The effect of zirconia and titanium implant abutments on light reflection of the supporting soft tissues

Ralph van Brakel
Herke Jan Noordmans
Joost Frenken
Rowland de Roode
Gerard C. de Wit
Marco S. Cune

Authors’ affiliations:
Ralph van Brakel, Department of Oral-Maxillofacial Surgery, Prosthodontics and Special Dental Care, University Medical Centre, Utrecht, The Netherlands
Herke Jan Noordmans, Rowland de Roode, Department of Medical Technology, University Medical Center, Utrecht, The Netherlands
Joost Frenken, Marco S. Cune, Department of Oral-Maxillofacial Surgery, Prosthodontics and Special Dental Care, St Antonius Hospital, Nieuwegein, The Netherlands
Gerard C. de Wit, Bartiméus, Zeist, The Netherlands

Corresponding author:
R. van Brakel
University Medical Centre Utrecht
PO Box 85,060
3508 AB, Utrecht, The Netherlands
Tel: +31 88 756 8025
fax: +31 88 756 8043
email: rbrakel@umcutrecht.nl

Date:
Accepted 31 August 2010

To cite this article:

Abstract

Objectives: To determine the difference in light reflection of oral mucosa covering titanium (Ti) or zirconia (ZrO2) abutments as it relates to the thickness of the covering mucosa.

Material and methods: Fifteen anterior implants (Astra Osseo speed®) in 11 patients were fitted with a Ti or a ZrO2 abutment (cross-over, within-subject comparison). Hyper-spectral images were taken with a camera fitted on a surgical microscope. High-resolution images with 70 nm interval between 440 and 720 nm were obtained within 30 s (1392 × 1024 pixels). Black- and white-point reference was used for spatial and spectral normalization as well as correction for motion during exposure. Reflection spectra were extracted from the image on a line mid-buccal of the implant, starting 1 mm above the soft tissue continuing up to 3 mm apically.

Results: Median soft tissue height is 2.3 mm (min: 1.2 mm and max: 3.1 mm). The buccal mucosa rapidly increases in the thickness, when moving apically. At 2.2 mm, thickness is 3 mm. No perceivable difference between the Ti and ZrO2 abutment can be observed when the thickness of the mucosa is 2 ± 0.1 mm (95% confidence interval) or more.

Conclusion: It is expected that the difference in light reflection of soft tissue covering Ti or ZrO2 abutments is no longer noticeable for the human eye when the mucosa thickness exceeds 2 mm. Haemoglobin peaks in the reflection spectrum can be observed and make hyper-spectral imaging a practical and useful tool for measuring soft tissue health.

The ultimate challenge of restorative and implant dentistry is to replace all lost hard and soft structures, restore function and aesthetics, thus mimicking the unrestored, healthy tooth and its bony and soft tissue surroundings. With respect to the latter, the architecture, contour, surface texture and colour of the perimplant mucosal tissue are important determinants of the appearance of the restoration. Not much research is available with respect to the colour of the gingiva or peri-implant mucosa and its influencing factors, but it is presumed to depend primarily upon the intensity of melanogenesis, the degree of epithelial cornification, the depth of epithelialization and the arrangement of gingival vascularization (Dummett 1960; Kleinheinz et al. 2005). However, the colour of underlying root surfaces or restorative materials such as implant abutments, crown margins or even MTA are also considered to be of influence on gingival colour (Takeda et al. 1996; Jung et al. 2007; Bortoluzzi et al. 2007; Watkin & Kerstein 2008).

In the past, titanium (Ti) abutments were the standard of care for implant restorations throughout the mouth. Unfortunately, blue-greyish shimmering of such abutments may hamper the aesthetic outcome in cases with thin overlying mucosal tissues and cause a noticeable colour difference with the gingival tissues of neighbouring teeth (Park et al. 2007). This is why initially alumina abutments were introduced, but the occasional fracture of abutments made from alumina was observed (Prestipino & Inger 1993a, 1993b; Andersson et al. 2001, 2003). The use of partially stabilized zirconia (ZrO2) abutments has become more popular in recent years, especially in regions of high aesthetic demand (Watkin & Kerstein 2008). Such abutments combine high bending strength and toughness with good bio-compatibility and the limited amount of available data suggests that the clinical performance is comparable with that of Ti abutments [Manicone et al. 2007; Sailer et al. 2009a]. As with alumina abutments, the white colour of ZrO2 is considered aesthetically advantageous (Glauser et al. 2004; Tan & Dunne 2004; Canullo 2007; Ishikawa-Nagai et al. 2007; Park et al. 2007; Bae et al. 2008). Although it is considered by some to...
be too white, and it is suggested that more tooth
coloured abutment materials are to be preferred
(Nakamura et al. 2010).

It was demonstrated in vitro that the thickness of
the overlying mucosa plays an import role on
discoloration and the aesthetic appearance of soft
tissues (Jung et al. 2007). Randomized controlled
clinical trials are needed to demonstrate the
optical effect of ZrO2 and Ti materials when
placed subgingivally. On visual inspection and
graded on a four-item scale, less discoloration of
the buccal mucosa was seen at all ceramic
crowns on ZrO2 abutments at 1–2 months after
crown cementation when compared with porce-
lain-fused-to-metal crowns on Ti abutments
(Hosseini & Gøtfredsen 2010). Yet, when rated
more objectively by means of spectrophotometric
measurements at 1 mm below the gingival mar-
gin, no statistically significant differences in the
measurements at 1 mm below the gingival mar-
gin were observed (Hosseini & Gøtfredsen 2010).

The palatal and buccal mucoperiosteal flap was
elevated and the alveolar crest was inspected.
When a bone augmentation procedure had been
performed before implant placement, a small
vertical incision was made in the mucosa over-
ying the bone graft at the position of the fixation
screw. In this way, the screw could be removed
easily with little exploration and trauma, pre-
venting disturbance of the vascularization.

A surgical template was used to assure the
proper placement of the implant. The implants
(OsseoSpeed®, Astra Tech, Mölndal, Sweden)
were 3.5 or 4 mm in diameter, placed at bone
level, mostly in a position 1 mm apical to the
cemento-enamel junction of the contralateral
tooth. In all situations, primary stability could
be achieved. When the implants were placed in a
submerged manner (seven implants), a cover
screw was utilized. In all other situations (eight
implants), a permucosal healing abutment of
appropriate dimensions was placed (non-sub-
merged healing). Wound closure was performed
with Gore-Tex® sutures (W.L. Gore & Associ-
ates, Newark, DE), which were removed after 2
weeks.

Assessment of soft tissue thickness and height
At least 3 months after implant placement, or
when applicable, at least 3 weeks after second-
stage implant surgery, the healing abutments
were disconnected. A standard open tray impres-
sion registering the implant position and the
surrounding soft tissues was made (Impregum,
3M Espe, Germany). Subsequently, an implant
analogue was connected to the impression post
and a plaster model was poured. The model was
ground in a mesial–distal direction, in a plane
parallel to the implant until the mid-buccal plane
of the implant was reached (Fig. 1). The specimen
were photographed using a Canon EOS 20D
(Japan) photo camera with a 100 mm macro
lens and a ring flash (8.2 mega pixels).

A line parallel to the implant was drawn.
Perpendicular to this line, a series of lines was
drawn with 0.2 mm intersections, starting at the
most coronal point of the peri-implant mucosa.
Along these lines, the facial soft tissue thickness
was measured in a commercially available com-
puter program that allows image analysis (Adobe
Photoshop CS3 extended). The images were
calibrated, for which the known dimensions of
sections of the implant analogue or a ruler that
was photographed in the same plane were used.

Under local anaesthesia, a full-thickness flap
was raised with a crestal incision located approxi-
mately 2–3 mm toward the palatal aspect. Small
relieving incisions were placed into the gingival
sulcus of the adjacent teeth and extended to the
mesio-buccal site of these teeth.

The palatal and buccal mucoperiosteal flap was
elevated and the alveolar crest was inspected.
When a bone augmentation procedure had been
performed before implant placement, a small
vertical incision was made in the mucosa over-
ying the bone graft at the position of the fixation
screw. In this way, the screw could be removed
easily with little exploration and trauma, pre-
venting disturbance of the vascularization.

A surgical template was used to assure the
proper placement of the implant. The implants
(OsseoSpeed®, Astra Tech, Mölndal, Sweden)
were 3.5 or 4 mm in diameter, placed at bone
level, mostly in a position 1 mm apical to the
cemento-enamel junction of the contralateral
tooth. In all situations, primary stability could
be achieved. When the implants were placed in a
submerged manner (seven implants), a cover
screw was utilized. In all other situations (eight
implants), a permucosal healing abutment of
appropriate dimensions was placed (non-sub-
merged healing). Wound closure was performed
with Gore-Tex® sutures (W.L. Gore & Associ-
ates, Newark, DE), which were removed after 2
weeks.

Assessment of soft tissue thickness and height
At least 3 months after implant placement, or
when applicable, at least 3 weeks after second-
stage implant surgery, the healing abutments
were disconnected. A standard open tray impres-
sion registering the implant position and the
surrounding soft tissues was made (Impregum,
3M Espe, Germany). Subsequently, an implant
analogue was connected to the impression post
and a plaster model was poured. The model was
ground in a mesial–distal direction, in a plane
parallel to the implant until the mid-buccal plane
of the implant was reached (Fig. 1). The specimen
were photographed using a Canon EOS 20D
(Japan) photo camera with a 100 mm macro
lens and a ring flash (8.2 mega pixels).

A line parallel to the implant was drawn.
Perpendicular to this line, a series of lines was
drawn with 0.2 mm intersections, starting at the
most coronal point of the peri-implant mucosa.
Along these lines, the facial soft tissue thickness
was measured in a commercially available com-
puter program that allows image analysis (Adobe
Photoshop CS3 extended). The images were
calibrated, for which the known dimensions of
sections of the implant analogue or a ruler that
was photographed in the same plane were used.

Material and methods
A cross-over, within subject comparison study
was designed.

Patient population and implant placement
Eleven consecutive Caucasian subjects (six
males, five females; mean age 32.5 years; range
20.3–46 years) scheduled to receive a total of 15
implants in the anterior region of the maxilla
were included in the study after they had pro-
vided informed consent. Twelve out of 15 im-
plant sites had been augmented before implant
placement with autologous bone originating from
the retromolar region. Soft tissue augmentations
were not performed.

Under local anaesthesia, a full-thickness flap
was raised with a crestal incision located approxi-
mately 2–3 mm toward the palatal aspect. Small
relieving incisions were placed into the gingival
sulcus of the adjacent teeth and extended to the
mesio-buccal site of these teeth.

The palatal and buccal mucoperiosteal flap was
elevated and the alveolar crest was inspected.
When a bone augmentation procedure had been
performed before implant placement, a small
vertical incision was made in the mucosa over-
ying the bone graft at the position of the fixation
screw. In this way, the screw could be removed
easily with little exploration and trauma, pre-
venting disturbance of the vascularization.

A surgical template was used to assure the
proper placement of the implant. The implants
(OsseoSpeed®, Astra Tech, Mölndal, Sweden)
were 3.5 or 4 mm in diameter, placed at bone
level, mostly in a position 1 mm apical to the
cemento-enamel junction of the contralateral
tooth. In all situations, primary stability could
be achieved. When the implants were placed in a
submerged manner (seven implants), a cover
screw was utilized. In all other situations (eight
implants), a permucosal healing abutment of
appropriate dimensions was placed (non-sub-
merged healing). Wound closure was performed
with Gore-Tex® sutures (W.L. Gore & Associ-
ates, Newark, DE), which were removed after 2
weeks.

Assessment of soft tissue thickness and height
At least 3 months after implant placement, or
when applicable, at least 3 weeks after second-
stage implant surgery, the healing abutments
were disconnected. A standard open tray impres-
sion registering the implant position and the
surrounding soft tissues was made (Impregum,
3M Espe, Germany). Subsequently, an implant
analogue was connected to the impression post
and a plaster model was poured. The model was
ground in a mesial–distal direction, in a plane
parallel to the implant until the mid-buccal plane
of the implant was reached (Fig. 1). The specimen
were photographed using a Canon EOS 20D
(Japan) photo camera with a 100 mm macro
lens and a ring flash (8.2 mega pixels).

A line parallel to the implant was drawn.
Perpendicular to this line, a series of lines was
drawn with 0.2 mm intersections, starting at the
most coronal point of the peri-implant mucosa.
Along these lines, the facial soft tissue thickness
was measured in a commercially available com-
puter program that allows image analysis (Adobe
Photoshop CS3 extended). The images were
 calibrated, for which the known dimensions of
sections of the implant analogue or a ruler that
was photographed in the same plane were used.

In addition, the height of the permucosal
 tissues covering the implants was determined
from the implant shoulder to the cervical margin
(Fig. 1).

Spectrophotometric measurements
Specially prepared dimensionally identical ZrO2
or Ti abutments were placed in random order.
The dimensions of the permucosal section of
these abutments were similar to those of the
healing abutment. The abutments had been pro-
vided with markers to allow for the calibration of
linear measurements (Fig. 2a–c). A time span of
15 mm was allowed for settling of the permucosal
tissues.

The subject was seated in a chair with a head
rest. His head was positioned perpendicular to the
objective of the microscope and subsequently
strapped to the head rest with a band of Velcro
tape. A hyper-spectral image was made, the
abutments were switched and the measurements
were repeated.

High-resolution images 1392 × 1024 pixels
were made using a hyper-spectral camera
(Fig. 3) (Noordmans et al. 2007b, 2009). Using
an electronically tuneable optical bandfilter (vis-
LCTF, Cri, Woburn, MA, USA), images were
captured from a wavelength of 440–720 nm with
a stepsize of 4 nm. In this hyper-spectral image,
the intensity In(x, y, λ) was determined for each
pixel coordinate x, y and wavelength λ for im-
plant n and abutment type t. Subsequently, the
hyper-spectral images were corrected in two ways
(Fig. 4): 1. White balance and vignetting: By making a
hyper-spectral image of both a white refer-

van Brakel et al. Light reflection of peri-implant mucosa

correction, the reflection image was subsequently normalized by the reflection spectrum of ZrO₂, extracted 1 mm coronal of the mucosal margin. The validity of ZrO₂ being a good white reference was confirmed by spectral reflection measurements using a halogen light bulb and a calibrated Ocean Optics spectrometer QE65000 (Dunedin, FL, USA).

2. Movement during acquisition and matching of the images. As the capture sequence takes about 10–30 s, small movements occur during acquisition. Fast GPU-based image matching software was used to re-align the spectral slices based on rigid deformations and image correlation [Noordmans et al. 2007a]. This software was also used to match the hyper-spectral images of the ZrO₂ and Ti abutments.

Spectra were extracted starting 1 mm coronal until 3 mm apical of the soft tissue margin in 0.05 mm steps (Fig. 5). For each step, spectra were acquired in a small circular region to reduce noise and small highlights. The mean reflection image was subsequently normalized by the reflection spectrum of ZrO₂, extracted 1 mm coronal of the mucosal margin. The validity of ZrO₂ being a good white reference was confirmed by spectral reflection measurements using a halogen light bulb and a calibrated Ocean Optics spectrometer QE65000 (Dunedin, FL, USA). This software was also used to match the hyper-spectral images of the ZrO₂ and Ti abutments.

As an example of the colour reconstructions, the processed images of patient 3 are presented following white balancing, vignetting, correction of movement and matching of the images of both abutment types [Fig. 7]. To enhance the difference in appearance of the mucosa, the images are

Fig. 4. Hyper-spectral image normalization to remove motion, and spatial and spectral inhomogeneities.

Fig. 5. Definition of distance along the central axis of abutment. Along this axis, the reflection spectra are extracted. The circle denotes the averaged pixel spectra at each distance.

\[
R_{n,t}(x, y, \lambda) = \frac{I_{n,t}(x, y, \lambda) - D(x, y, \lambda)}{W(x, y, \lambda)}
\]

where \(I \) represents the captured image, \(D \) and \(W \) the dark and white reference and \(R \) the reflection image. To compensate for differences in distance between camera and subject, the reflection image was subsequently normalized by the reflection spectrum of ZrO₂, extracted 1 mm coronal of the mucosal margin. The validity of ZrO₂ being a good white reference was confirmed by spectral reflection measurements using a halogen light bulb and a calibrated Ocean Optics spectrometer QE65000 (Dunedin, FL, USA).

2. Movement during acquisition and matching of the images. As the capture sequence takes about 10–30 s, small movements occur during acquisition. Fast GPU-based image matching software was used to re-align the spectral slices based on rigid deformations and image correlation [Noordmans et al. 2007a]. This software was also used to match the hyper-spectral images of the ZrO₂ and Ti abutments.

Spectra were extracted starting 1 mm coronal until 3 mm apical of the soft tissue margin in 0.05 mm steps (Fig. 5). For each step, spectra were acquired in a small circular region to reduce noise and small highlights. The mean reflection image was subsequently normalized by the reflection spectrum of ZrO₂, extracted 1 mm coronal of the mucosal margin. The validity of ZrO₂ being a good white reference was confirmed by spectral reflection measurements using a halogen light bulb and a calibrated Ocean Optics spectrometer QE65000 (Dunedin, FL, USA). This software was also used to match the hyper-spectral images of the ZrO₂ and Ti abutments.

As an example of the colour reconstructions, the processed images of patient 3 are presented following white balancing, vignetting, correction of movement and matching of the images of both abutment types [Fig. 7]. To enhance the difference in appearance of the mucosa, the images are

\[
L'(D) = \frac{1}{2} \left[X(D)^2 + Y(D)^2 + Z(D)^2 + \sqrt{X(D)^2 + Y(D)^2} \right] \]

for \(P \in \{X, Y, Z\} \).

Results

Soft tissue thickness and height

The mean thickness of the buccal mucosa covering the abutment surface in the midline in relation to the distance from the cervical gingival margin is presented in Fig. 6. The median value for the height of the mucosa to the edge of the implant is 2.3 mm (mean 2.4 SD 0.5 mm, min: 1.2 mm and max: 3.1 mm).

Spectral analysis

As an example of the colour reconstructions, the processed images of patient 3 are presented following white balancing, vignetting, correction of movement and matching of the images of both abutment types [Fig. 7]. To enhance the difference in appearance of the mucosa, the images are

\[
\begin{align*}
X(D) & = \int \frac{\hat{x}(\lambda)}{S(\lambda)} d\lambda \\
Y(D) & = \int \frac{\hat{y}(\lambda)}{S(\lambda)} d\lambda \\
Z(D) & = \int \frac{\hat{z}(\lambda)}{S(\lambda)} d\lambda
\end{align*}
\]

where \(\hat{x}, \hat{y}, \hat{z} \) denote the colour matching functions and \(S(\lambda) \) the spectral power density of a D50 light source.

\[
\begin{align*}
\left(L'(D), a'(D), b'(D) \right) & = \left(\frac{1}{3} f_X(D_{Zn}), \frac{1}{3} f_Y(D_{Zn}), \frac{1}{3} f_Z(D_{Zn}) \right) \\
& = \left(\frac{1}{3} f_X(D_{Zn}), \frac{1}{3} f_Y(D_{Zn}), \frac{1}{3} f_Z(D_{Zn}) \right)
\end{align*}
\]
of the abutment can be perceived hinting that the influence of the abutment does not extend that far apically.

The mean spectrum at different distances from the mucosal margin for both abutment types is shown in Fig. 8. Starting from $d = -1$ mm, the spectra still represent the spectrum of the abutment material itself, and further apically the spectra become increasingly similar to that of mucosa tissue. Note that the absorption peaks of oxygenated haemoglobin are clearly visible. It was demonstrated in the optical literature that such data can be used to quantify the functional properties of tissue (Vogel et al. 2007).

To determine at which thickness of mucosa differences can be perceived by human observers, the distance axis is converted to a thickness axis using the measurements of Fig. 6. The $L' a' b'$ norms for both abutment types as a function of the mucosa thickness are shown in Fig. 9. To determine at which thickness no difference can be perceived, the norm of the difference between the $L' a' b'$ vectors is calculated and a threshold is set at a difference of 3.7 (Johnston & Kao 1989). This corresponds with a mucosa thickness of 2 ± 0.1 mm (95% confidence interval).

To observe the effect of this thickness threshold on the distance at which differences may still be perceivable, the thresholds are transferred to the thickness/distance plots (Fig. 10). One can observe that the range in distance is rather substantial from 0.5 to 2 mm.

Discussion

The appearance of the permucosal tissue is an important determinant of the overall aesthetic outcome of an implant–bone restoration. It has proven difficult to mimic all aspects of the gingival appearance of the neighbouring teeth (Chang et al. 1999a; Belser et al. 2004, 2009; Furrhauser et al. 2005). When the mucosa is thin and frail, it is prone for recession and underlying restorative materials will cause discoloration of the mucosa. Only little information is available regarding the dimensions, which is height and thickness, of the peri-implant mucosa in men.

Kan and colleagues measured the mid-facial height of the peri-implant mucosa in two-stage anterior implants by means of bone probing with a periodontal probe after anaesthesia. They found an average height of 3.6 mm, with shallower values for subjects that were categorized as having a “thin biotype” (Kan et al. 2003). In the present study in which also two-stage implants were used, the median facial soft tissue height was 2.3 mm (minimum: 1.2 mm and maximum: 3.1 mm). It should be noted however that the height measurements on the plaster models reflect the height from the cervical mucosal margin to the edge of the implant, which is not necessarily also the location of the facial bone, although implants were originally placed “at bone level”. Because the latter in most cases will be positioned more apically, this would explain the small difference with the clinical findings from Kan and colleagues. It is interesting and clinically relevant to observe that when a two-stage implant is installed at bone level, the maximum thickness of the overlying mucosa never exceeds 3.1 mm. This has implications for the ideal implant placement in relation to the neighbouring teeth, especially with respect to the position of the implant shoulder. It underlines the clinical experience that implant placement too far below the cementum–enamel junction of the neighbouring teeth will result in a non-harmonic soft-tissue architecture and a relatively long tooth, which will be difficult to correct.

From Fig. 6, it can be observed that the mucosal thickness swiftly increases with the distance from the cervical gingival margin. At 1 mm apical from the cervical margin, the mean thickness is approximately 2 mm. The maximum thickness seen in the 15 implant sites is 3.2 mm. Other studies also report on the thickness of the permucosal tissues around implants. Some used an ultrasonic device to measure the thickness of the mucosa at the bottom of the probeable pocket around an implant. Anaesthetics were not used. They measured an average soft tissue thickness of 2 mm (Chang et al. 1999b). Although this seems an elegant non-invasive measurement technique, its reliability was never verified and the exact distance from the cervical margin was not disclosed. Others used endodontic files to measure the mid-facial soft tissue thickness at 1 mm apical to the margin. Jung et al. (2008) report on 2.9–3.4 mm at all-ceramic and porcelain-fused to metal implant crowns, respectively. In another report originating from the same research group, the average soft tissue thickness around ZrO$_2$ and Ti abutments was only 1.9 mm (Sailer et al. 2009b). This divided by each other, resulting in a ratio image. A small, dark region in the area of the emergence of the abutment can be perceived hinting that the
corresponds well with the measurements from the present study, although an explanation for the difference with the study of Jung and colleagues is not given. Ishikawa-Nagai denote that they measured gingival thickness around implants in a study on the shine-through effects of implants on the peri-implant mucosa, but do not report on the actual data [Ishikawa-Nagai et al. 2007]. In a recent study, the facial gingival thickness of anterior teeth at 2 mm below the cervical gingival margin was measured immediately after extraction by means of callipers. The average gingival thickness was approximately 1 mm [Kan et al. 2010]. From Fig. 6, it can be deduced that the corresponding thickness at implant sites in the present study averages at approximately 2.8 mm, and hence is considerably thicker.

In this study, the \(L'\ a'\ b'\) norm could also have been measured using commercially available calibrated RGB cameras, but using a hyper-spectral camera one obtains the full reflection spectrum for every point in the image. In combination with the Match software, subtle changes in the reflection spectrum can be tracked accurately over time. It has been demonstrated in the optical literature that such data can be used to quantify functional tissue properties like blood perfusion, tissue oxygenation and the longitudinal evaluation of healing response or disease progression of infections or tumour growth, also in the mouth, in a non-invasive, non-contact manner (Sorg et al. 2005; Subhash et al. 2006; Stamatas & Kollias 2007; Vogel et al. 2007; Noordmans et al. 2007a, 2007b; Mallia et al. 2008, 2010; Stamatas et al. 2008; Klaessens et al. 2009). Such estimations are based on the principle that erythema of the skin (and also of the gingiva and oral mucosa) is associated with an increase in blood perfusion that is linked to the relative concentration of oxygenated haemoglobin. For example, blood perfusion can be perceived by determining the amount of haemoglobin present in the reflection spectrum and oxygenation by looking at the difference between the oxy- and deoxygenated haemoglobin spectra. Because our method not only yields the spectral information along the central line of the implant but also provides the full spectral information for the entire image, one could do tissue calculations for the entire image and assess the extent of tissue abnormalities. This opens an array of opportunities for a more objective evaluation of soft tissue health around oral implants in vivo, as has been proposed for gingival tissues before [Zakian et al. 2008].

Although the study shows a satisfactory result, a number of improvements may be included in the measurement setup: (1) Perform a dark and white reference before each measurement. In this study, we made a dark and white reference only once, but it appeared that the camera set-up

![Mean reflection spectrum as function of distance using zirconia abutment](image1)

![Mean reflection spectrum as function of distance using titanium abutment](image2)

![L*a*b* norm for zirconia and titanium abutments as function of mucosa thickness](image3)

Fig. 8. Mean reflection spectra of zirconia and titanium abutments, between 1 mm coronal of the cervical gingival margin and 3 mm apically. Note the particular shape of the reflection spectrum of oxygenated haemoglobin.

Fig. 9. \(L'\ a'\ b'\) norms and difference as function of mucosa thickness to determine at which thickness no perceived difference is expected.
varied too much over time that we finally had to make a white reference again using the zirconium abutment itself. [2] Include the ultra-violet range to study the fluorescence effects of abutments and crowns. [3] Use of a polarizer in the illumination path perpendicular to the polarizing axis of the tuneable filter to suppress specular highlights (Noordmans et al. 2007b). In this study, we choose not to use this cross-polarization approach as it removes 80% of the light resulting in longer exposure times or larger motion errors. In addition, we are studying the visual differences between Ti and ZrO2 abutments and our eyes are not equipped with polarisers and thus see the reflected light. [4] Also, if one were able to measure the thickness of perimucosal tissue of a sound tooth, one could compare the perceivable differences between perimucosal tissue on sound teeth or that on implants. The method used to measure mucosa thickness on plaster models is not feasible for mucosa covering teeth.

Others have also focussed on the thickness of the mucosa as it relates to soft tissue aesthetics. Data from an in vitro experiment in sacrificed pig’s maxillae using spectrophotometry suggest that when the thickness of the mucosa exceeds 3 mm, both Ti and ZrO2 do not cause a noticeable colour change of the mucosa (Jung et al. 2007). The authors used a L’ab* norms difference of 3.7, which is used in the literature as a threshold for perceivable colour differences (Johnston & Kao 1989). It would have to be determined how perceivable differences relate to clinical relevance or acceptability of a slight, but noticeable mismatch of mucosal appearance. From our in vivo data, it can be expected that a noticeable difference between Ti and ZrO2 abutments occurs when the thickness of the facial mucosa is approximately 2 mm or less. There is considerable individual variance with respect to the depth at which this will be the case and therefore the choice of abutment material remains a decision that should be based on the clinical situation at hand. However, as a general rule of thumb, Ti implant abutments are best avoided in aesthetically critical areas when the desired location of the crown margin does not exceed 1 mm submucosally.

Conclusion

The labial mucosa covering an implant abutment rapidly increases in thickness when moving apically and is approximately 1 mm thick at 0.2 mm and 2 mm thick at 1 mm below the cervical margin on average. On theoretical grounds, it can be expected that the difference in light reflection between tissues covering ZrO2 and Ti implant abutments is no longer noticeable for the human eye when the mucosa thickness exceeds 2 mm. Haemoglobin peaks are clearly visible in the reflection spectrum, which may render hyper-spectral imaging a practical and objective tool for monitoring soft tissue health. This could be the focus of further research.

Acknowledgements: The authors wish to thank Mathieu Steijvers for the preparation of the plaster casts.

References

Hosseini, M. & Gotfredsen, K. A randomized, clinical study of implant-supported all ceramic crowns and abutments. 88th General session & exhibition of the IADR, Abstract nr. 1313, Barcelona, Spain, July 14-17, 2010.

van Brakel et al. Light reflection of peri-implant mucosa
van Brakel et al. - Light reflection of peri-implant mucosa

