In situ catalytic pyrolysis of lignocellulose using alkali-modified amorphous silica alumina

M. Zabeti, T.S. Nguyen, L. Lefferts, H.J. Heeres, K. Seshan

Catalytic Processes and Materials, Faculty of Science and Technology, MESA+, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
Chemical Technology, Institute for Technology, Engineering and Management, Faculty of Mathematics and Natural Sciences, Nijenborgh 4, 9747 AG Groningen, The Netherlands

Highlights

- Alkali-modified amorphous silical alumina (ASA) catalysts are effective for bio-oil upgrading.
- Among the alkalis tested, Cs/ASA catalyst is promising for: Cracking of lignin fraction of biomass.
- Deoxygenating of substituted phenols.
- Producing hydrocarbons.

Article Info

Article history:
Received 15 March 2012
Received in revised form 5 May 2012
Accepted 9 May 2012
Available online 17 May 2012

Keywords:
Alkali
Bio-oil
Cesium
Pyrolysis
Renewable

Abstract

Canadian pinewood was pyrolyzed at 450 °C in an Infrared oven and the pyrolysis vapors were converted by passing through a catalyst bed at 450 °C. The catalysts studied were amorphous silica alumina (ASA) containing alkali metal or alkaline earth metal species including Na, K, Cs, Mg and Ca. The catalysts effectiveness to reduce the bio-oil oxygen content, to enhance the bio-oil energy density and to change the liquid and gas product distribution were evaluated using different techniques including gravimetric analysis, elemental analysis, Karl-Fischer titration, GC/MS and micro-GC analysis. According to the results K/ASA found to be the most effective catalysts for conversion of hollocellulose (hemicellulose and cellulose)-derived vapors of pinewood while Cs/ASA catalyst was the most effective catalyst for conversion of lignin-derived vapors and production of hydrocarbons.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Depletion of fossil resources, increasing demand for petroleum fuels and concerns over global warming have created interest in renewable feedstock’s. Biomass is a renewable source of energy, consists mainly of carbon, hydrogen and oxygen and has a nominal composition of C6H10O5. It also contains certain amounts of alkali and alkali earth metals, depending on the biomass source (Fassinou et al., 2011). Compared to fossil fuel resources biomass has lower H/C ratio and higher O/C ratio and as a consequence the energy density is lower than crude oil (16 vs. 44 MJ kg⁻¹ for crude oil) (Mortensen et al., 2011). Liquefaction of solid biomass is proposed to be advantageous for reasons of logistics, transport and processing issues. The product of liquefaction is an intermediate energy carrier and can be used as “bio-crude oil” for refineries (Kersten et al., 2007). The most used liquefaction process is fast pyrolysis, a process in which biomass is liquefied by rapid heating to temperatures around 450–550 °C in the absence of oxygen. The liquid product is a complex mixture of organic components and water and is named “bio-liquid”, “bio-oil” or “pyrolysis oil”. It cannot be directly used as a transportation fuel because it (i) is very viscous due to the presence of large molecules (up to 1500 Da), (ii) corrosive due to the presence of organic acids, (iii) thermally unstable owing to a large content of reactive components and (iv) has a very low heating value (19 MJ kg⁻¹) due to its low hydrogen and high oxygen content.

Accordingly, the development of technologies to reduce the product acidity and to increase stability and energy content of bio-oil is essential. One of the options to achieve this is by reducing the oxygen content of bio-oil. Oxygen removal can be achieved by (i) hydro-deoxygenation (HDO) using (standard) hydrotreating catalysts around 300–500 °C and high hydrogen pressures (Ardiyanti...
et al., 2011), and (ii) deoxygenation over solid acid catalysts at 400–500 °C and atmospheric pressure. HDO process is expensive due to the high prices and low availability of H2 (Bridgwater, 2012; Huber et al., 2006).

During deoxygenation, oxygen is removed as H2O, CO and CO2 (Zhang et al., 2011). Selective deoxygenation via CO2 instead of H2O is advantageous because it minimizes loss of hydrogen and maximizes oxygen removal with minimal carbon loss and thus allows to maintain high H/C ratio and low O/C ratio for the bio-oil. Fig. 1 shows this advantage for the selective deoxygenation for glucose (C6H12O6). Deoxygenation as H2O is least interesting as it lowers the H/C ratio of the bio-oil. Higher H/C ratio is favorable for the energy content, for example, fossil fuels have H/C ratio of ca. 2.

Different zeolites (H-MFI, H-FAU, and H-BEA) have been studied for the catalytic upgrading of biomass pyrolysis vapors (Perego and Bosetti, 2011). Strong acidity of the zeolite led in general to deep deoxygenation and severe coke formation (Bridgwater, 2004; Carlson et al., 2009; Thring et al., 2000; Williams and Horne, 1995). To tackle this problem, mesoporous materials with milder acidity such as SBA-15, Al-MSM-41 and Al-MSU-F have been developed (Jackson et al., 2009; Pattiya et al., 2008; Triantafyllidis et al., 2007). However, the degree of deoxygenation using these catalysts was low compared to zeolites. Alkali metals and alkaline earth metals have attracted attentions as promising catalysts for upgrading of bio-oil in recent years (Fahmi et al., 2007; Mullen and Boateng, 2008). Sooknoi et al. (2008) used Cs catalyst in combination with zeolite Na2CO3 for deoxygenation of methylesters and found that Cs plays a crucial role in decarbonylation of methylesters and when Cs was not present on the zeolite the activity of the catalyst for decarbonylation decreased. Furthermore, it was shown that non-zeolitic basic catalysts, such as MgO, had low activity for the deoxygenation of methylesters. Babich et al. (2011) studied the influence of Na2CO3 on the pyrolysis of algae as biomass and found it effective for the improvement of bio-oil energy content (40% energy recovery in bio-oil). Recently, it was shown that supported Na2CO3 on γ-Al2O3 was more effective on reducing the oxygen content and enhancing the energy content of bio-oil compared to Na2CO3 (Nguyen et al., unpublished results).

In this work the effect of mesoporous amorphous silica alumina (ASA) in combination with alkalai or alkaline earth metals on pyrolysis of lignocellulosic biomass is evaluated. Accordingly, ASA was selected as support and was modified with alkalai metal or alkaline earth metal salts including Na, K, Cs, Mg and Ca. To the best of our knowledge such work has not been reported in literature so far. The influence of alkalai-modified ASA catalysts on conversion of pyrolysis vapors were studied and the relation between the composition of the resulting bio-oil and its properties is discussed.

2. Experimental

2.1. Materials

Canadian pinewood with particles sizes between 100 and 300 μm was used as biomass feed (Table 1). The other chemicals used in this study were: Na2CO3 (Sigma–Aldrich, 99.5%), Ca(NO3)2·4H2O (Aldrich), K2CO3 (Riedel-de Haën, 99%), CsNO3 (Acros, 99.3%), Mg(NO3)2·6H2O (Sigma–Aldrich) and ASA (Si/Al ratio 12:1; BET surface area 535 m2/g, Albemarle, The Netherlands). The amorphpousity of silica alumina sample was claimed by the supplier and it was further proved by XRD analysis.

2.2. Proximate and ultimate analysis

Proximate analysis of the biomass sample was determined using Thermo Gravimetric Analysis (TGA) according to the following procedure: 9 mg of pinewood was heated in 50 ml min−1 Ar from 25 to 200 at 10 °C min−1 and kept at 200 °C for 30 min to determine weight loss due to water. Then the temperature increased to 800 °C with the same conditions and kept at 800 °C for 30 min to remove all the volatiles and to measure char content. Finally, at 800 °C, 50 ml min−1 of air was introduced for 30 min. The final weight of the sample was used to calculate the ash content.

A Perkin-Elmer elemental analyzer (Thermo scientific Flash 2000), was utilized to perform ultimate analyses (C, H, and N) of the biomass and bio-oil samples. The analyzer was equipped with a column including two reactive beds, copper oxide and electrolyte copper, and the Thermal Conductivity Detector (TCD) was used for the detection of gases. The column was preheated to 900 °C. Ar and O2 were used as carrier and reactive gases with flow rate of 140 and 250 ml min−1, respectively. The samples (3–4 mg in small tin cups) were inserted by a robot to the column and the weight percentage of C, H and N were calculated based on the amount of H2O, CO2 and N2 evolved from the decomposition of the samples and using calibration curves (acetanilide used as standard for calibrating the column). Oxygen was calculated by difference.

2.3. Catalysts preparation

Catalysts used in this study were prepared using a dry impregnation method. First, 10 g of the ASA support (pore volume, 0.6 ml g−1) was calcined at 650 °C for 300 min in 50 ml min−1 of air. Then, the desired amount of alkalai or alkaline earth metal precursor was dissolved in 10 ml of deionized water and loaded onto the support in two steps to give 10 wt.% of the respective metal in the final catalyst. In the first step, 6 ml of the solution was loaded onto the support by a dropper and the resulting catalyst was left at room temperature for 5 h to be dried. Then the rest of the solution was loaded onto the catalyst and it was dried at room temperature overnight and further at 120 °C for 120 min prior to calcination. Finally, each catalyst was calcined at 600 °C for 300 min in 50 ml min−1 of air.

Table 1

<table>
<thead>
<tr>
<th>Proximate analysis (wt.%)</th>
<th>Ultimate analysis (wt.%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water content</td>
<td>3.00</td>
</tr>
<tr>
<td>Volatile</td>
<td>77.00</td>
</tr>
<tr>
<td>Fixed carbon</td>
<td>11.00</td>
</tr>
<tr>
<td>Ash</td>
<td>9.00</td>
</tr>
</tbody>
</table>

Data were calculated on ash free basis.
gases (including permanent gases, CO2, C2H4, C2H6, C3H6) and water) were collected. The non-condensable vapors (including organics) were collected in a gasbag. In all experiments the catalyst particle sizes were between 0.4 and 0.6 mm and were mixed with

The yield of liquid product was calculated by the total weight difference of condensers before and after the reaction divided by the initial weight of biomass. Solid yield was also calculated using the weight difference of the quartz reactor, filled with biomass and catalyst, after and before the pyrolysis reaction divided by the weight of initial biomass. The method used for calculations of gas yield is described in the following section.

2.5. Analysis of pyrolysis products

Detection and identification of bio-oil components, collected in the condensers, were performed on an Agilent 6890N Gas Chromatograph (GC) coupled with an Agilent Inert XL Mass Spectrometry (MS) detector. A capillary column (Varian CP9154; 60 m x 0.25 mm x 250 µm) was used in combination with He as the carrier gas with a flow rate of 1 ml min⁻¹. Bio-oil samples were diluted with acetone to a dilution factor of 5 and filtered using a 0.25 µm PTFE filter prior to the injection. The injector port of the GC was set at 250 °C and the split ratio was 30:1. The mass spectrometer was operated in the Electron Ionization mode and the spectra were recorded from m/z of 25 to 500. Identification of compounds eluting from the GC column was done based on the retention time and the fragmentation pattern in the MS, using the NIST library (supplied by Agilent).

Gaseous products were analyzed offline using a micro GC (Varian-CPS4500) equipped with two columns and a TCD. The first column (M5SA) was set at 70 °C and was used for determination of H2, CH4 and CO and the second column (Porapak Q) was set at 80 °C to detect CO2, C2H6, C3H6 and C4H8. Both columns were calibrated for quantification of all gas components using at least two standard calibration gas mixtures and argon was used as carrier gas for both columns. The total volume of gases, which flew to the gasbag, was measured using a gas flow meter (Fig. 2). This, together with the compositions analysed by the micro GC, provide the exact volume percentage of each gas in the mixture. The ideal gas law was employed to calculate the molar amount of each gas.

Stability and molecular weight distribution of bio-oil were determined by Size Exclusion Chromatography (SEC) and according to the method by Hoekstra et al. (2011). The SEC system used was Agilent Technologies 1200 series equipped with a autosampler and a Refractive-Index Detector (RID, G1362A).

The Higher Heating Value (HHV) of bio-oil samples was estimated using the Dulong equation (Eq. 1), where C, H, and O are carbon, hydrogen and oxygen in weight percentages, respectively. Dulong formula has been used to semi-quantitatively calculate the HHV of fuels or fuel resources such as coal, biomass, pyrolysis
oil and biodiesel using elemental weight percentages (Buckley, 1991; Fassion et al., 2011). Water content of bio-oil was measured using Karl-Fischer titration. Degree of deoxygenation of bio-oils was calculated using Eq. (2).

\[
\text{HHV(MJ kg}^{-1}\text{)} = \frac{(337C + 1442(H - O/8))}{1000} \quad \text{(Eq. 1)}
\]

Deoxygenation degree(\%) = \((1 - (O_{bio-oil}/O_{biomass})) \times 100\), where(O) is oxygen content(mass)

(Eq. 2)

All the pyrolysis experiments and analysis were duplicated and performed in random orders to obtain a good estimation of experimental errors and all the values presented are averaged. The experimental errors calculated were smaller than 5%.

2.6. Catalysts reproducibility and regenerability tests

The reproducibility and regenerability tests were carried out for the best-selected M/ASA catalyst (M is an alkali or an alkaline earth metal). Two batches of selected M/ASA catalyst were prepared according to the method described in Section 2.3 and were applied in the pyrolysis reaction according to the method explained in Section 2.4. The reproducibility of M/ASA catalyst was then evaluated by comparing the BET surface areas of the two catalysts and comparing the bio-oil yields obtained using each catalyst. The catalysts of each batch were denoted as M/ASA-1st-batch and M/ASA-2nd-batch for the first and the second batches, respectively. In order to test regenerability of M/ASA catalyst, the M/ASA-1st-batch catalyst was removed from the reactor after the pyrolysis reaction and was calcined in air at 600 °C for 5 h to be regenerated. This catalyst was denoted as “M/ASA-1st-batch-reg” and the BET surface area of the sample was measured. Then the regenerated catalyst was used in the pyrolysis reaction and the bio-oil yield obtained using the catalyst was also calculated. Similar to reproducibility test, the regenerability of the catalyst was also evaluated based on the BET surface area and the bio-oil yield.

3. Results and discussions

3.1. Catalytic effect on pyrolysis products yield

Detailed mass balances for the catalytic and thermal (in presence of inert α-Al₂O₃) experiments are summarized in Table 2. The solid deposited on the catalyst is denoted as heterogeneous char, which forms from re-polymerization of pyrolysis vapors and contains C, H and O. As can be seen from Table 2, the yield of residuals (homo- and heterogeneous char and ash) left in Infrared oven after depolymerization of biomass is nearly the same for all experiments, as expected. The total mass balance for all the pyrolysis reactions calculated was closed to 90 ± 2. This is mainly due to the difficulty in the collection of the small amounts of liquid product during the laboratory experiments. Moreover, for the calculation of concentrations of gases we assumed the gases to be ideal which in reality is not the case.

The yield of organics decreased for all the catalytic experiments as compared to thermal experiment. This reduction is associated with an increase in water, heterogeneous char and gas yield (Table 2) which are characteristic products of catalytic cracking reactions. Catalyst containing Cs produced the lowest amount of organic oil and resulted in the highest gas and heterogeneous char yields. The solid deposit on Na/ASA catalyst was low and a relatively high amount of organics was obtained. The least amount of water and consequently the largest organics yield was obtained using Mg/ASA indicating that this catalyst is the least selective for dehydration reactions. Water is primarily produced during depolymerization of cellulose, hemicellulose and lignin (i.e., scission of glycosidic linkages in the polysaccharide units, or ether links in lignin). Water can also be further formed from catalytic deoxygenation of pyrolysis vapors (Carlson et al., 2009; DeGroot et al., 1988; Yang et al., 2007).

3.2. Catalytic effects on deoxygenation of pyrolysis vapors

Table 3 represents the results for the elemental analysis of the bio-oils (dry basis) produced using each catalyst, higher heating value (dry basis) of the bio-oils and overall yield of CO and CO₂. K/ASA was the most active catalyst to eliminate oxygen from the pyrolysis vapors as CO₂ followed by Na/ASA, Mg/ASA, which showed minimal dehydration, was also not effective for decarboxylation, showing only small amounts of CO₂. Cs/ASA produced the highest yield of CO.

In contrary with thermal reaction, the heating value of bio-oil increased when a catalyst was applied and this enhancement was more significant in the case of Na/ASA and K/ASA. These catalysts showed selective deoxygenation to CO₂, and as suggested earlier (Section 1, Fig. 1) also gave products with the highest energy contents. Even though the degree of deoxygenation by Cs/ASA and Ca/ASA catalysts were relatively high, the resulting bio-oil energy content was lower because H₂O, CO and not CO₂ were the main deoxygenation products.

3.3. The influence of the catalysts on bio-oil composition

A large number of components were detected in the liquid fraction (using GC/MS) and about 90 components matched with the NIST database at a quality level (>80%). The concentrations of these components were estimated semi-quantitatively using Total Ion Chromatogram (TIC) peak areas of the MS detector and relative response factors using fluoranthene (C₁₆H₁₀) as internal standard. The compounds were grouped based on chemical functionalities viz., acids (R-COOH), (substituted)-phenols, carbonyls (ketones and aldehydes), (substituted)-furans and hydrocarbons (C₅ aliphatic and aromatic).

Monomeric sugars and heavier phenolic compounds formed from thermal pyrolysis of holocellulose (hemicellulose and cellulose) and lignin fractions of biomass, respectively, can be cracked to lower molecular weight compounds when a catalyst is used (Carlson et al., 2009; Guo et al., 2011). Results from SEC (the figure is not included in this paper) showed that among all the catalysts, Cs/ASA resulted in a narrower range of molecular weights up to 600 g mol⁻¹ while other catalysts resulted in the wider molecular weights up to 1500 g mol⁻¹. This implies that Cs/ASA catalyst was the most efficient catalyst for the cracking of biomass vapors.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Organics yield (wt.%)</th>
<th>Water yield (wt.%)</th>
<th>Gas yield (wt.%)</th>
<th>Heterogeneous char yield (wt.%)</th>
<th>Residual yield (wt.%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Alumina</td>
<td>42.4</td>
<td>19.1</td>
<td>10.5</td>
<td>0.0</td>
<td>17.6</td>
</tr>
<tr>
<td>Na/ASA</td>
<td>29.7</td>
<td>23.3</td>
<td>15.8</td>
<td>3.5</td>
<td>18.0</td>
</tr>
<tr>
<td>K/ASA</td>
<td>24.5</td>
<td>23.4</td>
<td>15.4</td>
<td>6.6</td>
<td>18.7</td>
</tr>
<tr>
<td>Cs/ASA</td>
<td>20.5</td>
<td>24.6</td>
<td>17.1</td>
<td>8.3</td>
<td>19.3</td>
</tr>
<tr>
<td>Mg/ASA</td>
<td>34.3</td>
<td>21.0</td>
<td>13.0</td>
<td>6.3</td>
<td>18.5</td>
</tr>
<tr>
<td>Ca/ASA</td>
<td>23.1</td>
<td>27.1</td>
<td>13.2</td>
<td>6.2</td>
<td>19.2</td>
</tr>
</tbody>
</table>

1 Water yield measured by Karl-Fischer analysis; the sum of organic and water yield is equal to the total bio-oil yield.
2 Heterogenous char yielded on the catalyst.
3 Residual is sum of char + ash.

Table 2: Detailed mass balance of catalytic pyrolysis reactions. Reaction conditions: Tpyrolysis = 450 °C, Tcatalyst bed = 450 °C, P = 1 bar, Mflow rate = 50 ml min⁻¹.
In the following sections the influence of catalysts on the cracking of holocellulose and lignin fractions of biomass and the relationships between the products thus formed and the properties that are critical in terms of bio-oil quality such as acidity, stability and energy density are discussed.

3.3.1. Acidity of bio-oil

Bio-oil acidity can be determined as the total acid number using potentiometric titration in which a solution of bio-oil (normally in methanol or ethanol) is titrated by a strong base such as NaOH or KOH. Based on the experimental results it was found that the total acid number of bio-oil measured by titration is closely correlated to organic acids concentration measured by GC/MS. Westerhof et al. (2011) also observed the same correlation. Phenolic compounds can also contribute to the acidity of bio-oil (phenol, pK_a = 10, acetic acid pK_a = 4.8), but to a much lesser extent. Further, the acidity of phenolics depends on substituents, electron-withdrawing groups such as carbonyls, increase the acidity while the electron-donor substituents, such as methoxy and methyl groups, reduce the acidity via inductive and resonance effects (Wade, 2006). Accordingly, alkyl substituted phenolics would be more desirable from catalytic cracking of lignin since it has less acidity than phenol. Favorably, it has also a higher heating value (cf. 34.2 MJ kg⁻¹ for methyl phenol compared to 33.1 MJ kg⁻¹ of phenol). Therefore, total organic acids content (such as acetic acid, propanoic acid and formic acid) and the concentration of carbonyl substituted phenols (such as vanillin and 4-hydroxybenzaldehyde) were used to estimate the trend in acidity of the product when changing the catalyst (Fig. 3).

Because the yield of the carbonyl substituted phenols (Fig. 3) is low compared to the yield of carboxylic acids, acidity is apparently dominated by carboxylic acids. Among all the catalysts only K/ASA catalyst reduced the amount of acids compared to thermal run. Na/ASA catalyst made no significant changes in the content of acids. The use of the other catalysts resulted in an increase in the amount of acids and this increase was the most pronounced in the case of Cs/ASA. Acetic acid, the most abundant organic acid in bio-oil, is mostly formed from cleavage of acetyl groups in the hemicellulose fraction, mainly attached to xylose monomer (Guo et al., 2011). Deoxygenation of carboxylic acids is expected to yield CO_2. Thus, a correlation between CO_2 formation and product acidity is expected; an increase in CO_2 formation was observed when the bio-oil contained lower concentrations of organic acids.

Deoxygenation as CO_2 reduces acidity and enhances the energy content, as discussed earlier (Section 1, Fig. 1). Since the yield of the carbonyl-substituted phenols (Fig. 3) is low compared to the yield of carboxylic acids, deoxygenation of the latter as CO_2 is more critical, as carboxylic acids cause the most acidity. Pattiya et al. (2008) assessed the catalytic influence of ZSM5, a strong solid acid catalyst with micropores, and Al-MSU-F, a mesoporous catalyst with mild acidity, on bio-oil acidity and observed that acid quantity of bio-oil increased significantly in both cases. Presence of alkali is apparently the reason that K/ASA is effective in reducing acid components.

3.3.2. Stability of bio-oil

Viscosity and the molecular weight of bio-oil are known to increase by aging and significant effects already have been reported for storage for 1 week at a temperature of 80 °C (Boucher et al., 2000). Fig. 4a proves this phenomenon by comparing SEC chromatograms of a fresh bio-oil (produced from thermal pyrolysis reaction of wood) and the same bio-oil stored for one year (labeled as old bio-oil) at room temperature. It can be clearly seen from the figure that by aging, the intensity and peak area of the lower molecular weight regions decreased and the chromatograph shifted to higher molecular weight regions, reaching 10,000 g mol⁻¹ for the old bio-oil.

The origin of this phenomenon lies in the occurrence of chemical reactions between reactive components present in bio-oil, such as aldehydes and ketones, resulting in the formation of heavy molecules (Boucher et al., 2000; Czernik and Bridgwater, 2004; Tang et al., 2010). Examples of possible reactions are reactions of aldehydes with phenolics and aldol type condensation reactions. GC/MS analysis of the fresh bio-oil and the old bio-oil are shown in Fig. 4b (inset is chromatogram of the old bio-oil). The figure indicates that the amount of ketone, aldehydes and phenolic compounds in the bio-oil decreased tremendously by aging process (compare intensity of the peaks appeared after retention time of 10 min in the fresh and old bio-oil chromatograms). This is in agreement with the increase in bio-oil molecular weight presented in Fig. 4a. Furthermore, occurrence of condensation reactions can be proved by comparing the amount of water in the fresh bio-oil with the amount of water in the old bio-oil (24 wt.% in the fresh bio-oil vs. 38 wt.% in the old bio-oil). Therefore, based on the above premises it is expected that product oils with lower carbonyl contents are thermally more stable.

In this work, the quantity of carbonyls produced in all catalytic reactions was higher compared to the thermal (in presence of inert α-Al_2O_3) reaction (the results are not shown). Largest amounts were found with K/ASA, while the effect when using Na/ASA as the catalyst was the lowest. It is clear from this study that a higher degree of deoxygenation to lower carbonyl content, eventually via HDO, may be necessary. The results for the increase in the quantity of carbonyls are in accordance with other studies (Fahmi et al., 2007; Nowakowski and Jones, 2008; Patwardhan et al., 2010).

3.3.3. Energy density of bio-oil

The energy density of bio-oil is very low as compared to the energy density of conventional fuels (lower than 50%) due to the high oxygen content (typically 35–40 wt.%). However, oxygen-containing molecules such as (alkyl)-furans are desired components because of their high octane number (2,5-dimethylfuran – RON 120) and can enhance energy density of bio-oil (Czernik and Bridgwater, 2004). Lower levels of phenolic components are suggested.
Fig. 3. Effect of the catalysts on the yield of carboxylic acids and carbonyl substituted-phenols; inset shows the Carboxylic acids – CO₂ yield correlation (Mg/ASA showed lower activity for deoxygenation compared to other catalysts and hence it was not included in the correlation (inset figure)).

Fig. 4. Increase in the molecular weight of bio-oil due to aging process and its correlation with the reduction of reactive components in bio-oil over time, shown respectively as (a) SEC chromatogram (b) GC-FID chromatogram; the high intensity peak appeared between 6 and 10 min in the old bio-oil chromatogram is due to acetic acid.
as fuel additives, as they are known to be octane increasing agents (Kleinert and Barth, 2008; Leung, 2010). Alkyl-phenols are even better because of their higher octane number. They also have higher heating values, methyl phenol having calorific value of 34.15 MJ kg⁻¹. Hydrocarbons present are the most desired components of bio-oil since they have high heating value and high octane number.

Fig. 5a compares the capability of the catalysts to form furanic compounds during catalytic cracking of biomass. In the thermal experiment, only oxygenated furans (furan with an oxygen-containing substitute, e.g., furanone and furfural), were observed. Only in the case of K and Ca/ASA catalysts an appreciable increase in (alkyl-) furans was observed. Pyrolysis of xylan, a model compound of hemicellulose, in the presence of HZSM5, H-β and USY zeolites studied by Guo et al. (2011) showed that the amount of furans decreased compared to thermal reaction. Milder acidity of the mesoporous ASA and presence of alkali metals can improve basicity therefore seems beneficial.

Phenols, formed from the pyrolysis of lignin part of the biomass (Buckley, 1991), were classified into three groups (i) phenol, (ii) alkyl substituted and (iii) substituted with oxygen-containing groups (such as C–O, OH and C = O) and are shown in Fig. 5b. The most effective catalyst on the cracking and deoxygenating of pyrolytic lignin is Cs/ASA since more than 50% of the phenolic compounds obtained using this catalyst consisted of phenol and alkylated phenols.

The catalytic effect on the quantity of desirable hydrocarbons (poly aromatic hydrocarbons were excluded) was also evaluated by comparing the TIC peak area percentage of the total hydrocarbons detected by GC/MS. The results revealed that, all the catalysts enhanced the formation of hydrocarbons compared to the thermal reaction (nearly 0.0%) and Cs/ASA was the most effective catalyst (7.0%), followed by Na/ASA and K/ASA (3.8% and 3.0%), respectively. Mg/ASA and Ca/ASA resulted in lower amounts of hydrocarbons (1.9% and 2.0%, respectively) compared to the other catalysts. Previous studies showed that there are two possible ways for the formation of aromatic hydrocarbons from pyrolysis of biomass when a catalyst is used: (i) by mild deoxygenation of phenols through dehydration and decarbonylation reactions and (ii) from decarbonylation and decarboxylation of furans (Carlson et al., 2009; Guo et al., 2011). Based on the discussions above it seems that the increase in aromatics with K/ASA is correlated with the reduction of furans (Fig. 5a) and in the case of Cs/ASA it is correlated to the reduction of phenols (Fig. 5b). As furans are preferred over phenols, in general, as fuel additives, Cs/ASA catalyst would be more appropriate for the pyrolysis of lignocellulosic biomass. Carlson et al. (2009) used ZSM5 as an acid catalyst for pyrolysis of cellulose and they found that around 30% (mole basis) of cellulose was converted to aromatic hydrocarbons. Nevertheless, a large amount of coke (25%) was formed on the catalyst.

Among the catalysts tested in this work, Cs/ASA catalyst, in particular, is a good candidate since it had substantial influence on the cracking and deoxygenation of pyrolytic lignin and formation of aromatic hydrocarbons. Lignin is the second most abundant biopolymer in nature and it is produced in large amount as by product from pulping processes and cellulose extraction and it has no

\[\text{Fig. 5. Catalytic influence on the production of fuel compatible products (a) furanic compounds (b) phenolic compounds.} \]
3.3.4. Reproducibility and regenerability tests of Cs/ASA catalyst

In order to use a potential catalyst in a commercial application it is important to test the reproducibility and regenerability of that catalyst. The BET surface areas of the Cs/ASA-1st-batch, Cs/ASA-2nd-batch and Cs/ASA-1st-batch-reg catalysts and the bio-oil yield obtained using each catalyst are compared in Table 4. As can be seen from Table 4, the catalysts from different batches were reproducible. In addition, the bio-oil yields obtained using each catalyst are almost the same. Results from Table 4 also reveal that the BET surface area of the regenerated catalyst (Cs/ASA-1st-batch-reg) decreased slightly while the yield of bio-oil retained after using the catalyst in the pyrolysis reaction. This implies that the catalyst is also regenerable.

4. Conclusions

Influences of different alkali/ASA catalysts on pyrolysis of lignocellulose biomass were compared. All the alkali/ASA catalysts were effective on the deoxygenation of biomass vapors. K/ASA and Na/ASA were the most active catalysts to eliminate oxygen via decarboxylation while Cs/ASA catalyst was the most active catalyst to remove oxygen via decarbonylation. Moreover, Cs/ASA selectively converted undesired phenols to hydrocarbons, maximized the amount of required furans, and seems a proper candidate for the production of fuel compatible components from biomass, specifically from lignin fraction. Detailed structure–activity correlations of the catalyst are being established currently using simple lignin model compounds.

Acknowledgment

This research is financially supported by CatchBio, Project No. 053.70.013.

References

Fassinou, W.F., Steene, I.V.D., Toure, S., Martin, E., 2011. What correlation is appropriate to evaluate biodiesel and vegetable oils higher heating value (HHV)? Fuel 90, 3398–4003.

Bouchard, M., Zabeti et al. / Bioresource Technology 118 (2012) 374–381