analysis sample was less than 20,000 and if the average minor allele frequency of the SNP was <5%.

Replication

We sought to replicate independent SNP associations for ABI that attained genome-wide significance (1 region), SNPs with suggestive associations (5 regions, \(P < 10^{-5} \)), and bioinformatics data supporting the signal. The bioinformatic analyses are described in detail in the online-only Data Supplement Material. In addition, we sought to replicate 1 SNP associated with both ABI and PAD at \(P < 10^{-4} \). The replication studies included 5 population-based studies and 3 clinically-based studies, including a total of over 16,000 participants: the Bruneck Study (n = 786), the Copenhagen City Heart Study (CCHS, n = 5330), the Multi-Ethnic Study of Atherosclerosis (MESA, n = 2611), the National Health and Nutrition Examination Surveys (NHANES 1999–2002, n = 2335), Prevention of Renal and Vascular End-stage disease (PREVEND, n = 3691) cohort, Cardiovascular Disease in Intermittent Claudication (CAVASIC, n = 443) Study, Genetic Determinants of Peripheral Arterial Disease (Gene-PAD, n = 850), and the Linz Peripheral Arterial Disease (LIPAD, n = 671) Study. Each collaborating study was provided with a SNP list and a detailed analysis plan. MESA and PREVEND used in silico genotyping (online-only Data Supplement Table II), and the remaining studies genotyped the SNPs using Taqman assays or Sequenom. Relative excess heterozygosity analysis demonstrated that all genotyped SNPs were compatible with Hardy-Weinberg equilibrium at the nominal 5% test-level (online-only Data Supplement Table III).³⁰

Examination of Candidate Genes Associated With Peripheral Artery Disease and Coronary Artery Disease/Myocardial Infarction

We selected candidate genes for ABI or PAD from the published literature using PubMed search terms “(ankle-brachial index) OR [peripheral arterial disease] AND polymorphism.” Association studies with at least 100 cases and 100 controls were included regardless of whether the original study results were positive or negative. Using the discovery meta-analysis results for ABI, we then identified the most strongly associated SNPs based on probability values within the gene region ±100 kb upstream or downstream of the candidate gene. Because of the high correlation of imputed genotypes, the effective number of loci were calculated for each gene region by using the genotype scores from the KORA F4 Study (online-only Data Supplement Methods). Bonferroni correction of probability values then was applied in each region using the effective number of loci. Subsequently, false discovery rates (FDR) were calculated using these corrected probability values, accounting for the number of gene regions examined (online-only Data Supplement Methods). Lastly, we examined the association with ABI of 30 SNPs strongly associated with CAD in recent GWAS.³²–³⁴ Our ABI discovery meta-analysis did not include 2 of the 30 SNPs (rs17465637 and rs3798220), and we were unable to identify proxy SNPs available in our data. Using the probability values for the 28 SNPs in our discovery meta-analysis, we then calculated the FDR for each CAD SNP, accounting for the 28 regions examined.

Results

Study Sample

The study sample included 41,692 participants of European ancestry (56% women, 6256 from population isolates) with ABI data and genome-wide genotyping. Participant characteristics at the time of ABI measurement for each cohort are provided in online-only Data Supplement Table IV. Across the studies the mean age ranged from 41.8 years to 73.8 years, the mean ABI ranged from 1.02 to 1.19, and 8.2% (n = 3409) had PAD (ABI <0.9). Characteristics of the replication samples were similar to the discovery set (online-only Data Supplement Table V).

ABI-SNP Associations

We conducted a meta-analysis with (n = 41,692) and without (n = 35,434) the population isolates (online-only Data Supplement Figures I and II, QQ-plots and Manhattan plots, and study-specific lambdas ranged from 0.997 to 1.044). Our primary meta-analysis excluded studies from population isolates because of concern for study heterogeneity and the lack of availability of replication samples from isolates. The strongest SNP association for ABI was rs10757269 on chromosome 9 near CDKN2B (β = −0.006, \(P = 2.46 \times 10^{-8} \), for heterogeneity=0.23, Table I; meta-analysis results, including the population isolates, online-only Data Supplement Table VII). Among the 96 SNP associations for ABI with \(P < 10^{-5} \), 79 were located in the chromosome 9p21 region (online-only Data Supplement Table VI). The ABI SNP rs10757269 is in strong linkage disequilibrium (LD), with several SNPs in the region previously reported to be associated with CAD or myocardial infarction \((r^2 > 0.8)\), but this ABI SNP is not in LD with SNPs previously associated with the type 2 diabetes mellitus (Figure 1). We repeated the meta-analysis to examine the association between ABI and rs10757269, first adjusting for CAD and then excluding individuals with CAD among the nonisolate studies. The association remained but was no longer genome-wide significant (adjusting for CAD: \(P = 5.56 \times 10^{-6} \), excluding CAD: \(P = 3.79 \times 10^{-5} \)). Next, we sought to replicate the association between rs10757269 and ABI in both population-based and clinically-based samples (n = 16,717). The magnitude and direction of the association in the replication studies was similar to the discovery set (\(P = -0.0035, P = 0.0176 \), providing evidence of replication. In the combined stage 2 discovery plus replication meta-analysis, the ABI-rs10757269 association became stronger \((P = 2.65 \times 10^{-5})\). The study-specific estimates of effect for the discovery studies, population isolates, replication studies, and overall discovery plus replication meta-analyses are presented in Figure 2. Two studies among the population isolates (the Amish Study and Croatia-Split) had effect estimates in the
opposite direction to the other studies. None of the other SNP associations for ABI achieved genome-wide significance. The significance of the associations for the additional SNPs chosen for replication diminished in the discovery plus replication meta-analysis (Table 1, online-only Data Supplement Table VII).

Table 1. Meta-Analysis Results: ABI-SNP Associations with P<10^{-5} in the Primary Discovery Analysis With Population Isolates Excluded

<table>
<thead>
<tr>
<th>SNP</th>
<th>Chr</th>
<th>Physical Position</th>
<th>Closest Gene</th>
<th>Risk/Non-Risk Allele</th>
<th>Risk Allele Frequency</th>
<th>Meta-Analysis</th>
<th>N</th>
<th>Beta</th>
<th>SE</th>
<th>P Value</th>
<th>Phet</th>
<th>Pval</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs10757269</td>
<td>9</td>
<td>22062264</td>
<td>CDKN2B</td>
<td>G/A</td>
<td>0.49</td>
<td>ABI discovery</td>
<td>35</td>
<td>0.0536</td>
<td>0.001</td>
<td>2.46E-08</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ABI replication</td>
<td>16</td>
<td>0.0672</td>
<td>0.0015</td>
<td>1.76E-02</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ABI combined</td>
<td>51</td>
<td>0.0708</td>
<td>0.0008</td>
<td>2.65E-09</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PAD discovery</td>
<td>34</td>
<td>0.0555</td>
<td>0.0296</td>
<td>4.15E-03</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>rs4659996</td>
<td>1</td>
<td>238912747</td>
<td>GREM2</td>
<td>A/G</td>
<td>0.48</td>
<td>ABI discovery</td>
<td>28</td>
<td>0.087</td>
<td>0.0012</td>
<td>4.44E-07</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ABI replication</td>
<td>16</td>
<td>0.0658</td>
<td>0.0016</td>
<td>2.67E-01</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ABI combined</td>
<td>44</td>
<td>0.0745</td>
<td>0.0045</td>
<td>2.12E-06</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>rs7003385</td>
<td>8</td>
<td>41705907</td>
<td>ANK1†</td>
<td>T/C</td>
<td>0.67</td>
<td>ABI discovery</td>
<td>35</td>
<td>0.0375</td>
<td>0.0011</td>
<td>5.24E-07</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ABI replication</td>
<td>16</td>
<td>0.0690</td>
<td>0.0002</td>
<td>2.20E-01</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ABI combined</td>
<td>52</td>
<td>0.0665</td>
<td>0.0043</td>
<td>1.11E-06</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>rs19750</td>
<td>1</td>
<td>99469651</td>
<td>LPPR4‡</td>
<td>G/T</td>
<td>0.12</td>
<td>ABI discovery</td>
<td>35</td>
<td>0.0283</td>
<td>0.0014</td>
<td>7.57E-03</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ABI replication</td>
<td>16</td>
<td>0.0660</td>
<td>0.0023</td>
<td>3.22E-01</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ABI combined</td>
<td>51</td>
<td>0.0938</td>
<td>0.0041</td>
<td>1.01E-03</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>rs9485528</td>
<td>6</td>
<td>102221473</td>
<td>GRK2†</td>
<td>A/G</td>
<td>0.17</td>
<td>ABI discovery</td>
<td>35</td>
<td>0.0339</td>
<td>0.0013</td>
<td>4.63E-06</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ABI replication</td>
<td>16</td>
<td>0.0660</td>
<td>0.0002</td>
<td>9.24E-01</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ABI combined</td>
<td>52</td>
<td>0.0818</td>
<td>0.0011</td>
<td>1.77E-04</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>rs722453</td>
<td>7</td>
<td>84037497</td>
<td>SEMA3A</td>
<td>G/A</td>
<td>0.42</td>
<td>ABI discovery</td>
<td>26</td>
<td>0.0200</td>
<td>0.0012</td>
<td>6.43E-06</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ABI replication</td>
<td>63</td>
<td>0.0096</td>
<td>0.0025</td>
<td>5.74E-02</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ABI combined</td>
<td>32</td>
<td>0.0500</td>
<td>0.0011</td>
<td>1.02E-06</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>rs16824978</td>
<td>2</td>
<td>211380306</td>
<td>CPS1</td>
<td>T/C</td>
<td>0.25</td>
<td>ABI discovery</td>
<td>34</td>
<td>0.0950</td>
<td>0.0012</td>
<td>7.77E-06</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ABI replication</td>
<td>14</td>
<td>0.0340</td>
<td>0.0000</td>
<td>9.94E-01</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ABI combined</td>
<td>49</td>
<td>0.0939</td>
<td>0.0001</td>
<td>1.48E-04</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PAD discovery</td>
<td>34</td>
<td>0.0518</td>
<td>0.0343</td>
<td>2.65E-02</td>
<td>0.39</td>
<td></td>
</tr>
</tbody>
</table>

P<het indicates P value for heterogeneity; †, SNP is located within the gene; ‡, rs819750 is within 60kb of the gene; ††, PAD discovery: ABI <0.9 vs ABI >0.9.

Chr indicates chromosome.

Overlap in SNP Associations for ABI and PAD

While the directions of effect for the ABI SNPs in Table 1 were consistent with the PAD association result (lower ABI, increased odds of PAD), there was little overlap in the top associations for the 2 phenotypes. Only 3 regions marked by SNPs in or near IDE (10q23–q25), DAB2IP (9q33.2), and GRAMD1C (3q13.31), in addition to the chromosome 9p21 region, showed association with both ABI and PAD at the P<10^{-4} level (online-only Data Supplement Table IX). SNP rs7100623 in IDE demonstrated the strongest novel association with both ABI (β=−0.005, P=1.89×10^{-5}) and PAD (β=0.159, P=8.39×10^{-5}) at P<10^{-4}; however, the association probability value was not significant in the replication stage, and diminished in the combined discovery plus replication meta-analysis.

Examination of PAD Candidate Genes

Among the 55 candidate genes or regions previously tested for association with ABI or PAD, 8 regions showed nominally significant probability values (P<0.05) after correction
for the number of effective loci for each gene region. After accounting for the number of regions examined using a false discovery rate (FDR), we found evidence of association between ABI and CYBA (rs3794624, uncorrected \(P = 6.3 \times 10^{-5}\), corrected \(P = 0.0036, \text{FDR} = 0.0665\)) and DAB2IP (rs13290547, uncorrected \(P = 3.6 \times 10^{-5}\), corrected \(P = 0.0035, \text{FDR} = 0.0665\)), in addition to the chromosome 9p21 locus (rs1333049) reported to be associated with ABI (Table 3).35 We found no evidence of association between ABI and any of the other candidate genes previously tested for association with ABI or PAD (online-only Data Supplement Table X).

Examination of Coronary Artery Disease/Myocardial Infarction Candidate Genes

Among the 30 SNPs previously reported by GWAS to be associated with CAD or myocardial infarction, 28 SNPs were available in our discovery meta-analysis of ABI, and 2 of these SNPs demonstrated an association (FDR < 0.10) with ABI, including rs4977574 near CDKN2B (\(P = 2.33 \times 10^{-6}\)) and rs1122608 in LDLR (\(P = 0.0026\)) (Table 3, online-only Data Supplement Table XI).

Discussion

Our GWAS meta-analysis for ABI conducted in more than 40,000 adults of European ancestry has several notable findings. First, we identified and replicated 1 genome-wide significant association between a SNP in the chromosome 9p21 region and ABI. No other ABI-SNP associations achieved genome-wide significance. Second, in our discovery sample, over 3000 adults had PAD (ABI ≤ 0.9); however, none of the SNP associations were significant. Third, the directions of effect were consistent across the 2 phenotypes for the most significant ABI SNPs (lower ABI, increased odds of PAD); however, we observed minimal overlap in the top SNP associations for ABI and PAD. Finally, the effect size for the 9p21 SNP was modest. The association itself is, however, intriguing, and may provide insights into the biological mechanisms contributing to generalized atherosclerosis.

Chromosome 9p21 Locus and Atherosclerosis Susceptibility

Common genetic variants in the 9p21 locus are associated strongly with myocardial infarction and CAD,\(^{17,33,36}\) and confer risk for other atherosclerotic diseases including stroke,\(^{19}\) cerebral and abdominal aortic aneurysm,\(^{20,21}\) and clinically diagnosed PAD; however, the relation with PAD was diminished when coronary artery disease cases were excluded.\(^{20}\) SNP associations at the 9p21 locus with subclinical measures of atherosclerosis have been conflicting. Initially, no association was observed with carotid intima-media thickness or flow mediated dilation in young or older adults;\(^{37,38}\) however, more recent reports demonstrate an association with the development and progression of carotid atherosclerosis\(^{39}\) and with the suggestion of a stronger effect in men.\(^{40}\) To further investigate the ABI-9p21 SNP association noted in this study, we conducted the meta-analysis after adjusting for CAD and after exclusion of individuals with CAD. Not surprisingly, the association persisted but was no
longer genome-wide significant. Both CAD and PAD are manifestations of underlying atherosclerosis, and nearly two thirds of individuals with PAD have coexisting coronary or cerebrovascular disease. One previous report conducted in 3 studies of older adults identified an association between a variant at 9p21 and lower ABI, as well as an increased risk for PAD. The primary effect of the chromosome 9p21 region may be on the atherosclerotic process itself, and there are likely to be many other factors, both genetic and environmental, that determine whether it manifests as CAD, PAD, or another clinical atherosclerotic phenotype. The primary biological mechanism underlying the association with ABI is unknown but appears to be independent of 2 major PAD risk factors, diabetes and smoking, as the ABI SNP in the 9p21 region we identified is not in linkage disequilibrium with the SNPs in the region associated with diabetes risk or smoking-related behaviors. The mechanism may be related to modulation of platelet reactivity, atheroma formation, plaque instability, thrombosis, or biological processes not yet identified.

Figure 2. Ankle-brachial index-chromosome 9p21 (rs10757269) association: study-specific estimates of effect for the discovery studies, population isolates, replication studies, and overall discovery and replication meta-analyses.

<table>
<thead>
<tr>
<th>SNP</th>
<th>Chr</th>
<th>Physical Position</th>
<th>Closest Gene</th>
<th>Risk/Non-Risk Allele</th>
<th>Risk Allele Frequency</th>
<th>N</th>
<th>OR</th>
<th>95% Confidence Interval</th>
<th>P Value</th>
<th>Phet</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs6584389</td>
<td>10</td>
<td>102459392</td>
<td>PAX2</td>
<td>C/A</td>
<td>0.50</td>
<td>24474</td>
<td>1.17</td>
<td>(1.10, 1.25)</td>
<td>2.34E-06</td>
<td>0.37</td>
</tr>
<tr>
<td>rs9998941</td>
<td>4</td>
<td>162544312</td>
<td>FSTL5*</td>
<td>A/G</td>
<td>0.23</td>
<td>34670</td>
<td>1.18</td>
<td>(1.10, 1.27)</td>
<td>2.34E-06</td>
<td>0.61</td>
</tr>
<tr>
<td>rs11751656</td>
<td>6</td>
<td>42751046</td>
<td>UBR2*</td>
<td>G/A</td>
<td>0.07</td>
<td>27470</td>
<td>1.61</td>
<td>(1.32, 1.96)</td>
<td>2.46E-06</td>
<td>0.75</td>
</tr>
<tr>
<td>rs4535726</td>
<td>8</td>
<td>68938371</td>
<td>DEPDIC2</td>
<td>T/C</td>
<td>0.20</td>
<td>34915</td>
<td>1.18</td>
<td>(1.10, 1.26)</td>
<td>3.79E-06</td>
<td>0.01</td>
</tr>
<tr>
<td>rs2090205</td>
<td>17</td>
<td>73897869</td>
<td>PSG1*</td>
<td>A/C</td>
<td>0.24</td>
<td>34912</td>
<td>1.16</td>
<td>(1.09, 1.24)</td>
<td>5.01E-06</td>
<td>0.17</td>
</tr>
<tr>
<td>rs11933540</td>
<td>4</td>
<td>25729099</td>
<td>RBP1</td>
<td>C/T</td>
<td>0.30</td>
<td>34830</td>
<td>1.15</td>
<td>(1.08, 1.23)</td>
<td>9.86E-06</td>
<td>0.08</td>
</tr>
</tbody>
</table>

*SNP is located within the gene. Chr indicates chromosome.

Pnet indicates P value for heterogeneity.

Table 2. Meta-Analysis Results: SNP Associations for PAD (ABI <0.9 vs ABI >0.9) With P<10^-6 With Population Isolates Excluded
Table 3. Literature-Reported Candidate Genes for Peripheral Artery Disease and Coronary Artery Disease and Their Association With Ankle-Brachial Index in the CHARGE GWAS Discovery Sample (Population Isolates Excluded) With FDR < 0.10†

<table>
<thead>
<tr>
<th>SNP</th>
<th>Chr</th>
<th>Physical Position</th>
<th>Closest Gene</th>
<th>Risk/Non-Risk Allele</th>
<th>Risk Allele Frequency</th>
<th>N</th>
<th>Beta</th>
<th>SE</th>
<th>P Value*</th>
<th># of effective loci‡</th>
<th>P Value Corrected‡</th>
<th>False Discovery Rate‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAD genes</td>
<td></td>
</tr>
<tr>
<td>rs10757269</td>
<td>9</td>
<td>22 062 264</td>
<td>CDKN2B</td>
<td>G/A</td>
<td>0.51</td>
<td>35036</td>
<td>-0.006</td>
<td>0.001</td>
<td>2.50E-08</td>
<td>69</td>
<td>1.70E-06</td>
<td>9.32E-05</td>
</tr>
<tr>
<td>rs3794624</td>
<td>16</td>
<td>87 244 575</td>
<td>CYBA</td>
<td>G/A</td>
<td>0.34</td>
<td>31035</td>
<td>-0.005</td>
<td>0.001</td>
<td>6.30E-05</td>
<td>58</td>
<td>3.60E-03</td>
<td>0.0665</td>
</tr>
<tr>
<td>rs13290547</td>
<td>9</td>
<td>123 527 316</td>
<td>DAB2IP</td>
<td>T/C</td>
<td>0.06</td>
<td>32135</td>
<td>-0.009</td>
<td>0.002</td>
<td>3.60E-05</td>
<td>97</td>
<td>3.50E-03</td>
<td>0.0665</td>
</tr>
<tr>
<td>CAD genes</td>
<td></td>
</tr>
<tr>
<td>rs4977574</td>
<td>9</td>
<td>22 088 574</td>
<td>CDKN2B</td>
<td>G/A</td>
<td>0.49</td>
<td>35411</td>
<td>-0.0047</td>
<td>0.001</td>
<td>2.33E-06</td>
<td>...</td>
<td>...</td>
<td>6.52E-05</td>
</tr>
<tr>
<td>rs1122608</td>
<td>19</td>
<td>11 024 601</td>
<td>LDLR</td>
<td>G/T</td>
<td>0.74</td>
<td>35384</td>
<td>-0.035</td>
<td>0.001</td>
<td>2.56E-03</td>
<td>...</td>
<td>...</td>
<td>0.036</td>
</tr>
</tbody>
</table>

*P value from Discovery GWAS of ABI. Chr indicates chromosome. †Candidate genes for PAD were selected for testing with ABI if an association study with at least 100 cases and 100 controls was available in the literature, independent of whether the study was positive or negative. Genes for CAD were considered only for testing with ABI if they were identified by recent GWAS to be genome-wide significantly associated with CAD. The table shows only the genes which showed an experiment-wise significant association with ABI after correction for multiple testing. The entire list of genes can be seen in online-only Data Supplement Table X and XI for PAD and CAD genes, respectively. ‡Due to the high correlation of imputed genotype scores, the effective number of loci was calculated for each PAD gene region (31) using the genotype scores from the KORA F4 Study. Bonferroni correction of P values then was applied in each region using this number. Furthermore, the corrected P value thresholds of significance for 28 CAD loci (tested in online-only Data Supplement Table X, \(\alpha=0.05/28\), \(1.85\times10^{-6}\) and 55 PAD loci (tested in online-only Data Supplement Table X, \(\alpha=0.05/\text{effective number of loci}\)) were calculated. We also calculated a false discovery rate (FDR) using the corrected P values accounting for the number of gene regions examined. An FDR < 0.10 defined evidence of a significant association.

CDKN2B, a well recognized tumor-suppressor gene that encodes a cyclin-dependent kinase inhibitor and is involved in regulation of the cell cycle. CDKN2B is abundantly expressed in human atherosclerotic lesions, and animal models suggest that altered CDKN2A/B expression results in abnormal regulation of vascular cell proliferation. Functional studies reveal a long noncoding RNA at this locus named ANRIL, and a mouse model has confirmed the essential role of ANRIL in regulation of CDKN2B expression through a cis-acting mechanism. ANRIL is implicated in proliferation and senescence.

PAD Candidate Genes

We performed a literature search to identify all candidate gene regions previously investigated for association with PAD or ABI, irrespective of whether the association was reported to be positive or negative. This approach revealed 2 further associated gene regions: DAB2IP and CYBA. DAB2IP rs13290547 was not only associated with ABI, but also with PAD \((P=3.62\times10^{-5} \text{ and } 2.2\times10^{-5})\); respectively; online-only Data Supplement Table X). The DAB2IP gene encodes an inhibitor that is involved in the regulation of cell survival and proliferation. One variant in the DAB2IP gene (rs70254486) recently has been detected in a GWAS of abdominal aortic aneurysm. That study also detected an association with PAD as a secondary end point in 3690 cases versus 12 271 controls \((P=3.9\times10^{-5})\). The same SNP showed an association with CVD within a meta-analysis of case control studies. The CYBA gene is involved in NADPH oxidase regulation, which contributes to oxidative stress and plays a key role in the pathophysiology of coronary disease. Only 1 report investigated a SNP (rs4673) in this gene for association with PAD among 324 cases and 295 controls, but did not find an association. Our study found an association of rs3794624 \((r^2=0.5\) with rs4673\) with continuous ABI, which may indicate that the earlier study likely lacked power to find this association. None of the other gene regions had sufficient evidence for association with continuous ABI in our meta-analysis. Another very wide-reaching approach designed to systematically examine a large number of genes related to intermediate phenotypes of atherosclerosis, such as blood pressure regulation, lipoprotein metabolism, inflammation, oxidative stress, vascular wall biology, obesity, and diabetes, found only eNOS to be significantly associated with ABI. This gene could not be confirmed by our candidate gene examination.

Coronary Candidate Genes

Besides the chromosome 9 locus, 1 other SNP reported to be associated with coronary disease in recent GWAS also showed an association with ABI in our study; rs1122608 in LDLR. The LDLR gene plays an important role in cholesterol homoeostasis, and mutations at this gene have been shown to influence LDL cholesterol levels and the subsequent risk for coronary disease. The association of LDLR gene with ABI in our study is a confirmation of the shared biological pathways underlying both subclinical and clinically apparent disease.

Strengths/Limitations

Our meta-analysis represents the largest collaborative effort to date to identify genome-wide SNP associations for variation in ABI and PAD \((\text{ABI} \leq 0.90)\), and our findings suggest the absence of common variants with large effects on ABI. Use of ABI as our primary phenotype has major advantages of detecting asymptomatic PAD, as the ABI is an objective measurement, whereas clinical PAD requires subjective symptoms of exertional leg discomfort and mobility of the individual. However, several limitations of our meta-analysis merit comment. The blood pressure measurement protocol and ABI calculation was heterogeneous across participating studies. While protocols were standardized within each study,
the studies were not designed to be fully standardized and comparable across studies (online-only Data Supplement Table 1). This phenotype heterogeneity may have impacted our ability to detect associations. Furthermore, for many studies, information about a previous revascularization intervention was not available. This lack of data may have resulted in the misclassification of some of the most affected persons by placing them into an ABI range of unaffected individuals and consequently reducing our power to detect true associations. Our sample was restricted to individuals of European ancestry, and thus our findings cannot yet be generalized to individuals of other race or ethnic groups. Furthermore, some PAD susceptibility variants may be race or ethnic specific and only can be uncovered through the study of non-Europeans. For example, African-Americans have a higher prevalence of PAD that cannot be attributed to traditional or novel risk factors. This observation raises the hypothesis that polymorphisms unique to African-Americans partially may be responsible for the higher prevalence of PAD. We did not evaluate gene by environment interactions, which may be especially relevant for cigarette smoking, a strong risk factor for PAD, and a factor known to interact with other genes to modulate atherosclerosis.

Conclusions
In conclusion, a common variant near the \(CDKN2B\) gene in the chromosome 9p21 locus is associated with a lower ABI. PAD represents a diffuse form of atherosclerosis associated with increased risk for death and incident CVD events. Thus, the identification of genetic variants associated with ABI may provide an important opportunity not only to unravel the biological basis of PAD, but also to improve our understanding of the causes of the variation in degree of atherosclerosis from 1 arterial bed to another. Additional studies are warranted to identify the causal variants in the 9p21 locus and to characterize their functional significance. The search for genes influencing predilection to PAD remains elusive, and alternative approaches are warranted.

Appendix
The following is a list of institutional and study affiliations:

From the NHLBI’s Framingham Heart Study, Framingham, MA (J.M.M., S.-J.H., C.J.O., L.A.C.); Department of Medicine, Section of General Internal Medicine, Boston University School of Medicine, Boston, MA (J.M.M.); Department of Biostatistics, Boston University, Boston, MA (C.C.W., L.A.C.); Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands (M.K., L.B., N.A., Y.A., A.D., A.H., F.R., A.G.U., C.M.D., J.C.M.W.); Netherlands Genomics Initiative (NGI)-Sponsored Netherlands Consortium for Healthy Aging (NCHA) and Center Groningen, University of Groningen, Groningen, The Netherlands (M.K., L.B., N.A., Y.A., A.D., A.H., F.R., A.G.U., C.M.D., J.C.M.W.); Department of Cardiology, Emory University School of Public Health, Atlanta, GA (Y.V.S.); Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO (M.F.F., I.B.B.); Department of Atherosclerosis and Vascular Medicine, Baylor College of Medicine, Houston, TX (V.N.); Genetic Epidemiology, Department of Medicine Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria (C.L., S.C., M.H., B.K., B.R., M.S., F.K.); Institut für Med Biometrie und Statistik, Univ zu Lübeck, Universitätshildklinikum Schleswig-Holstein, Lübeck, Germany (A.S., A.S., A.Z.); Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA (J.C.B.); Department of Molecular Physiology and Biophysics, The Center for Human Genetics Research, Vanderbilt University, Nashville, TN (D.C.C.); Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC (N.F., G.H., K.E.N.); Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark (R.F.-S., A.T-H.); Department of General Internal Medicine, Vascular Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands (S.H., J.G.); Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, Scotland, UK (J.E.H., V.V., A.F.W., C.H.); Department of Neurology, Innsbruck Medical University, Innsbruck, Austria (S.K., J.W.); Endocrinology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD (M.E.M., Q.G., J.O., B.D.M., A.R.S.); Unit of General Epidemiology and Bioinformatics, Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (L.M.N., H.S.); Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC (M.E.R., Y.L.); Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt-Univ Greifswald, Greifswald, Germany (A.T., U.V.); Department of Cardiology (P.H., W.H.G.), and the Department of Genetics, University Medical Center Groningen, Univ of Groningen, Groningen, The Netherlands (P.H.); Hudson Alpha Institute for Biotechnology, Huntsville, AL (L.L.W., D.M.A.); Genetics of Complex Traits, Peninsula College of Medicine and Dentistry, University of Exeter, UK (A.R.W., A.M.); Department of Family and Preventive Medicine, University of California, San Diego, Preventive Medicine, La Jolla, CA (C.L.W., M.A.A., M.H.C.); Department of Biostatistics, University of Washington, Seattle, WA (A.A., K.R.); Department of Cardiology, Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands (F.W.A.); Julius Center for Health Sciences and Primary Care (F.W.A.), and the Department of Medical Genetics, Biomedical Genetics, University Medical Center Utrecht, The Netherlands (F.W.A.); Geriatric Rehabilitation Unit, Azienda Sanitaria di Firenze, Firenze, Italy (S.B.); University of Texas Health Science Center at Houston, Department of Epidemiology, Human Genetics and Environmental Sciences, Houston, TX (M.B., E.B.); Department of Pharmacology, University of Split, Croatia (M.B., G.G., I.M.); The Center for Human Genetics Research, Vanderbilt University, Nashville, TN (K.B-G., R.G.); Department of Biostatistics, University of North Carolina Chapel Hill, Chapel Hill, NC (D.J.C.); Department of Endocrinology and Epidemiology, Biostatistics and Health Technology Assessment, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands (M.H.); Department of Laboratory Medicine, Konventospital Barnherzige Bruder Linz, Linz, Austria (B.D., M.H., T.M.); Sticht Center on Aging, Wake Forest School of Med, Winston-Salem, NC (J.D., S.B.K.); Department of Internal Med B Cardiology, Angiology & Pneumology & Intensive Care Medicine, University Medicine, Greifswald, Germany (M.D., S.B.F., A.K.); Department of Medicine 2, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Germany (C.E-K., K.JL., P.S.W.); Longitudinal Studies Section, Clinical Research Branch, National Institute on Aging, National Institute of Health, Baltimore, MD (L.F.); Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN (A.R.F.); Department of Vascular Surgery, Innsbruck Medical University, Innsbruck, Austria (G.F., B.R.); Department of Epidemiology, Biostatistics & HTA, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands (L.A.K., S.H.V.); Department of Public Health, University of Split School of Medicine, Croatia (I.K., O.P.); Cardiovascular Diseases and the Gonda Vascular Center, Mayo Clinic, Rochester, MN (I.J.K.); Medical Genetics Institute, Cedars-Sinai Med Center, Los Angeles, CA (X.L.); Institute for Community Medicine, University Medicine Greifswald, Germany (W.L.); Department of Biostatistics, Wake Forest University School of Medicine, Winston-Salem, NC (K.L.); Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany (C.M.); De-
Acknowledgments

See online-only Data Supplement Material.

Sources of Funding

The Amish Study was supported by grants R01 088119, R01 AR046838, U01 HL72515, and R01 AG18728, the University of Maryland General Clinical Research Center, Grant M01 RR 16500, Mid-Atlantic Nutrition Obesity Research Center Grant P30 DK072488, General Clinical Research Centers Program, N01-HC-25195 and its contract with Affymetrix, Inc, for genotyping services (Contract No. N02-HL-6-4278). A portion of this research used the Linux Cluster for Genomic Analysis (LinGA-II) funded by the Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center. “Genetic Epidemiology Network of Arteriopathy (GENOA) study is supported by the NIH, grant number 5R01HL087650.” The Gutenberg Heart Study is funded through Rheinland-Pfalz (“Stiftung Rheinland Pfalz für Innovation,” contract number AZ 961-386261/733), the research programs “Wissen schafft Zukunft” and “Schwerpunkt Vaskuläre Prävention” of the Johannes Gutenberg-University of Mainz and its contract with Boehringer Ingelheim and PHILIPS Medical Systems, including an unrestricted grant for the Gutenberg Heart Study. This research also was supported by the National Genome Network “NGFPlus” (contract number project A3 01GS0833 and 01GS0831), by the Federal Ministry of Education and Research, Germany. Health ABC was supported by NIH contracts N01-AG-1 and N1-AG-1-1-111; the InCHIANTI follow-ups 2 and 3 studies (2004–2010) were funded by NIA (Contract: N01-AG-5-0002), supported in part by the NIA Intramural research program. A portion of the support was through a R and D contract with MedStar Health Research Institute. KORA F3 and KORA F4 were partially funded by the “Genomics of Lipid-associated Disorders-GOLD” of the “Austrian Genome Research Programme GEN-AU” and by the Austrian Heart Fund to F. Kronenberg and by the Austrian National Bank (Project-Nr. 13662) to Barbara Kollerits. The MONICA/KORA Augsburg cohort study was funded by the Helmholtz Zentrum München and the German National Genome Research Net. NFGN2 and NFGNPlus (H-E. Wichmann 01GS0823). NESDA was supported by the Gesellschaft für ZoonMW [grant 10-000-1002], matching funds from universities and mental health care institutes involved in NESDA (GGZ Buitenamstel-Geestgronden, Rivierduinen, University Medical Center Groningen, GGZ 25 Lentis, GGZ Friesland, GGZ Drenthe). Genotyping was funded by the Genetic Association Information Network (GAIN) of the Foundation for the US NIH, and analysis was supported by grants from GAIN and the NIMH (MH081802). NBS support was obtained from RUMC. The measurement of ABI was supported by Grant 2003B057 of the Netherlands Heart Foundation. This work was sponsored by the Stichting Nederlandse Computerfaciliteiten (Computing Facilities Foundation, NCF) for the use of supercomputer facilities, with financial support from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organization for Scientific Research, NWO). The Rotterdam GWA study was funded by the Netherlands Organisation of Scientific Research NWO Investments (nr. 175.010.2005.011, 911-303-012), the Research Institute for Diseases in the Elderly (014-93-015, RID2), the Netherlands Genomics Initiative (Netherlands Consortium for Healthy Aging (NCHA) project nr. 050-060-S10. Dr Jacques Wittenman is supported by Netherlands Organization for Scientific Research (NOW) grant (vic, 918-76-619).
Abbas Dehghan is supported by Erasmus University Rotterdam (EUR) fellowship. The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. SHIP is funded by the Federal Ministry of Education and Research (grants no. 01ZZ0665, 01ZZ0103, and 01ZZ0403), the Ministry of Cultural Affairs, as well as the Social Ministry of the Federal State of Mecklenburg-West Pomerania. Genome-wide data have been supported by the Federal Ministry of Education and Research (grant no. 03ZIK012) and a joint grant from Siemens Healthcare, Erlangen, Germany, and the Federal State of Mecklenburg-West Pomerania. CROATIA Studies (Croatia-Vis, Croatia-Korcula, and Croatia-Split) were supported by grants from the Medical Research Council UK and Ministry of Science, Education and Sport of the Republic of Croatia (No. 108-1080315-0302) and CROATIA-Vis by the European Union framework program 6 European Special Populations Research Network (EUROSPAN) project (contract LSHG-CT-2006-018947). The genotyping for the ERF study was supported by EUROSPAN (European Special Populations Research Network) and the European Commission FP6 STREP (contract LSHG-CT-2006-018947). The ERF study was further supported by grants from the Netherlands Organisation for Scientific Research, Erasmus MC, the Centre for Medical Systems Biology (CMSB), and the Netherlands Brain Foundation (HersenStichting Nederland). ORCADES was supported by the Chief Scientist Office of the Scottish Government, the Royal Society, and the European Union framework program 6 EUROSPAN project (contract no. LSHG-CT-2006-018947). DNA extractions were performed at the Wellcome Trust Clinical Research Facility in Edinburgh. The Bruneck Study was supported by the Pusterteraler Verein zur Pra¨vention von Herz- und Hirngefäßerkrankungen, Gesundheitsbezirk Bruneck, and the Asses-sorat fuer Gesundheit, Provinz of Bolzano, Italy. The Copenhagen City Heart Study was supported by a Specific Targeted Research Project grant from the European Union, Sixth Framework Programme Priority (FP-2005-LIFESCIHEALTH-6) contract 037631, the Danish Medical Research Council (Copenhagen), the Research Fund at Rigshospitalet, Copenhagen University Hospital (Copenhagen), Chief Physician Johan Boserup and Lise Boserup’s Fund (Copenhagen), Ingeborg and Leo Dannin’s Grant (Copenhagen), and Henry Hansen’s and Wife’s Grant (Copenhagen). Genotyping was supported by a grant from the Austrian Heart Fund. National Health and Nutrition Examination Surveys (NHANES) are supported by the Centers for Disease Control and Prevention. The Vanderbilt University Center for Human Genetics Research, Computational Genomics Core, provided computational or analytical support for this work. MESA and the MESA SHARE project are conducted and supported by the NHLBI in collaboration with MESA investigators. Support is provided by grants and contracts N01 HC-95159, N01-HC-95160, N01-HC-95161, N01-HC-95162, N01- HC-95163, N01-HC-95164, N01-HC-95165, N01-HC-95166, N01-HC- 95167, N01-HC-95168, N01-HC-95169 and RR-024156. “Funding for SHARE genotyping was provided by NHLBI Contract NO2-HL-6-4278.” The PREVEND study is supported by the Dutch Kidney Foundation (Grant E033), EU project grant GENEUCRE (FP-6 LSHM CT 2006 037697), and NWO VENI (grant number 916.76.170). The CAVASIC study was partially funded by the “Genomics of Lipid-associated Disorders-GOLD” of the “Austrian Genome Research Programme GEN-AU” and by the Austrian Heart Fund and the Austrian National Bank (Project-Nr. 13662). GenePAD was supported by grants RO1 HL-75774, 1K12 HL87746, 1P50HL083800, as well as grant M01 RR 00070 (General Clinical Research Center, Stanford University School of Medicine) and the Stanford Cardiovascular Institute. The LIPAD project was supported in part by a grant from the Upper Austrian Government. Genotyping was supported by a grant from the Austrian Heart Fund.

Disclosures

None.

References

14. Kardia SL, Greene MT, Boerwinkle E, Turner ST, Kullo IJ. Investigating the complex genetic architecture of ankle-brachial index, a measure of

Murabito et al Genome-Wide Meta-Analysis of Ankle-Brachial Index 111

CLINICAL PERSPECTIVE

Little is known about the genetic susceptibility to peripheral arterial disease (PAD). We conducted a meta-analysis of genome-wide association study findings for the ankle-brachial index (ABI), a noninvasive measure of PAD, within an international consortium of 21 population-based cohort studies that included over 40 000 participants of European descent, and conducted replication analyses in over 16 000 individuals from population-based cohorts and clinically-based studies of PAD. We identified and replicated 1 genome-wide significant association between a genetic variant in the chromosome 9p21 region and a lower ABI. Common genetic variants in the 9p21 locus are associated strongly with coronary artery disease and confer risk for other atherosclerotic diseases. Therefore, the primary effect of the 9p21 region may be on the atherosclerotic process itself, and there are likely many other factors, both genetic and environmental, that determine whether it manifests as coronary disease, PAD, or another clinical atherosclerotic phenotype. The primary biological mechanism underlying the association with ABI is unknown but appears independent of 2 major PAD risk factors, diabetes and smoking, as the ABI single nucleotide polymorphisms (SNP) in the 9p21 region we identified is not in linkage disequilibrium with the SNPs in the region associated with diabetes or smoking-related behaviors. PAD represents a diffuse form of atherosclerosis associated with increased risk for death and incident CVD events. Identification of genetic variants associated with ABI may provide an opportunity to unravel the biological basis of PAD.