Interannual variability in the oxygen isotopes of atmospheric CO₂ driven by El Niño

Lisa R. Welp1, Ralph F. Keeling1, Harro A. J. Meijer2, Alane F. Bollenbacher1, Stephen C. Piper1, Kei Yoshimura1, Roger J. Francey3, Collin E. Allison3 & Martin Wahlen1

The stable isotope ratios of atmospheric CO₂ (18O/16O and 13C/12C) have been monitored since 1977 to improve our understanding of the global carbon cycle, because biosphere–atmosphere exchange fluxes affect the different atomic masses in a measurable way. Interpreting the 18O/16O variability has proved difficult, however, because oxygen isotopes in CO₂ are influenced by both the carbon cycle and the water cycle. Previous attention focused on the decreasing 18O/16O ratio in the 1990s, observed by the global Cooperative Air Sampling Network of the US National Oceanic and Atmospheric Administration Earth System Research Laboratory. This decrease was attributed variously to a number of processes including an increase in Northern Hemisphere soil respiration; a global increase in C₄ crops at the expense of C₃ forests; and environmental conditions, such as atmospheric turbulence and solar radiation, that affect CO₂ exchange between leaves and the atmosphere. Here we present 30 years’ worth of data on 18O/16O in CO₂ from the Scripps Institution of Oceanography global flask network and show that the interannual variability is strongly related to the El Niño/Southern Oscillation. We suggest that the redistribution of moisture and rainfall in the tropics during an El Niño increases the 18O/16O ratio of precipitation and plant water, and that this signal is then passed on to atmospheric CO₂ by biosphere–atmosphere gas exchange. We show how the decay time of the El Niño anomaly in this data set can be useful in constraining global gross primary production. Our analysis shows a rapid recovery from El Niño events, implying a shorter cycling time of CO₂ with respect to the terrestrial biosphere and oceans than previously estimated. Our analysis suggests that current estimates of global gross primary production, of 120 petagrams of carbon per year, may be too low, and that a best guess of 150–175 petagrams of carbon per year better reflects the observed rapid cycling of CO₂. Although still tentative, such a revision would present a new benchmark by which to evaluate global biospheric carbon cycling models.

Quantifying global-scale gross primary production (GPP) has been difficult because there are no direct measures at scales greater than the leaf level. Consequently, inferences are made from atmospheric-based CO₂ flux measurements (for example eddy covariance), but these can only measure the net ecosystem exchange, that is, the small residual between GPP and ecosystem respiration. Satellite-based observations estimate GPP on the basis of absorbed photosynthetic radiation. Both approaches rely heavily on biospheric process models to generate GPP estimates. We present a new approach that does not depend on biospheric process models, using existing long-term time series of CO₂ isotopes to quantify mean global GPP over the past several decades.

Stable isotope analysis of CO₂ started with flask samples from the South Pole (SPO) and Christmas Island stations in 1977 and later expanded to include the Alert (AL), Point Barrow, La Jolla, Mauna Loa (MLO), Cape Kumukahi, American Samoa, Kermadec Islands and Baring Head stations. Figure 1 shows deseasonalized monthly mean 18O/16O observations and spline fits at each station expressed using delta notation, δ¹⁸O = (¹⁸O/¹⁶O)sample/(¹⁸O/¹⁶O)VPDB − 1, with the Vienna Pee Dee Belemnite (VPDB) standard. Interannual variability of δ¹⁸O-CO₂ (that is, δ¹⁸O of the CO₂ samples) is characterized by oscillations of 2–10 yr, with relatively consistent timing and magnitude of anomalies at all stations and without any persistent long-term trend. The lack of a trend in 18O/16O contrasts with the increasing trend in the 18O mixing ratio, of roughly 1.5 ppb per year, and the decreasing trend in 13C mixing ratio, of −0.02‰ per year, over the same period. This is consistent with the fact that fossil fuel emissions contribute little to the 18O/16O budget of CO₂, and that oxygen atoms in CO₂ are renewed by exchange with oxygen atoms of water in leaves, soils and sea water approximately every 2 yr (refs 2, 9, 10) or less, as will be discussed below. Fortunately, signal-to-noise ratios are generally much larger for δ¹⁸O than for δ¹³C in CO₂.

Cross-correlation analysis determined that δ¹⁸O-CO₂ anomalies at station SPO lag anomalies at the low-latitude station MLO by 4–5 months. Stations ALT and PTB, which are at high northern latitudes, lag MLO by 3–4 months. This suggests that anomalies start in the tropics and propagate to high latitudes over the course of several months. Maximum correlation coefficients between SPO and both MLO and ALT were approximately 0.4 when allowing for lags between stations.

During El Niño/Southern Oscillation (ENSO) events, there are significant changes in the amount and intensity of rainfall in the tropics, especially over Southeast Asia and northern South America. Changes in the amount of precipitation also affect the δ¹⁸O value of water through the ‘amount effect’ and related processes. Figure 2 shows the correlation between the ENSO precipitation index (ESPI) and the 18O value of precipitation as hindcast by the ISOGSM model driven by reanalysis winds. During El Niño years, the 18O value of precipitation (δppt) increases in regions where the amount of precipitation decreases, such as Southeast Asia and northern South America. These are also regions with very high annual net primary production (NPP) and GPP. Figure 3a, b shows that δ¹⁸O-CO₂ is strongly positively correlated with δppt in the tropics, whereas Fig. 3c, d shows that in the same regions it is negatively correlated with relative humidity. This further supports a link between δ¹⁸O-CO₂ and ENSO variability through the tropical water cycle.

The interannual variability of δ¹⁸O-CO₂ measured by the Scripps Institution of Oceanography (SIO) flask network was confirmed by comparison with an independent record of similar length from Cape Grim (CGO) station as measured by the Commonwealth Scientific and Industrial Research Organisation (CSIRO), also shown in Fig. 1. CGO and SPO have very similar correlations with ENSO forcing, lagging ENSO by 8–11 months with maximum correlation coefficients of 0.4. SIO flask observations were also compared with those of the US National Oceanic and Atmospheric Administration Earth System Research Laboratory (Supplementary Information, section 1).

©2011 Macmillan Publishers Limited. All rights reserved
We used a simple empirical model to demonstrate that the inter-annual variability in δ¹⁸O-CO₂ is closely related to a low-pass filter of ENSO. The model follows from mass balance considerations (see Supplementary Information, section 2, for a full derivation), treating the troposphere as two well-mixed boxes, one for the Northern Hemisphere and one for the Southern Hemisphere (N and S, respectively), assuming a linear ENSO forcing on the δ¹³C-CO₂ values for each hemisphere (δₙ and δₛ respectively) through the influence of the terrestrial biosphere and incorporating non-ENSO background processes that effectively damp the ENSO isotope anomalies:

\[
\frac{d\delta}{dt} = f_N \times A \times \text{ENSO}'(t - \tau_N) - \frac{\delta_N}{\tau_N} + \frac{\delta_S - \delta_N}{\tau_{\text{mix}}} \tag{1}
\]

\[
\frac{d\delta}{dt} = (1 - f_N) \times A \times \text{ENSO}'(t - \tau_S) - \frac{\delta_N}{\tau_S} + \frac{\delta_N - \delta_S}{\tau_{\text{mix}}} \tag{2}
\]

Fitting parameters include \(f_N, A, \tau_N, \tau_S\), and lag, where \(f_N\) represents the fraction of the total ENSO forcing within the Northern Hemisphere; \(A\) is the scaling term in units of \(\% \text{ESPI}^{-1} \text{yr}^{-1}\), and represents the conversion of the ENSO anomalies from the mean (ENSO') into δ¹³C-CO₂ anomalies from the mean (δₙ' or δₛ', depending on hemisphere); \(\tau_N\) and \(\tau_S\) are the Northern Hemisphere and Southern Hemisphere ENSO periods, respectively.

We used a previous 9-month running mean of precipitation \(\Delta_{\text{ENSO}}\) at MLO and station SPO, where \(\Delta_{\text{ENSO}}\) is the ENSO precipitation index (ESPI) as a proxy for ENSO variability. Positive correlation indicates that precipitation is enriched in ¹⁸O during El Niño phase.

Figure 2 | Correlations between precipitation δ¹⁸O from IsoGSM and ENSO. We use the ENSO precipitation index (ESPI) as a proxy for ENSO variability. Positive correlation indicates that precipitation is enriched in ¹⁸O during the El Niño phase.

Figure 3 | Correlations between flask δ¹⁸O-CO₂ records and precipitation δ¹⁸O and relative humidity from IsoGSM. a, b, Correlation between the previous 9-month running mean of precipitation δ¹⁸O and the monthly mean deseasonalized δ¹⁸O-CO₂ from station MLO (a) and station SPO (b). Positive correlations indicate that δ¹⁸O-CO₂ increases when precipitation δ¹⁸O increases. c, d, Correlation between the NPP-weighted, 9-month running mean of negative relative humidity and deseasonalized δ¹³C-CO₂ from MLO (c) and SPO (d). Positive correlations indicate that δ¹³C-CO₂ increases when relative humidity decreases. NPP-weighted relative humidity was used here to give weight to months with higher vegetation productivity when leaf-water isotope anomalies are passed onto CO₂.
Hemisphere turnover times of oxygen atoms in CO$_2$ and lag is the temporal offset between ESPI and the isotopic ENSO forcing. The constant τ_{mix}, which represents the interhemispheric mixing time, was set to a value of 12 months.

The box model approach assumes that surface δ^{18}O-CO$_2$ measurements represent the entire tropospheric column. Although aircraft measurements have observed variability within the troposphere, the fact that the seasonal cycle of δ^{18}O-CO$_2$ observed at MLO is similar to that in the upper troposphere18 means that the box model may be a sufficient first attempt because we are tracking a signal that originates in the tropics and is transported vertically before reaching the mid latitudes.

We alternately used MLO and ALT to represent the Northern Hemisphere box, and SPO and CGO for the Southern Hemisphere box (Supplementary Information, section 3). We repeated the fits using 1,000 hypothetical time series with the same autocorrelation as the ENSO index but with random phase17. All station combinations gave fits to the true ENSO index that were better than a large majority of fits using the hypothetical indices, more than 98% of cases using the SIO station combinations and more than 93% using SIO–CSIRO station combinations (Supplementary Information, section 4). The MLO–SPO combination of data from 1980 to 2009 yielded the best fit between the ENSO model and observations (Fig. 4).

The model fit yielded a short turnover time of $\tau_N = 0.4$–0.8 yr for δ^{18}O-CO$_2$ in the Northern Hemisphere, depending on the stations used in the analysis and with 1σ errors not greater than 0.3 yr. Sensitivity analysis of the model parameter fit covariance suggested that τ_N is greater than 2 yr, but the upper bound was difficult to determine because of the 1-yr interhemispheric mixing time (τ_{mix}). We expected τ_N to be less than τ_S given the larger land biosphere and the greater exchange of CO$_2$ with leaf and soil water in the north. Estimated turnover times for the two hemispheres based on gross exchanges with the ocean18 and the terrestrial biosphere19 indicated that the Southern Hemisphere turnover time is $\sim 120\%$ longer than that of the Northern Hemisphere. The model-derived, hemisphere-specific turnover times correspond to a global tropospheric mean of 0.7–1.4 yr. Allowing for the 22% of the atmospheric mass contained in the stratosphere20, which was not included in the model, the estimated global atmospheric turnover time increases to 0.9–1.7 yr.

These atmospheric observations suggest that the turnover time for oxygen atoms in CO$_2$ may be slightly lower than previously published estimates. Turnover times of oxygen in CO$_2$ of 1.7 yr (ref. 2) and 1.5 yr (ref. 10) have been estimated from bottom-up flux estimates using process models. These estimates are sensitive to assumed values for GPP and the ratio of CO$_2$ concentration inside the leaf relative to the atmosphere. Our turnover time estimate using δ^{18}O-CO$_2$ anomalies is independent of these assumptions. Recent efforts to balance the carbonyl sulphide budget also point to more exchange of CO$_2$ between the atmosphere and land vegetation than previously estimated21. Field studies have indicated that carbonic anhydrase in soils catalyses the direct exchange of oxygen isotopes between soil water and CO$_2$. A recent global estimate of this soil equilibration flux could bring the global turnover time of ref. 10 down as low as ~ 0.9 yr (ref. 22).

The parameter A provides insight into the mechanisms linking δ^{18}O-CO$_2$ to ENSO climate anomalies. The fits yielded A values of 0.27 to 0.35% ESPI$^{-1}$ yr$^{-1}$, depending on the stations used, with 1σ errors of less than 0.08% ESPI$^{-1}$ yr$^{-1}$. To assess which processes contribute most to A, we carried out a scale analysis of the mass balance of 18O in CO$_2$ (Supplementary Information, section 5). We identified two dominant processes. The first was a change in the δ_{pp} value associated with ENSO events. Precipitation δ^{18}O anomalies are directly transmitted to soil and leaf water, and hence contribute to the δ^{18}O value of CO$_2$. Generally, the δ_{pp} value on land in the tropics increases during El Niño events, as evidenced by isotopic studies of precipitation23,24, tropical ice cores25, tree rings26 and isotope-enabled general circulation models44. The second dominant effect was an increase in the isotopic enrichment of leaf water relative to soil water caused by lower relative humidity during warm and dry El Niño events in the tropics than in La Niña years27.

We estimate that the effects of δ_{pp} and relative humidity are similar in magnitude and reinforce each other. The magnitude of A can be accounted for if we assume that anomalies in δ_{pp} and relative humidity influenced 40% of the global land CO$_2$ fluxes. NPP from 20° S to 20° N is about 40% of global NPP19, lending support that the global anomalies of δ^{18}O in CO$_2$ may be generated by the tropical land biosphere that is modulated by ENSO. Our analysis showed that many other possible processes were less important, including changes in CO$_2$ fluxes (for example those related to drought) and fire emissions. Our analysis neglected ENSO-related changes in air–sea CO$_2$ exchange, in stratosphere–troposphere exchange and in diffuse light, which are also likely to be small.

The model-derived fraction of isotopic ENSO forcing injected into the Northern Hemisphere (f_N) was 0.49–0.76 depending on the station combinations used. Lags between ESPI and atmospheric δ^{18}O-CO$_2$ forcing were small, ranging from ~ 2 months to 1 month, and had 1σ errors of 1 month. The model thus successfully accounts for the observed lag between ESPI and δ^{18}O-CO$_2$ through the finite hemispheric turnover times.

We can relate our model-derived turnover time to the gross flux of CO$_2$ equilibrating with the ocean and land surface water. This gross exchange flux can be used to estimate GPP by subtracting air–sea exchange; the amount of CO$_2$ that escapes leaf interiors without being fixed into organic matter, which is directly related to the ratio of CO$_2$ inside the leaf to that in the atmosphere; and the soil invasion flux (Supplementary Information, section 6). Reconciling the short turnover time (0.9–1.7 yr) with current understanding of the global carbon budget would require that the soil invasion CO$_2$ flux be near the upper case considered in ref. 22 and much greater than soil respiration. At present, there are not enough field observations to confirm such high fluxes of soil invasion. Alternatively, and more plausibly, the fast response can be accounted for by revising global GPP upwards from 120 Pg C yr$^{-1}$ (ref. 7) to 150–175 Pg C yr$^{-1}$. Using this approach, we
argue that 120 Pg C yr\(^{-1}\) may actually be a lower bound on GPP. (See Supplementary Information, section 6, for more discussion.)

The timescale of the damping of the ENSO \(^{18}O\)-CO\(_2\) signal provides a constraint on global GPP without the need for detailed isotopic modelling of multiple surface water pools. We have achieved with \(^{18}O\)-CO\(_2\) what was believed to be possible only by combining \(^{17}O\) and \(^{18}O\) data from CO\(_2\) (ref. 28). These results can be used to validate biospheric components of carbon cycle models used to predict future climate change. The measurements and modelling presented here highlight the significance of \(^{18}O\)-CO\(_2\) long-term records as integrators of the carbon and water cycles.

METHODS SUMMARY

Air samples were collected, without drying, in evacuated 5-l glass flasks with a single glass stopcock lubricated with Apiezon grease, and were returned to the laboratory for analysis. Until 1992, isotopic analysis was performed at the CIO University of Groningen, The Netherlands; since then, it has been done at the SIO, La Jolla, California. Offsets between the laboratories have been investigated and corrected\(^{29}\). We curve fitted the daily mean of replicate flask samples with spline and seasonal harmonic components, and monthly means were constructed from observations adjusted to the fifteenth day of each month\(^{30}\). The interannual variability is simply the spline component of the curve fit. Deseasonalized monthly observations adjusted to the fifteenth day of each month\(^{30}\). The interannual variability is simply the spline component of the curve fit. Deseasonalized monthly means were calculated by subtracting the seasonal harmonic component from the monthly mean observations.

Parameter fitting of the two-box model was done using a nonlinear least-squares data fitting function in MATLAB (‘lsqnonlin’) to find the minimum of the sum of squares of the differences between deseasonalized monthly mean flask observations from one station in each hemisphere and the model predictions from equations (1) and (2), weighted by \(1/\sigma_i^2\) for each station. Estimates of the \(1/\sigma_i^2\) for each station’s measurements were not obtained from the mass spectrometer precision but rather from the standard deviation of the residuals between the deseasonalized monthly mean flask observations and the spline fits, which were \(-0.08\%\).

Isotope data of CO\(_2\) from the SIO network is publicly available at http://scrippsco2.ucsd.edu/data/atmospheric_co2.html.

Acknowledgements

The authors thank S. Walker for programming assistance and all those involved with flask collection and analysis. This work was supported by the US National Science Foundation (NSF) under grant ATM06-32770, by the US Department of Energy (DOE) under grant DE-SC0005099 and by the US National Aeronautics and Space Administration (NASA) under grant NNX11AF36G. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NSF, DOE or NASA.

Supplementary Information is linked to the online version of the paper at www.nature.com/nature.