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abstract: Parents are selected to preferentially invest in the off-

spring with highest reproductive value. One mechanism for achieving

this is the modification of competitive asymmetries between siblings

by maternal hormones. In many organisms, offspring value varies

according to birth position in the brood, which determines survival

chances and competitive advantage over access to resources. In birds,

variation in yolk androgen allocation over the laying sequence is

thought to modulate dominance of senior chicks over junior brood

mates. We tested this hypothesis in zebra finches, which show a

naturally decreasing pattern of within-clutch testosterone allocation.

We abolished these within-clutch differences by experimentally ele-

vating yolk testosterone levels in eggs 2–6 to the level of egg 1, and

we assessed fitness measures for junior offspring (eggs 2–6), senior

offspring (egg 1), and their mothers. Testosterone-injected eggs

hatched later than control eggs. Junior, but not senior, chicks in

testosterone-treated broods attained poorer phenotypic quality com-

pared to control broods, which was not compensated for by positive

effects on seniors. Mothers were generally unaffected by clutch treat-

ment. Thus, naturally decreasing within-clutch yolk testosterone al-

location appears to benefit all family members and does not generally

enhance brood reduction by favoring senior chicks, in contrast to

the widely held assumption.

Keywords: maternal effects, sibling competition, hatching time, body

mass, chick survival, birds.

Introduction

In species where several offspring are produced per breed-

ing event, initial brood sizes are generally larger than those

surviving the period of parental care because environ-
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mental conditions and offspring viability are not entirely

predictable (Stearns 1992; Mock and Parker 1997). Pa-

rental allocation is therefore expected to be adaptively ad-

justed to asymmetries in the reproductive value of different

offspring, in order to maximize the fitness return to par-

ents (Godfray 1995; Mock and Parker 1997). This is

thought to result in preferential investment in “core” off-

spring under normal conditions, allowing “marginal” off-

spring to survive only when environmental conditions are

exceptionally favorable or if other offspring fail to thrive

(Mock and Forbes 1995; Mock and Parker 1997). In ad-

dition, in sexually reproducing organisms, parents and off-

spring share only half their genome (Hamilton 1964).

From vertebrates to plants, the genetic parent-offspring

conflict that results should select for mechanisms by which

parents adjust resource distribution according to offspring

quality, especially when direct competition among siblings

strongly affects the viability of the progeny (Trivers 1974;

Roach and Wulff 1987; Mock 2004; Hudson and Trillmich

2008). Thus, important questions are to what extent dif-

ferential distribution of resources to individual offspring

promotes parental and/or offspring fitness and how this

factor affects sibling conflicts.

Parents may bias their resources toward specific off-

spring not only postnatally, for example, by preferential

feeding, but also prenatally, during the embryonic devel-

opment. A plethora of studies have analyzed the effects of

signals produced by offspring to manipulate parental in-

vestment, especially in species with posthatching parental

care and direct competition among offspring (e.g., Mock

and Parker 1997; Wright and Leonard 2002). However, the

reverse process, that is, the role of information provided

by parents to offspring on the parental optimum and con-

sequent allocation strategy, has been studied much less

(Kilner and Hinde 2008; Hinde et al. 2010). Information
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flow from parents to offspring has been observed across

all taxa studied so far, and it can be mediated, among

other ways, by differential transfer of hormones produced

by mothers to the eggs or developing offspring (Ravi-

shankar et al. 1995; Mousseau and Fox 1998; Groothuis

et al. 2005; Gil 2008; see also above).

Birds are excellent organisms for studying how mothers

may manipulate sibling competition by prenatal hormone-

mediated maternal effects. In most bird species, offspring

hatch sequentially, resulting in an advantage for first-

hatching young in competing over limited resources pro-

vided by parents. Mothers may regulate the extent of age-

and size-mediated competitive asymmetries at hatching via

differential egg provisioning (Bernardo 1996; Groothuis et

al. 2005). Indeed, systematic variation over the laying se-

quence in size and composition of avian eggs has been

thought to reflect a strategy to either enhance or reduce

the competitive asymmetry between senior chicks (first-

hatched) and junior chicks (last-hatched; Stoleson and

Beissinger 1995; Groothuis et al. 2005; Gil 2008).

Yolk testosterone of maternal origin modulates multiple

chick traits relevant for sibling competition. It affects

hatching time, either accelerating (Eising et al. 2001; Eising

and Groothuis 2003) or delaying (Sockman and Schwabl

2000; von Engelhardt et al. 2006) incubation time, and

enhances early survival (Eising and Groothuis 2003; von

Engelhardt et al. 2006; but see Sockman and Schwabl

2000), early competitiveness (Schwabl 1996; Eising et al.

2001; Boncoraglio et al. 2006; von Engelhardt et al. 2006;

Müller et al. 2008), and growth of the chicks (Schwabl

1996; Eising et al. 2001; von Engelhardt et al. 2006), with

potential long-lasting effects until adulthood (Strasser and

Schwabl 2004; Müller et al. 2008, 2009). Accordingly, an

increase of testosterone concentration over the laying se-

quence is thought to counteract the disadvantage in sibling

competition of the last-hatched chicks by enhancing their

overall competitiveness (Schwabl 1993; Groothuis et al.

2005), while a decreasing pattern is thought to favor senior

chicks at the cost of juniors, facilitating brood reduction

(e.g., Schwabl et al. 1997). In addition, different patterns

of within-clutch yolk androgen allocation may have certain

costs and benefits for mothers too, which has been ne-

glected in previous studies that have focused almost ex-

clusively on the consequences for offspring only. There-

fore, from an inclusive fitness perspective (Hamilton

1964), in order to assess the consequences of the allocation

pattern adopted by the mothers with respect to these fam-

ily conflicts, not only the effects on the treated offspring

but also the effects on their untreated siblings and on the

mother herself should be measured (Müller et al. 2007).

To date, experimental testing of the effect of the within-

clutch allocation of maternal androgens in relation to

hatching asynchrony has been conducted in only one study

on gulls (Eising et al. 2001), which showed a benefit of

the natural increase of testosterone for the last-hatched

chick at the cost of the first one, relative to the situation

in which all eggs had similar androgen concentrations.

However, such a test in a species that shows a decrease

instead of an increase in yolk testosterone concentrations

over the laying sequence, to the best of our knowledge has

not yet been conducted. Moreover, previous egg injection

studies assessed consequences only for the offspring and

not for the mother, who is actually in charge of these

maternal effects and may herself benefit or suffer from the

effects of maternal androgens on her progeny.

Our study tested the effects of a manipulation of the

natural yolk testosterone allocation pattern occurring over

the laying sequence in the zebra finch Taeniopygia guttata

by considering fitness measures for the mothers and for

senior and junior offspring. The zebra finch is an especially

intriguing model for this, since it is one of the few species

in which yolk testosterone (hereafter, T) concentration

decreases with the laying order in both captive (e.g., Gil

et al. 1999; Rutstein et al. 2005; this study) and wild pop-

ulations (S. C. Griffith, personal communication, 2011).

It is also one of the few species in which effects of yolk T

on chick growth and begging behavior have already been

tested, although only at the level of between-brood vari-

ation (von Engelhardt et al. 2006). In particular, experi-

mentally increased yolk T levels in the whole brood re-

sulted in enhanced early competitiveness and growth of

female chicks (von Engelhardt et al. 2006), suggesting that

the decreasing pattern may facilitate brood reduction by

favoring chicks of first-laid eggs. However, the same study

also demonstrated that yolk T delays the time until hatch-

ing (von Engelhardt et al. 2006), an effect also observed

in kestrels (Sockman and Schwabl 2000). The latter sug-

gests that decreasing T allocation over the laying sequence

might favor brood survival by postponing hatching of se-

nior chicks and therefore may reduce the disadvantage of

late hatching of chicks from last-laid eggs.

To test the function of the decrease of T concentrations

with increasing laying order, we created two different types

of clutches: control clutches in which yolk T levels followed

the normal decreasing pattern over the laying sequence

and experimental clutches in which T levels were the same

in all eggs. This was done by raising T concentrations in

all but the first egg of the clutch to the level of that first

egg (see Sockman and Schwabl 2000 for a complementary

approach on a different animal model). Maternal and off-

spring fitness estimates were assessed in the absence of

fathers to prevent any possible confounding effect of post-

natal sexual conflict on family members (Royle et al. 2002;

Müller et al. 2007). Also, this choice allowed us to test for

the effects of our treatment while removing the indirect

effect potentially exerted by the mothers on the offspring
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Figure 1: Within-clutch variation of yolk testosterone (T) level
(mean 1 SE) detected in 90 freshly laid eggs of known laying order
(solid line; sample sizes are reported over the bars) and experimental
T increase induced in eggs 2–6 of T clutches after yolk injection
(dashed line).

via yolk T-dependent manipulation of paternal care (Mo-

reno-Rueda 2007; Müller et al. 2007). In order to create

broods that were manageable for the mother only, brood

sizes were set by day 4 (initial brood size) to about half

the number of chicks in natural broods, that is, either two

or three (one senior hatchling from egg 1 and one or two

junior hatchlings from eggs 2–6). Broods of two can be

raised by females alone without additional effort (Royle

et al. 2002), whereas a brood size of three should reflect

a more challenging condition for the mother but always

within the natural range of workload experienced by a

single parent in this species. Conversely, larger brood sizes

would have subjected temporarily widowed mothers to

excessive, unnatural stress condition during the rearing

period. We evaluated the consequences of our T treatment

by measuring hatching time, posthatching growth, and

survival until fledging of senior and junior chicks. We took

sex of the offspring into account when sample size allowed,

since there is some evidence that yolk T concentrations

may be sex specific under some circumstances (Gilbert et

al. 2005; Rutstein et al. 2005) or may have sex-specific

effects (von Engelhardt et al. 2006). To assess fitness con-

sequences for the mothers, we measured their change in

body mass during rearing, feeding rate at the peak of work-

load, response to an immunological challenge during the

first breeding event, and effects on the subsequent breeding

event.

Our predictions were these: (1) If the within-clutch tes-

tosterone allocation pattern maximizes maternal fitness,

mothers should attain, irrespective of maternal strategy

(i.e., either brood reduction or brood survival), larger ben-

efits in control compared to those in T-treated nests, as

measured by enhanced offspring phenotypic quality at in-

dependence, higher maternal phenotypic quality, and/or

superior reproductive output during the subsequent

breeding event. (2) If the decreasing pattern of within-

clutch T allocation reflects a brood reduction strategy by

mothers, senior offspring should obtain larger direct fit-

ness benefits, as measured by higher phenotypic quality at

independence, in control compared to those in T-treated

nests, while the opposite is expected for their junior sib-

lings. (3) If the decreasing pattern of T allocation reflects

a brood survival strategy by mothers, junior offspring

should attain higher phenotypic quality in control com-

pared to that in T-treated nests, while the opposite is ex-

pected for their senior siblings.

Methods

Experimental Design

First, average concentration of yolk T for each position of

the egg in the laying sequence was measured for clutches

produced by birds of the same population that we used

for the experiment. These data were used to determine the

dosage of treatment. We then randomly assigned clutches

to either T or control (hereafter, C) treatment; C clutches

showed the natural decrease in T concentrations over the

laying order and were injected with vehicle only, while T

clutches were manipulated by elevating yolk T concentra-

tions in eggs 2–6 to compensate for the natural decrease

in yolk T concentration over the laying sequence, in such

a way that, on average, each egg in the T clutch would

have the same T concentration (fig. 1). First eggs were not

injected in either the C or T clutches, since this was not

necessary for comparing effects on senior chicks between

T and C broods, and it increased sample sizes by increasing

hatching success of senior eggs. By day 4 after hatching

of the first chick, brood size was adjusted to either two or

three chicks so that all T and C nests contained one senior

chick of an unmanipulated egg (egg 1) and one or two

junior chicks of injected eggs (eggs 2–6), while the father

was invariably removed on that day (see above for ratio-

nale). We measured hatching time, body mass, body con-

dition, and survival until fledging of the chicks and change

in body mass, feeding rate, immunity, and features of sub-

sequent clutches of mothers.

Animals and Housing Conditions

Adult zebra finches from a stock known to produce fertile

eggs were housed in the facilities of the Zoological Lab-
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oratory of the Biological Centre of the University of

Groningen, Netherlands, during March 2008. The room

had a temperature of ∼257C, a relative humidity of

∼40%–60%, and a 14L : 10D photoperiod (lights on at

9:00 a.m.). Pairs were housed in standard wooden cages

(150 cm # 40 cm # 30 cm) with a metal grid front, two

perches, sand on the floor, a nest box, and hay for nesting

and were provided ad lib. with a mixed seed diet (Teur-

lings), water, cuttlebone, and grit. Food and water were

refreshed every second day. The diet was supplemented

with egg food and lettuce three times a week. Diet con-

ditions were kept unchanged throughout each stage of the

experiment.

Determination of Yolk T Concentrations over the

Laying Sequence

Yolk T injections were based on levels of yolk T determined

in 90 eggs of laying position 1–6 from 38 females of the

same zebra finch population employed for the experiment.

Yolk T was measured by radioimmunoassay following es-

tablished protocols of extraction on celite columns (Wing-

field and Farner 1975; Schwabl 1993), with slight modi-

fications. Eggs were kept frozen at 2207C from the day

of collection until extraction. For extraction, the yolk sam-

ples were thawed, weighed, and homogenized with 500 mL

distilled water and a few glass balls. In order to assess and

correct for the extraction efficiency of each individual sam-

ple, 50 mL tritiated T with known radioactivity (∼2400–

5400 dpm) was added to a weighed aliquot of ∼150 mg

homogenate (average recovery rate, 46.3%). The samples

were extracted three times with 3 mL diethyl-ether/petro-

leum-ether (7 : 3 v/v), snap-frozen, decanted, and dried

under a stream of nitrogen. Samples were redissolved in

1 mL of 70% methanol, frozen overnight at 2207C, and

centrifuged and decanted to precipitate neutral lipids. The

supernatant was dried under a stream of nitrogen and

reconstituted in 1 mL of 2% ethylacetate in isooctane and

transferred to 5-mL glass columns packed with 1.5 mL

celite : propylene glycol : ethylene glycol (6 : 1.5 : 1.5 w/v/

v) on top of a 0.5-mL water trap of celite : water (3 : 1 w/

v). Steroids were eluted with 4 mL of pure isooctane (dis-

carded), 4.0 mL of 2% ethylacetate in isooctane (dis-

carded), 4.5 mL of 10% ethylacetate in isooctane (dis-

carded), and 4.5 mL of 20% ethylacetate in isooctane

(eluate containing T). The eluates were dried and redis-

solved in 200 mL Tris buffer. Testosterone levels were mea-

sured in duplicates of 50 mL of sample, using a DSL-4000

Coated Tube RIA Kit (Diagnostic Systems Laboratories),

with a sensitivity of 0.08 ng/mL. Intra-assay variation was

7.1%, and interassay variation was 6.8% (based on 43

samples measured in two assays).

Yolk T Manipulation

Nests were checked once daily at 1 p.m. for eggs. All eggs

in a clutch were weighed and marked at laying. Egg 1 was

left untreated at the nest until hatching in all clutches. At

the laying of egg 2, nests were randomly assigned to either

a T or C treatment. The T treatment consisted of injecting

the yolk of freshly laid eggs 2–6 with 5 mL of sterile sesame

oil containing an amount of T that differed according to

the laying order of the egg. The concentration of the so-

lutions employed for eggs 2–6 was as follows: egg 2, 97.4

pg/mL; egg 3, 323.6 pg/mL; egg 4, 224.4 pg/mL; egg 5, 235.8

pg/mL; egg 6, 333.2 pg/mL. These dosages were chosen

according to the results of the T assays (see above) to

result in average yolk T concentration in eggs 2–6 of 19.01

pg/mg, which is the average concentration we detected at

laying for egg 1 (fig. 1). The C treatment consisted of

injecting eggs 2–6 with 5 mL of sterile sesame oil only.

Eggs 2–6 were injected with a 10-mL Hamilton syringe,

according to the protocol by von Engelhardt et al. (2006).

The procedure was, briefly, that eggs were illuminated from

beneath and injected in the middle of the yolk at an angle

of about 457 upward. Needle and eggshell were wiped once

with 100% ethanol, and the eggshell was patched after

injection with a tiny drop of paraffin. Eggs were put back

in their nests immediately after the injection.

General Experimental Procedures and

Composition of Broods

Females were weighed at day 4 after hatching of chick 1,

when we removed the fathers from their cages. Thus, only

the mothers were allowed to rear either T or C broods

from day 4 to day 24 after hatching, the latter being the

day when we put the fathers back in their cages. Date of

laying of first egg and maternal body mass at day 4 did

not differ between T and C nests (t-tests, in allP 1 .22

cases).

Just before the estimated hatching time (i.e., 13 days

after laying of egg 1), eggs 2–6 of each clutch were moved

until hatching to an incubator at 377C and 50%–70% rel-

ative humidity and temporarily replaced by unfertile zebra

finch eggs, collected from females kept in single-sex

groups. Conversely, egg 1 was left in the nest and incubated

by parents in both T and C groups. All eggs were inspected

three times per day (every 7 h) to estimate hatching time.

We obtained hatchlings from 19 T and from 18 C nests.

Hatchlings were weighed and individually marked before

putting them back in their original nests or, in a minority

of cases, fostered in other nests. The latter was due to the

fact that the hatching rate of unmanipulated (i.e., egg 1)

and, especially, T and C eggs was lower than expected (i.e.,

egg 1, 83.8%; T eggs, 35.82%; C eggs, 35.48%; ,N p 37
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, and , respectively). As a consequence, inN p 67 N p 62

some clutches, no junior hatchlings followed the senior

one, while in some others, the first egg did not hatch or

more than two chicks hatched from eggs 2–6. In order to

increase our sample size while adhering to our original

design, we cross-fostered, whenever possible, supplemen-

tary T or C hatchlings in nests containing only the hatch-

ling from egg 1, unless the age difference between the

senior and the junior chicks was greater than 4 days. This

schedule was adopted in order to maintain the hatching

asynchrony of each brood within the natural range of var-

iation for this species (Rutkowska and Cichoń 2005; Main-

waring et al. 2010; average hatching asynchrony in our

sample, ). In this way, we could obtain46.00 h 5 8.13 SE

17 T broods, six of which included chicks of mixed origin,

and 15 C broods, three of which included chicks of mixed

origin. The T and C broods did not differ in the proportion

of mixed broods (binomial test, ) or in originalP 1 .50

clutch size (T, ; C, ), hatch-4.71 5 0.27 SE 4.53 5 0.13 SE

ing date, or brood size at day 4 (T, ; C,2.41 5 0.12 SE

; t-tests, in all cases).2.33 5 0.16 SE P 1 .39

Measurements of Chicks and Mothers

Measures on chicks and mothers were taken at standard

days with respect to the day of hatching of the senior chick

(day 0), that is, the chick from egg 1. Body mass of the

chicks was measured at hatching, at day 12, and at day 24

after hatching of the senior chick; tarsus length was mea-

sured at day 12. Chicks were measured in the morning

immediately after the lights were turned on, before they

could be fed. Sex of surviving nestlings was determined

by their adult plumage around day 35.

In addition, for the nests with at least the first chick

and at least one junior chick surviving until day 12, we

assessed maternal feeding rate at day 12 and subjected the

mother to a standard in vivo test of her T cell–mediated

immune response at day 15. Maternal feeding rate at day

12 (number of feeding visits to the nest and number of

meals delivered per visit to the chicks) was determined

from 2 h of videorecording using digital minicameras at

the nest entrance. Recording sessions always started in the

morning around 9.00 a.m., following the morphometrical

measuring session at day 12. Day 12 was chosen because

it represents the time when body mass and skeletal growth

of the chicks are almost completed, hence, the end of the

period in which mothers experienced the peak load in

maternal care. Recordings were analyzed with VLC Media

Player 0.8.4a. All measures were performed blindly with

respect to the hormone treatment of the nest.

To assess maternal immune response at day 15, we in-

jected 40 mg phytohemagglutinin dissolved in 0.04 mL of

phosphate-buffered saline (PHA test; Saino et al. 1997)

into the right wing web and measured to the nearest 0.01

mm the swelling due to infiltration of T-lymphocytes 24

h later by means of a spessimeter (Mitutoyo, 2046 F-60).

Maternal PHA response was calculated as the change in

thickness of the injected wing web over the 24-h period

following injection, a larger swelling being taken as a larger,

more competent immune response.

Subsequent Breeding of Mothers

Potential costs for future reproduction were assessed by

allowing pairs to lay a new clutch following the reintro-

duction of original partners to their cages. The data on

the breeding bout performed by the mothers after the

reintroduction of their partner (latency in the onset of

laying after partners’ reintroduction, egg mass, clutch size,

and clutch mass) were collected according to the same

protocol adopted for the first breeding bout (see above).

Statistical Analyses

We used general linear mixed models (GLMM), with de-

pendent variables being the measurements on hatching

time, offspring, mothers, and subsequent breeding in-

vestment by mothers. In all models, the effect of the ex-

perimental treatment was tested by a fixed factor called

nest treatment (T or C). Covariates were included to ac-

count for effects that could not be controlled experimen-

tally, and interaction effects between covariates and nest

treatment were entered only where there was a clear ex-

pectation. Random intercept and random slope effects

were entered as specified below to account for noninde-

pendence of observations from the same nest: for brevity,

here we are only reporting statistics of random intercept

effects for the main models; estimates of random slope

effects were always very close to or equal to zero, thus

never attaining significance.

Hatching time was tested only for eggs 2–6, including

a random intercept for nest of origin and a random slope

for the effect of egg position, depending on nest of origin.

Egg position and its interaction with nest treatment were

included to account for increasing dosage of T over the

laying sequence in T nests, as well as for intrinsic differ-

ences in egg quality. Hatching mass was tested in the same

model, with egg mass entered both as additional covariate

and random slope effect to account for its strong positive

effect on the dependent variable.

In all models of young, nest of rearing and nest of origin

were included as crossed random intercept effects. In the

analysis of chick body condition (i.e., body mass in relation

to skeletal size) and chick survival at day 24, we entered

a second fixed factor called egg treatment (injected or

uninjected) to test for the between-groups effects of nest
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Figure 2: Hatching time (hours since laying, mean 1 SE) of 24 T
(testosterone) and 22 C (control) eggs with respect to laying order.
Sample sizes within laying order are also reported.

treatment on senior (from uninjected first eggs) and junior

(from injected eggs 2–6) chicks separately. Differential ef-

fects on senior and junior chicks in T and C nests were

tested by the interaction term between nest and egg treat-

ment. In the model on body condition, tarsus size was

included as a covariate to account for variation in skeletal

size across chicks, and its effect was allowed to vary ran-

domly within both nest of origin and nest of rearing via

random slopes. Chick survival at day 24 was coded as a

two-state response variable (1 p surviving; 0 p not sur-

viving) and tested in a logistic regression mixed model,

assuming a binomial error distribution and a logit link

function. In both analyses, initial brood size set by the

experimenters by day 4 (two or three chicks) was subse-

quently included as a covariate to confirm previous results.

Models of maternal feeding rate at day 12 included nest

treatment, brood size at day 12 (covariate), and their in-

teraction, to account for differences in feeding effort im-

posed by variation in nest treatment and/or the number

of chicks attended at the nest during recordings. All other

models of maternal phenotype at day 12 included initial

brood size and female mass at day 4 (i.e., initial female

mass at removal of the male) as covariates, to control for

differences in food demand by the offspring over days 4–

12 and female quality at the beginning of the rearing pe-

riod, which was unrelated to nest treatment. Models of

subsequent breeding investment by mothers always in-

cluded nest treatment, as well as initial brood size and the

values of the variable under scrutiny recorded during the

first breeding bout as covariates, because they were both

likely to affect the dependent variables.

Offspring sex (male or female, fixed factor) was sub-

sequently included in the analysis only on chick body con-

dition at day 24, when sex of all but three chicks was

known. Since dead embryos and hatchlings were not sexed,

the data set was incomplete, and sex-specific effects on

hatching time and offspring survival could not be analyzed.

All statistical analyses were run using the SAS (9.1) pack-

age. Parameter estimates were obtained by the restricted

maximum likelihood method. Degrees of freedom were

estimated by Satterthwaite approximation. Significance of

fixed effects was assessed using F-tests or t-tests; signifi-

cance of random effects was assessed using z-tests; post

hoc tests were performed with Sidak correction. Residuals

of the data met the conditions of normality and homo-

geneity of variances in all models (Kolmogorov-Smirnov

and Levene tests, ).P 1 .05

Results

Hatching Time, Offspring Mass, and Survival

The T eggs hatched significantly later than the C eggs, with

a stronger effect for eggs early in the laying sequence (nest

treatment # laying order analyzed for eggs 2–6, F p

, , ; nest treatment, ,6.16 df p 1, 30.3 P p .019 F p 8.67

, ; laying order, ,df p 1, 36 P p .006 F p 20.95 df p

, ; nest of origin, , ;1, 30.3 P ! .001 z p 2.51 P p .006

T and 22 C eggs, untreated first eggs excluded;N p 24

fig. 2). There was no effect of nest treatment or other

predictors on hatching mass ( in all cases), takingP 1 .410

into account a positive effect of egg mass ( ,F p 151.74

, , ; nest of origin,df p 1, 41 P ! .001 b p 0.79 5 0.06 SE

, ).z p .00 P p 1.00

At day 24, before fathers were reintroduced to the cages,

junior, but not senior, offspring in T nests had a poorer

body condition (low body mass in relation to their structural

size) than did C chicks, as shown by a significant effect of

the interaction of nest treatment and egg treatment on body

mass in a model that included the last measured tarsus

length (at day 12) as a covariate, to take structural size into

account (table 1; fig. 3). Exclusion from the analysis of nests

that included cross-fostered junior chicks (see “Methods”)

left these results unchanged (i.e., nest treatment and nest

treatment # egg treatment interaction, both ). PostP ! .017

hoc comparisons revealed that junior offspring hatched

from eggs 2–6 had significantly lower size-corrected body

mass in T compared to C nests ( ), whereas noP p .036

difference was detected between the senior chicks (from egg

1) from the two groups ( ). All these results wereP p .853

confirmed when entering in the model either chick sex alone

( , , ) or the chick sex # nestF p .78 df p 1, 32.7 P p .384

treatment # egg treatment interaction ( ,F p 13.30 df p
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Table 1: GLMM analysis of body mass at day 24 in 31 T and 30

C offspring from 32 broods

z F df P b SE

Nest of rearing .47 .319

Nest of origin 1.00 .309

Nest treatment 4.72 1, 23.8 .040

Egg treatment .06 1, 30.5 .814

Nest treatment # egg

treatment 6.93 1, 29.4 .013

Tarsus length at day 12 117.5 1, 38.4 !.001 .54 .05

Note: The 31 T (testosterone) offspring were 15 seniors and 16 juniors;

the 30 C (control) offspring were 12 seniors and 18 juniors.

Figure 3: Day 24 body mass (g, mean 1 SE) of 31 T (testosterone)
offspring (15 seniors and 16 juniors) and 30 C (control) offspring
(12 seniors and 18 juniors) from 32 broods.

, ), the latter being mainly explained by a1, 27.9 P p .001

stronger detrimental effect of T treatment on junior females

compared to junior males ( ; junior T males, dayP ! .001

24 body mass, ; junior C males,12.22 g 5 0.29 SE 12.76

; junior T females, ; juniorg 5 0.29 SE 11.59 g 5 0.27 SE

C females, ).13.16 g 5 0.30 SE

Initial brood size did not affect body condition at day

24 ( , , ). Tarsus size at dayF p 1.70 df p 1, 23.7 P p .205

12 ( ) or body mass at day 24 ( ) did notP 1 .944 P 1 .103

differ significantly between nest treatments when tested

separately.

Survival of junior offspring in T broods was slightly

lower than in C broods, whereas the reverse was the case

for seniors, but the effect of the interaction between nest

treatment and egg treatment did not reach statistical sig-

nificance ( , , ; nest of origin,F p 1.59 df p 1, 35 P p .216

, ; nest of rearing, , ;z p .00 P p 1.00 z p 1.96 P p .025

fig. 4). Inclusion in the model of initial brood size (P 1

) left these results unchanged..748

Maternal Feeding Effort

Maternal feeding effort was analyzed at day 12, around

the time of peak offspring growth and maternal workload,

and for those broods that still had at least two or three

chicks in the nest. The T mothers fed broods of two chicks

more than did C mothers in such broods, while the op-

posite was true for broods of three chicks (table 2; number

of feeding visits, see fig. 5; number of meals delivered,

two-chick T nests, 96.86 meals 5 12.88 SE; two-chick C

nests, 72.80 meals 5 28.38 SE; three-chick T nests, 84.67

meals 5 20.93 SE; three-chick C nests, 173.83 meals 5

31.15 SE).

Maternal Phenotype at the Peak of Parental Care

Between day 4, when fathers were removed, and day 12,

mothers lost, on average, 1.01 g 5 0.19 SE, that is, ∼7%

of their body mass (paired-samples t-test, ,t p 5.26

, ). There was no effect of nest treatmentdf p 30 P ! .001

on maternal body mass at day 12 ( , ,F p 0.24 df p 1, 27

, taking female mass at day 4 ( ,P p .631 F p 30.49

, ) into account. Maternal body mass atdf p 1, 27 P ! .001

day 12 also was not affected by initial brood size (F p

, , ). Maternal immune responsive-.46 df p 1, 27 P p .505

ness (PHA score) at day 15 was not affected by nest treat-

ment ( , , ) or female mass atF p .19 df p 1, 28 P p .666

day 4 ( , , ) and did not differF p .19 df p 1, 28 P p .665

between females rearing small or large broods ( ,F p .25

, ).df p 1, 28 P p .623

Maternal Reproductive Output at the

Subsequent Breeding Event

There were no significant effects of nest treatment on lay-

ing latency and mean egg mass of the next breeding event

while correcting for the values recorded for these variables

during the first breeding bout (table 3). However, there

were a nonsignificant trend and a borderline significant

effect, respectively, for females that had received T broods

to lay smaller and lighter second clutches (table 3; clutch

size, T nests, 4.38 eggs 5 0.31 SE; C nests, 5.17 eggs 5

0.33 SE; clutch mass, T nests, 4.96 g 5 0.36 SE; C nests,

6.02 g 5 0.38 SE).
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Figure 4: Within-nest survival to day 24 (%; mean 1 SE) in 17 T
(testosterone) nests (10 normal and 7 large broods) and 15 C (con-
trol) nests (8 normal and 7 large broods).

Table 2: GLM analysis of maternal feeding rate

at day 12 in 13 T and 11 C nests

F df P

Feeding visits:

Nest treatment 9.68 1, 20 .006

Brood size at day 12 1.10 1, 20 .307

Nest treatment #

brood size at

day 12 11.68 1, 20 .003

Meals delivered:

Nest treatment 4.35 1, 20 .050

Brood size at day 12 3.57 1, 20 .073

Nest treatment #

brood size at

day 12 5.80 1, 20 .026

Note: Maternal feeding rate p number of feeding vis-

its and number of meals delivered at the nest within 2 h;

GLM p general linear model; T p testosterone; C p

control.

Discussion

Parents should benefit from adjusting parental investment

to offspring reproductive value. Individual offspring, on

the other hand, benefit from obtaining more resources

than is optimal from the parental perspective, which results

in an evolutionary conflict between parents and offspring

over parental allocation. The transfer of maternal hor-

mones to offspring in several vertebrate taxa is thought to

be an adaptive mechanism by which parents can optimize

offspring development, but the question whether this max-

imizes maternal or offspring fitness, or both, has been

largely neglected. Moreover, although it is generally as-

sumed that differential allocation of maternal hormones

among competing siblings provides the mother with a tool

to adjust the sibling hierarchy, experimental evidence for

this is scarce. In this study, we tested experimentally for

the first time the hypothesis that mothers favor senior

offspring in a brood over juniors by providing the first

more exposure to maternal androgens than the latter. We

tested this using the zebra finch, in which the eggs of the

same clutch show a decrease in androgen concentration

over the laying order, potentially benefiting first-hatched

chicks over later-hatched siblings and therefore inducing

a stronger conflict between mothers and junior chicks. To

this end, we elevated yolk T levels of all eggs to the level

of the first egg and analyzed the effects on offspring and

mothers. Contrary to the hypothesis in the literature, the

natural decrease of T over the laying sequence seems ben-

eficial and not detrimental for junior chicks and perhaps

also for their mothers, since junior chicks were negatively

affected by elevation of yolk T levels, and a similar ten-

dency was found for mothers, while senior chicks were

unaffected.

The experimental treatment resulted in lower body con-

dition at fledging of junior but not senior offspring in T

compared to C broods, and there was weak evidence also

for reduced survival of such chicks. Body condition is

repeatedly found to correlate with winter survival or re-

cruitment in wild birds (e.g., Alatalo and Lundberg 1986;

Pettifor et al. 2001; Schmoll et al. 2003), suggesting that

the effect of our treatment has a negative effect on the

direct fitness of junior offspring. These negative effects may

come about via two pathways. Prenatal exposure to ex-

perimentally elevated yolk T concentrations may increase

energy demand by elevating metabolic rate (Tobler et al.

2007) to the extent that this cannot be fully compensated

for by maternal workload. Accordingly, we found that ma-

ternal feeding effort at the peak of chick demand was

reduced in large T broods. Alternatively, since the elevation

of yolk T levels delays the hatching time in this species

(this study; von Engelhardt et al. 2006), our treatment

might have reduced the competitive ability of junior T

chicks against seniors and thereby impaired their final con-

dition (Cotton et al. 1999). In this case, reduced maternal

workload in large T broods might have been determined

by low quality of junior offspring, inducing the mother to

spend less effort on these chicks. However, this is not in

line with the slightly reduced performance of T mothers

during the subsequent breeding bout.

The phenotype of senior offspring was not affected by
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Figure 5: Maternal feeding rate (number of feeding visits within 2
h; mean 1 SE) at day 12 in 13 T (testosterone) nests (7 normal and
6 large broods) and 11 C (control) nests (5 normal and 6 large
broods).

Table 3: GLM analysis of the next breeding event in 17 T and

15 C nests

F df P b SE

Latency to lay:

Latency to lay clutch 1 .07 1, 28 .794 2.04 .15

Nest treatment .26 1, 28 .613

Initial brood size .54 1, 28 .470 1.17 1.59

Mean egg mass:

Mean egg mass

brood 1 92.50 1, 28 !.001 .95 .10

Nest treatment .13 1, 28 .725

Initial brood size .95 1, 28 .344 2.02 .03

Clutch size:

Clutch size brood 1 .53 1, 28 .474 .20 .27

Nest treatment 3.00 1, 28 .095

Initial brood size 2.09 1, 28 .160 2.67 .46

Clutch mass:

Clutch mass brood 1 .83 1, 28 .370 .21 .23

Nest treatment 4.14 1, 28 .051

Initial brood size .55 1, 28 .466 2.41 .56

Note: Next breeding event p latency of laying, egg mass, clutch size, and

clutch mass; GLM p general linear model; T p testosterone; C p control.

being reared in a T or a C nest. Hence, it is unlikely that,

in zebra finches, decreasing T allocation over the laying

order evolved to promote a direct benefit for senior off-

spring by favoring brood reduction or reinforcing com-

petitive asymmetries determined by laying order. The un-

manipulated senior chicks from T broods experienced an

indirect fitness cost (sensu Hamilton 1964) instead, as the

impaired quality of junior siblings was not compensated

by adequate comparable enhancement of their own in-

dividual condition.

Although we showed that care of experimental broods

was costly to the mothers in terms of substantial body

mass loss during days 4–12, there was no evidence for

direct costs of nest treatment on maternal phenotype dur-

ing the nestling period. There was weak, marginally non-

significant support for a possible delayed cost for mothers,

since T mothers tended to lay smaller and lighter clutches

during their subsequent breeding bout, thus suffering from

potential fitness losses during future reproductive events

because of lower fecundity compared to C mothers

(Stearns 1992). If rearing T chicks was indeed costly, it is

unclear how the effect was mediated, since overall, mothers

seemed to invest less when rearing T chicks, as indicated

by lower chick mass and reduced feeding rates, at least in

large broods. To our knowledge, potential costs for moth-

ers of rearing offspring exposed to experimentally altered

levels of maternal hormones have not been assessed in

other studies but should receive more attention, since this

can be an important fitness component influencing the

evolution of maternal effects mediated by hormones. The

weak evidence emerging from our study despite ad lib.

food availability suggests that under natural conditions,

such effects may be exacerbated, potentially resulting in

clear costs for mothers.

In our study, fathers were removed at the start of the

experiment to avoid the effects of nest treatment being

masked by having two parents attending relatively small

broods and, furthermore, because compensatory adjust-

ment of parental investment due to sexual conflict between

the attending parents (Royle et al. 2002; Müller et al. 2007)

might have confounded the results and made the inter-

pretation of the study more difficult (see also “Introduc-

tion”). Although some observed effects, such as the delay

in hatching time, do not depend on male removal, the

particular experimental design should be taken into ac-

count when translating our results to the natural situation.

With respect to the conflict existing between partners

about the cost of reproduction (Trivers 1972), it would be

very important to directly test the effect of resource al-

location patterns adopted by the mothers on the behavior

and fitness of fathers as well. Variation in yolk hormone

allocation has even been considered as an evolutionary

strategy adopted by avian mothers that increases paternal

investment (Moreno-Rueda 2007; Müller et al. 2007),

which is similar to the idea that paternal genomic im-

printing in mammals and plants results in increased hor-

monal signaling by offspring to mothers and thereby in-

creased maternal investment (Haig 1996). However, there

currently is no experimental evidence for such an effect

in birds (Ruuskanen et al. 2009).
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With respect to our initial predictions, we therefore con-

clude that the decreasing pattern of T allocation adopted

within clutches by zebra finch mothers is directly beneficial

for junior offspring and indirectly benefits senior offspring

and mothers. Our results add new perspectives concerning

the adaptive within-clutch modulation of prenatal allo-

cation of resources among competing offspring and adap-

tive maternal effects in general. The hypothesis that in-

creasing and decreasing allocation patterns reflect a brood

survival and a brood reduction strategy, respectively, may

be too general and may depend on the species and its

ecological context (e.g., Sockman and Schwabl 2000 vs.

Eising et al. 2001). The generality of the hypothesis is based

on the assumption that effects of yolk T would be similar

for all bird species, but this clearly is not the case and adds

an additional layer of complexity to the interpretation of

hormone-mediated maternal effects. For example, as we

have demonstrated here, yolk T delays hatching time in

the altricial zebra finch, confirming results of an earlier

study (von Engelhardt et al. 2006), while it speeds up

hatching time in the semiprecocial black-headed gull (Eis-

ing et al 2001, confirmed by Eising and Groothuis 2003).

Such species-specific effect of elevated yolk T may be

caused by an interaction with other yolk components that

needs further study (Groothuis et al. 2005; Gil 2008), and/

or derive from species-specific adaptation in the response

of the offspring to androgen allocation by the mothers as

the result of parent-offspring conflict, a topic that only

recently emerged in the literature (Müller et al. 2007;

Kilner and Hinde 2008; Tobler and Smith 2010). In any

case, it warrants much more caution when reviewing the

literature of maternally derived yolk androgens than is

currently given.

Finally, we strongly encourage future research in this

field to measure both direct and indirect consequences of

parental effects on all family members and to be more

cautious when drawing conclusions from published studies

if consequences have not been measured exhaustively

among family members with potentially conflicting

interests.
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