Placental pathology is associated with illness severity in preterm infants in the first twenty-four hours after birth
Roescher, A. M.; Hitzert, M. M.; Timmer, Albertus; Verhagen, E. A.; Erwich, Jan Jaap H. M.; Bos, Arend F.

Published in: Early Human Development

DOI: 10.1016/j.earlhumdev.2011.01.040

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date: 2011

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Placental pathology is associated with illness severity in preterm infants in the first twenty-four hours after birth

A.M. Roescher a,⁎, M.M. Hitzert a, A. Timmer b, E.A. Verhagen a, J.J.H.M. Erwich c, A.F. Bos a

a Division of Neonatology, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
b Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
c Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands

ARTICLE INFO
Article history:
Received 22 September 2010
Received in revised form 29 December 2010
Accepted 24 January 2011

Keywords:
Placental pathology
Illness severity
SNAPPE
Preterm infants

ABSTRACT
Background: Placental pathology is associated with long-term neurological morbidity. Little is known about the association of placental pathology and illness severity directly after birth in preterm infants.
Objective: To determine the association between placental pathology and illness severity in preterm infants during the first 24 h after birth.
Study design: Placentas of 40 preterm infants, born after singleton pregnancies (gestational age 25.4–31.7 weeks, birth weight 560–2250 g) were assessed for histopathology. Illness severity was measured using the Score of Neonatal Acute Physiology Perinatal Extension (SNAPPE). A high SNAPPE reflects high illness severity.
Results: Examination of the 40 placentas revealed: pathology consistent with maternal vascular underperfusion (MVU) (n=24), ascending intrauterine infection (AIUI) (n=17), villitis of unknown aetiology (VUE) (n=6), foetal thrombotic vasculopathy (FTV) (n=6), elevated nucleated red blood cells (NRBCs) (n=6), and chronic deciduitis (n=10). SNAPPE ranged from 1 to 53 (median 10). Infants with elevated NRBCs had a higher SNAPPE than infants without elevated NRBCs (median 30 vs. 10, p=0.014). The same was found for the presence of FTV (median 30 vs. 10, p=0.019). No relation existed between SNAPPE and the other placental pathologies.
Conclusions: Elevated NRBCs and FTV were associated with higher illness severity during the first 24 h after birth in preterm infants. Ascending intrauterine infection was not associated with high illness severity.

1. Introduction

In industrialised countries, preterm birth is responsible for 75% of neonatal morbidity and contributes to long-term neurodevelopmental problems [1]. Placental pathology may act as a causative factor in preterm birth. The placenta plays a crucial role during pregnancy, with major implications for the child if its function is impaired. Previous studies in term infants suggested that several placental lesions are associated with long-term neurological morbidity [2,3]. These lesions include ascending intrauterine infection, chronic villitis of unknown aetiology, meconium associated vascular necrosis, foetal thrombotic vasculopathy, and the appearance of elevated nucleated red blood cells [2,3]. Recently, placental pathology was also reported as being the main cause of foetal death [4]. The most common cause of foetal death in the preterm period is maternal hypoperfusion of the placenta in a pregnancy complicated by hypertensive disorders. In the term period, foetal death is mainly caused by developmental pathology of placenta parenchyma [4].

In the case of preterm infants little is known about the effect of placental pathology on neonatal morbidity. The question arises whether the same lesions that are associated with long-term neurological morbidity in term infants are also associated with early morbidity in preterm infants. If these lesions are associated with early morbidity, the mechanisms leading to neonatal morbidity may become clear. One way of assessing early morbidity is to determine illness severity soon after birth by scoring several clinical variables. A reliable instrument to measure illness severity in the first 24 h after birth is the Score of Neonatal Acute Physiology Perinatal Extension (SNAPPE) [5]. The scores obtained are associated with both mortality and morbidity.

Our objective was to determine whether placental pathology was associated with illness severity during the first 24 h after birth in preterm infants born at <32 weeks of gestational age. We
hypothesised that in the presence of placental lesions preterm infants will be more severely ill and physiologically unstable during the first 24 h after birth.

2. Materials and methods

2.1. Patient population

We carried out a cohort study of 44 preterm, singleton infants. All infants had been admitted to the NICU of the University Medical Center Groningen. The inclusion criterion was a gestational age of less than 32 weeks. Exclusion criteria were major chromosomal and congenital abnormalities. We also excluded infants whose placentas were not available for pathological examination (n=4). Our final study group consisted of 40 preterm singleton infants.

2.2. Placental pathology

The placentas were examined by a perinatal pathologist (AT) in accordance with the guidelines published by the Royal College of Obstetricians and Gynaecologists and the Royal College of Pathologists, and the College of American Pathologists [6,7]. We included and graded all placental lesions for which an association with neurological impairment had been suggested previously [2,3]. These lesions are placental pathology consistent with maternal vascular underperfusion (MVU) [8], ascending intrauterine infection (AIUI) [9], chronic villitis of unknown origin (VUE) [10], chronic deciduitis [11], perivillous fibrinoid [12], foetal thrombotic vasculopathy (FTV) [13], meconium associated vascular necrosis [14], choioamnionic hemoisiderosis [15], increased nucleated red blood cells (NRBCs) [2], chorangiosis [16], and umbilical cord abnormalities [17]. We also recorded placental weight, cord length, and coiling index.

2.3. Score of neonatal acute physiology perinatal extension

To assess the illness severity of the infants during the first 24 h after birth, we determined the Score of Neonatal Acute Physiology Perinatal Extension (SNAPPE) from the medical records and nursing files. SNAPPE consists of 31 clinical and physiological variables, such as blood pressure, pCO2, temperature, oxygen saturation, Apgar score, and the presence of apnoea. The most abnormal value of each item during the first 24 h after birth was used in the calculation. SNAPPE may range from 0 to 184, a higher SNAPPE reflects higher illness severity. SNAPPE is associated with both neonatal morbidity and mortality [5,18].

2.4. Statistical analysis

SPSS 16.0 software for Windows (SPSS Inc Chicago, IL) was used for the statistical analyses. To test the associations between placental pathology and SNAPPE, we used the Mann–Whitney U test for categorical placental pathologies and Spearman’s rho correlation test for ordinal or continuous variables reflecting placental pathological measures. For further analysis, we used a multivariate regression model to test the independent associations of SNAPPE with the various individual placental pathologies. We used the logarithm of SNAPPE in this model to meet the conditions of multivariate regression. A p-value of <.05 was considered statistically significant.

3. Results

3.1. Patient characteristics

The patient characteristics are presented in Table 1. Placental characteristics such as placental weight and umbilical cord length were also included. None of the infants died within the first 24 h after birth, however 4 infants died between 6 and 19 days after birth. Three infants died of respiratory and circulatory insufficiency due to sepsis and 1 infant died of gastrointestinal perforation.

3.2. Placental pathology

The distribution of placental pathologies is presented in Fig. 1. Only 3 out of the 40 placentas showed no pathology. The largest group of 24 placentas consisted of pathologies consistent with MVU, followed by 17 placentas with signs of AIUI. The occurrence of placental pathologies, categorised by gestational age and birth weight, is presented in Table 2. We found no significant association between placental pathologies and gestational age. A lower birth weight was associated with a higher occurrence of NRBCs and FTV (Mann–Whitney U, p<.05).

Twenty-four placentas showed more than one category of placental histopathology. The most common combinations were placental pathology consistent with MVU plus elevated NRBCs (n=5) and MVU plus AIUI (n=5). We found no meconium associated vascular necrosis or complications of the umbilical cord in our group.

Table 1

<table>
<thead>
<tr>
<th>Study population</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestational age, weeks</td>
<td>29.5 (25.4–31.7)</td>
</tr>
<tr>
<td>Birth weight, grammes</td>
<td>1243 (560–2250)</td>
</tr>
<tr>
<td>Male/female</td>
<td>20/20</td>
</tr>
<tr>
<td>Intracranial haemorrhage (Grade 1–2)</td>
<td>7</td>
</tr>
<tr>
<td>Intracranial haemorrhage (Grade 3–4)</td>
<td>2</td>
</tr>
<tr>
<td>Cause of preterm birth Preterm due to maternal or foetal reasons (e.g. foetal distress)</td>
<td>16</td>
</tr>
<tr>
<td>Spontaneous preterm birth</td>
<td>17</td>
</tr>
<tr>
<td>Preterm due to premature rupturing of the membranes (PPROM)</td>
<td>7</td>
</tr>
<tr>
<td>Caesarean section</td>
<td>22</td>
</tr>
<tr>
<td>Placental weight, grammes</td>
<td>260.5 (99–470)</td>
</tr>
<tr>
<td>Cord length, centimetre</td>
<td>28 (15–59)</td>
</tr>
</tbody>
</table>

Fig. 1. The distribution of placental lesions in our study group. A single placenta can have more than one lesion. Abbreviations: MVU, maternal vascular underperfusion; AIUI, ascending intrauterine infection; FTV, foetal thrombotic vasculopathy; and NRBCs, nucleated red blood cells.
3.3. Placental pathology and SNAPPE

SNAPPE ranged from 1 to 53 (median 10). The number of placental lesions did not correlate with SNAPPE (Fig. 2). Regarding specific pathologies, SNAPPE was significantly higher in the presence of FTV, elevated NRBCs, and if maternal vascular underperfusion co-existed with elevated NRBCs. In the presence of these three pathological categories, the respective median SNAPPE was 20, 20, and 25 points higher (Mann–Whitney U, p < .05) (Fig. 3).

Furthermore, a higher SNAPPE correlated with the coiling index of the umbilical cord (median 0.29, range 0.06–0.57) with Spearman’s rho = 0.359 (p = .029).

Regarding placental pathology consistent with MVU in the absence of elevated NRBCs, no association with SNAPPE was found. Infants with this type of pathology (n = 24) had a median SNAPPE of 10, while those without (n = 16) had a median SNAPPE of 10.5. Placental signs of AIUI did not affect SNAPPE either, not even when we subdivided the infants whose placentas showed AIUI into a maternal or a foetal response. The same held true for chronic, predominantly low-graded villitis, chronic deciduitis, perivillous fibrinoid, chorioamniotic haemosiderosis, cord length, and placental weight.

Because the associations of the various individual placental pathologies with SNAPPE may be interdependent, we used multivariate linear regression, applying the transformed logarithm of SNAPPE. In the multivariate model we entered pathological placental entities, including

Table 2

Presence of placental pathology specified by gestational age and birth weight.

<table>
<thead>
<tr>
<th>Placental lesions</th>
<th><28 week n=9</th>
<th>≥28 week n=31</th>
<th><1 kg n=8</th>
<th>≥1 kg n=32</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVU (n=24)</td>
<td>4</td>
<td>20</td>
<td>7</td>
<td>17</td>
</tr>
<tr>
<td>AIUI (n=17)</td>
<td>6</td>
<td>11</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>Chronic deciduitis (n=10)</td>
<td>1</td>
<td>9</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Chronic villitis (n=6)</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>FTV (n=6)</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>[NRBCs (n=6)</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Chorangiosis (n=3)</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Perivillous fibrinoid (n=1)</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td>Chorioamniotic hemosiderosis (n=1)</td>
<td>1</td>
<td>–</td>
<td>1</td>
<td>–</td>
</tr>
</tbody>
</table>

The distribution of placental lesions specified by gestational age (<28 weeks and ≥28 weeks) and by birth weight (<1 kg and ≥1 kg). The numbers exceed 100%, because a single placenta can have more than one lesions.

Abbreviations: MVU, maternal vascular underperfusion; AIUI, ascending intrauterine infection; FTV, foetal thrombotic vasculopathy; and NRBCs, nucleated red blood cells.

3.4. Discussion

This study indicated that several placental lesions were associated with higher illness severity of preterm infants during the first 24 h after birth. These lesions included elevated nucleated red blood cells, foetal thrombotic vasculopathy, placental pathology consistent with maternal vascular underperfusion plus elevated nucleated red blood cells, and a high coiling index of the umbilical cord. Other lesions, such as ascending intrauterine infection, were not related to illness severity during the first 24 h after birth. Our hypothesis was therefore confirmed for some, but not all, lesions.

The strongest association existed with elevated NRBCs in the placenta. Elevated NRBCs are a marker for foetal hypoxia. Elevated NRBCs are different in kind from the other placental lesions. They are all potential causes of foetal physiological disruption, while elevated NRBCs are the result of or indicators for this disruption [2]. Placental lesions, especially chronic and sub acute lesions, may even be antecedents of elevated NRBCs [19]. Redline found that elevated

Table 3

Backward, multivariate linear regression: SNAPPE”.

<table>
<thead>
<tr>
<th>B</th>
<th>95% CI</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>2.130</td>
<td>1.786–2.474</td>
<td>12.540</td>
</tr>
<tr>
<td>Elevated NRBCs</td>
<td>1.098</td>
<td>0.210–1.987</td>
<td>2.504</td>
</tr>
</tbody>
</table>

Multivariate analysis using backward linear regression of placental pathology for SNAPPE.

N = 40, r² = 0.149. Abbreviations: NRBCs, nucleated red blood cells; CI, confidence interval; and SNAPPE, score of neonatal acute physiology perinatal extension.

* Transformation SNAPPE into: log (SNAPPE).
NRBCs in term infants were significantly more common in the placentas of infants who later developed cerebral palsy [19]. This signifies that foetal distress, whether or not recognised, may lead to a high illness severity of the infant immediately following birth. The placental lesions potentially leading to foetal hypoxia may be severe. Placental pathology consistent with MUVC could be responsible, since elevated NRBCs frequently co-existed with MVU. This combination could be considered a more severe form of MVU, because of the presence of foetal hypoxia. Following multivariate regression, our data suggested that particularly elevated NRBCs, and not MVU, contribute to higher illness severity. Previous findings are in conflict on this point. A recent study reported that placental pathology consistent with maternal vascular underperfusion was often present, and possibly causative, in intrauterine foetal deaths, especially between 24 and 32 weeks of gestation [4]. Another study, in term infants, reported that maternal vascular underperfusion is not associated with neurological impairment [2]. Our findings in live-born preterm infants were consistent with the latter study.

FTV was also associated with higher illness severity. FTV is characterised by devascularised distal villi and is often accompanied by identifiable organising thrombi in upstream feeding vessels in the chorionic plate or large stem villi [20]. In term infants FTV is highly associated with neurologic impairment and cerebral palsy [3]. Another recent study reported that FTV was also associated with a higher incidence of obstetric and perinatal complications and an increase in foetal cardiac abnormalities [21]. This is in line with our findings in preterm infants that illness severity is higher during the first 24 h after birth in the presence of FTV. In the present study, however, the association with SNAPPE was not as strong as the elevated NRBCs. After performing multivariate regression, FTV was no longer an independent factor related to illness severity.

The present study indicated that the coiling index of the umbilical cord was also associated with illness severity. It has been suggested that both a low and a high coiling index are related with adverse perinatal outcome [22,23]. A normal coiling index is between 0.1 and 0.3 [22]. The median in our group was 0.29. This means that almost half of the umbilical cords of our infants had a high coiling index. In our study the higher coiling index was indeed associated with higher illness severity. Previously, a high coiling index was associated with asphyxia and intrauterine growth restriction [23]. Both items are part of the SNAPPE score. Furthermore, it has been demonstrated that a high coiling index is associated with foetal thrombosis [24]. This may lead to a higher illness severity, which we found in our study. However, in our study the foetal thrombotic vasculopathy was not associated with the coiling index.

To our surprise, placental signs of AIUI were not associated with higher illness severity during the first 24 h after birth. A previous study found that AIUIs are associated with neurological impairment in later life [2], possibly due to elevated cytokines and cardiovascular instability. Exposure of the foetal lung to chorioamnionitis may, however, induce lung maturation leading to a lower illness severity immediately after birth [25]. We think this might be the reason why we could not find an association of ascending intrauterine infection with illness severity.

We did not evaluate illness severity with some placental lesions because they rarely occurred in our study group; these included high grade foetal choriocarcinoma, diffuse villous oedema and recent non-occlusive choriocarcinoid vessel thrombi in association with chorioamnionitis. Previously, these lesions have been associated with adverse neurological outcomes [26].

The present study demonstrated that placental pathology frequently accompanies birth before 32 weeks of gestation. Only three placentas did not show any placental pathology, while the others showed a wide range of various pathologies, alone or in combination. This may reflect that conditions associated with preterm birth are frequently caused by a diversity of pathological placental lesions. This does not necessarily imply that these pathological lesions all lead to higher illness severity. The number of placentals lesions was not associated with illness severity.

We recognise several limitations of our study. Firstly, we only included singletons so as to be certain the right placenta was linked to the right infant. It might be that placental pathology in twins is different, e.g. in the case of twin-to-twin transfusion. Secondly, our study had a low sample size. Thirdly, we did not check complete neonatal blood counts for presence of NRBCs. Previously it was reported that the diagnosis of elevated NRBCs by placental examination alone is significantly associated with elevated NRBCs in complete neonatal blood count [19]. Finally, we limited our outcome to neonatal illness severity during the first 24 h following preterm birth. It might well be that an adverse clinical course due to placental pathology only becomes apparent later on.

Our findings may have implications for clinical practise. Placental pathology is very common following preterm birth. An understanding of those pathological lesions that are most frequently associated with illness severity may reveal the relevant pathophysiological mechanisms that lead to neonatal morbidity. Our findings suggested that prenatal hypoxia and activation of foetal coagulation might act as mediators in causing higher illness severity in preterm infants. An increase of haematocrit, because of the hypoxia, may consequently also give rise to a higher chance of thrombosis. Strategies should be aimed at detecting these conditions before birth and finding preventive measures to improve the outcomes of these infants.

In conclusion, this study indicated that placental pathologies including elevated nucleated red blood cells and foetal thrombotic vasculopathy were associated with higher illness severity during the first 24 h after birth in preterm infants. Ascending intrauterine infection was not associated with a high illness severity.

Acknowledgements

This study was part of the research program of the postgraduate school for Behavioral and Cognitive Neurosciences, (BCN), University of Groningen. Annemiek Roescher, Marrit Hitzert and Elise Verhagen were financially supported by a Junior Scientific Master Class of the University of Groningen. We greatly acknowledge the help of Drs. Hans Burgerhof for his statistical advice and of Dr. Titia Brantsma-van Wulffen Palthe in Utrecht for correcting the English manuscript.

References

