Melting of a β-Hairpin Peptide Using Isotope-Edited 2D IR Spectroscopy and Simulations

Adam W. Smith,† Joshua Lessing, Ziad Ganim, Chunte Sam Peng, and Andrei Tokmakoff*

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139

Santanu Roy, Thomas L. C. Jansen, and Jasper Knoester

Center for Theoretical Physics and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

Received: May 3, 2010

Isotope-edited two-dimensional infrared spectroscopy has been used to characterize the conformational heterogeneity of the β-hairpin peptide TrpZip2 (TZ2) across its thermal unfolding transition. Four isotopologues were synthesized to probe hydrogen bonding and solvent exposure of the β-turn (K8), the N-terminus (S1), and the midstrand region (T10 and T3T10). Isotope-shifts, 2D lineshapes, and other spectral changes to the amide I 2D IR spectra of labeled TZ2 isotopologues were observed as a function of temperature. Data were interpreted on the basis of structure-based spectroscopic modeling of conformers obtained from extensive molecular dynamics simulations. The K8 spectra reveal two unique turn geometries, the type I $'\beta$-turn observed in the NMR structure, and a less populated disordered or bulged loop. The data indicate that structures at low temperature resemble the folded NMR structure with typical cross-strand hydrogen bonds, although with a subpopulation of misformed turns. As the temperature is raised from 25 to 85 °C, the fraction of population with a type I $'\beta$ turn increases, but the termini also fray. Hydrogen bonding contacts in the midstrand region remain at all temperatures although with increasing thermal disorder. Our data show no evidence of an extended chain or random coil state for the TZ2 peptide at any temperature. The methods demonstrated here offer an approach to characterizing conformational variation within the folded or unfolded states of proteins and peptides.

Introduction

Protein conformational dynamics lie at the heart of numerous biophysical processes, including protein folding, substrate binding, molecular recognition, and self-assembly. Historically, such processes were often conceived in terms of rigid protein molecules with minimal conformational degrees of freedom. However, structure formation in such processes involves a complex interplay between the favorable energy of contact formation and conformational entropy. Protein flexibility and conformational heterogeneity are intrinsic to all systems, but this disorder and its role in biophysical processes remains difficult to study and describe experimentally. This stems from a paucity of methods that can explore these questions. Conformational dynamics occur over picosecond and longer time-scales, and atomistic structural resolution in solution is only routinely available from computer simulations. The most detailed experimental observations have emerged from magnetic resonance spin relaxation rate measurements that characterize inherently disordered proteins,1 residue-level protein folding,2 transient protein–protein complexes,3,4 and microsecond structural fluctuations.$^5–8$

Two-dimensional infrared spectroscopy (2D IR) is an emerging method that is being used to directly measure structure and conformational dynamics in proteins and peptides.$^9–14$ Analogous to multidimensional NMR, 2D IR observes structure-sensitive vibrational couplings through cross peaks in a 2D spectrum.15 In addition, 2D lineshapes provide information on molecular flexibility and solvent exposure through their peak frequency and ellipticity. Time-dependent changes to cross peaks and lineshapes reveal chemical exchange processes and fluctuations. Since the measurement time scale for vibrational spectroscopy is in the picosecond range, such studies provide an avenue to characterize conformational variation and ultrafast fluctuations. The technique has been used to measure protein structure and dynamics with particular focus on the amide I vibrations, which are sensitive to secondary structure and local hydrogen bonding geometry of the peptide groups.$^9–12,16–20$

This paper describes our investigation of the structure of a β-hairpin peptide using isotope-edited 2D IR to site-specifically investigate the conformation of its backbone as a function of temperature. In this mode, the isotope-shifted amide I band can...
be used to infer local structure and dynamics through variations in its vibrational frequency or couplings to other vibrations. Our approach combines 2D IR spectroscopy on a series of peptide isotopologues with spectroscopic modeling of the peptide’s conformers. This pair of tools is used to develop a picture of conformational heterogeneity across the thermal unfolding transition.

The system that is studied is a 12-residue hairpin peptide trpzip2 (TZ2) designed by Cochran et al.21 It has received significant attention in the literature, with multiple experimental studies and numerous theoretical treatments.17,22–27 Within the last several years, TZ2 has become a benchmark system which is now used in the development of new simulation techniques.22,26,28–30

The trpzip peptides were engineered with four tryptophan residues arranged with two side chains on each of the opposing β-strands that lead to a remarkably stable system through the favorable perpendicular stacking of the indole rings.21 Our interest in this system is motivated by unsolved questions regarding the folding of these peptides. Single-domain peptides like β-hairpins display conformational dynamics that mirror the folding of larger globular proteins.31,32 Discussion of hairpin folding mechanisms are often guided by two simple pictures: (1) the kinetic zipper model, in which nucleation of the β-turn is followed by “zipping” of cross-strand backbone contacts;33–35 and (2) hydrophobic collapse, in which initial clustering by a core of hydrophobic side chains precedes formation of native backbone contacts.36,37

Experimental fluorescence38–40 and IR absorption41–43 measurements have monitored the kinetics of hairpin unfolding on 1–10 μs time scales but have not reached agreement on which model best describes the folding.41,43,44 Often, folding of this peptide is described within the framework of a two-state folding model, although its validity and the nature of the two states is unclear.5

Molecular dynamics (MD) simulations of TZ2 folding have provided intricate details that enrich and challenge these two models, such as partial hydrophobic collapse, fraying of the terminal residues, ordering of backbone hydrogen bonds, salt bridging, and rearrangements of the hydrophobic core.30,45,46 To date, however, the complex set of possible folding pathways observed by simulations have not led to a consensus view of the folding mechanism. Experimental evidence has substantiated this complexity and supports a rough free energy landscape in which there are a number of populated minima.30 To date, the structural details of this heterogeneity have not been experimentally observed, particularly in the peptide backbone. The key information missing from these studies is specific details of hydrogen bond and side chain contact formation at a level of detail that can distinguish conformers.

To obtain residue-level structural insight in the thermal denaturation of TZ2, we use amide I 2D IR in combination with 13C and 18O isotope-labeling methods.11,18–20,47–52 Inserting these labels into the peptide amide group red shifts the amide I vibrational frequency away from the main band and provides a spectroscopic probe of the labeled site. Four isotopologues are used to probe cross-strand contacts and isolate peptide units in the turn, termini, and central region of the folded structure (see Figure 1).

In the first isotopologue, S1, an 18O isotope is introduced into the N-terminal serine to probe the stability and fraying of the terminal peptide groups. In the second, T10, an 18O label is placed on the T10 site to monitor the midstrand contacts. The third, TT, also monitors midstrand contacts using 13C isotopologues at threonines T3 and T10 of the peptide. The two labeled amides of TT are hydrogen bound across the β-strands in the folded structure, and vibrational coupling between these sites provides sensitivity to the interstrand contacts in this region.53 Finally, the isotopologue K8 has a 13C label incorporated into the lysine-8 residue to probe the thermal disordering of the β-turn.

The interpretation of 2D IR spectra uses a structure-based spectroscopic model that draws on molecular dynamics simulations of the TZ2 peptide in water. Our spectral simulations make use of the extensive set of TZ2 conformers obtained from the molecular dynamics simulations of Swope and co-workers,30,46 and accompanying Markov state analysis of Chodera et al.29 Experimental amide I frequency shifts and 2D lineshapes are assigned and interpreted on the basis of calculated 2D spectra for these Markov states. Spectra are calculated using the local amide I Hamiltonian that describes the amide I frequency shifts of the peptide groups and vibrational couplings between these groups.34–57 The amide I site frequencies are mapped onto the local molecular electric field.55,56,58,59 This describes the red-
shifting of the amide I frequency upon hydrogen bonding to the peptide unit.

The disorder and local fluctuations of each conformer is reflected in the 2D line shape of the labeled site. The diagonal line width of the 2D IR peak is sensitive to the degree of conformational disorder, whereas the antidiagonal width reflects the fluctuations and time scale of interchange. Therefore the ellipticity of the line shape is inversely related to the time scale over which the vibration samples the possible configurations. A large value of the ellipticity indicates significant disorder in the corresponding local structure. Fast fluctuations in structure and hydrogen bonded solvent lead to round peaks.

This study establishes a detailed picture of the conformational changes upon temperature-induced unfolding of T22. The isotopologues provide evidence that the termini disorder as the temperature is raised, and the central region retains cross-strand contacts. Further we find explicit evidence for distinct conformers of the turn, and that the population of the expected type I turn increases with temperature. Taken together, these observations reveal a temperature varying heterogeneous ensemble, whose conformers all experience thermally induced fraying, but do not unfold into a random coil structure. In addition to this agreement with previous results, the work shown here gives a level of detail unattainable with other methods. Isotope-editing provides structural detail at the level of individual amide groups with higher spectral resolution than FTIR spectroscopy, while resolving picosecond dynamics that report on peptide flexibility and solvent exposure.

Material and Methods

Peptide Samples. For experimental studies, the unlabeled peptide, UL, was prepared using Fmoc-based solid phase peptide synthesis on a PS3 peptide synthesizer (Protein Technologies Inc.). Each T22 isotopologue was prepared as a C-terminal amide, which is consistent with previous experimental work. The solid support was a Rink Amide MBHA resin (01-64-0037, Novabiochem), and Fmoc-protected amino acids were obtained from PTI Instruments in prepackaged cartridges at four molar excess HBTU activator and amino acid. The primary reaction solvent was DMF (EM-DX1732; EMD Chemicals; 99.9% purity). Removal of the Fmoc groups at each step was done with 20% piperidine in DMF (PTI Instruments), and the coupling reaction was carried out in 0.4 M N-methylmorpholine/DMF activator solution (PTI Instruments). A cleavage cocktail of 95% TFA and 5% TIPS was used to remove the peptide from the resin and the acid-labile protecting groups from the side chains. Purification was performed with a C18 HPLC column and two-phase buffer gradient: (buffer A) 0.1% TFA in H2O and (buffer B) 80% acetonitrile, 0.085% TFA in H2O. The mass spectrum of the final product is provided in the Supporting Information.

The midstrand isotope-labeled compound, TT, was prepared with a 13C atom in the C’ carbon (identified as †) of the Thr3 residue (S†WTWENGKWTK). Labeled serine was synthesized directly from Fmoc-serine-ÔH (Novabiochem) using acid catalyzed hydrolysis. Anhydrous HCl gas was bubbled through Fmoc-Ser-ÔH in H218O:acetoniitrile (approximately 1:4 by volume), and then heated at 80 °C for four weeks. MALDI mass spectrometry of the amino acid was used to verify that the substitution was successful, with an approximately 75% isotopic enrichment of the carbonyl oxygen atoms. For use in peptide synthesis, the serine hydroxyl group was protected by a silination reaction using N-methyl-N-tet(butyldimethylsilyl) trifluoroacetamide (MTBSTFA) in the procedure of Madson et al. Specifically, 139 mg of 18O labeled serine was dissolved in 15 mL of DMF and 3 mL of MTBSTFA, where it silinates both the side chain hydroxyl group and the carboxylic acid. The reaction solution was lyophilized and the remaining peptide was then suspended in hexane (20 mL). Ethanol (1.1 mol excess relative to Ser) was added to selectively desylinate the carboxylic acid. The resulting amino acid was used in an Fmoc-SPPS synthesis identical to that of UL. MALDI-TOF mass spectrometry of the labeled T22-S1 verified the mass of the isotope-labeled peptide indicating that the isotope-labeled serine was incorporated into the peptide (Supporting Information).

The midstrand label, T10, was prepared with an 18O label in the carboxyl oxygen using the same method as described above for the N-terminal 13C S1 label. For infrared studies, residual TFA was removed from each peptide by lyophilizing against 20 mM DCI in D2O repeated at least three times. This also served to exchange the labile protons for deuterons. For FTIR spectra, each peptide was dissolved in pure D2O, and the pH was adjusted to 2.5 by adding 0.5–1.5 µL of 25 mM DCI. The low pH was chosen to avoid aggregation while measurements are being taken at high temperatures. Final peptide concentrations were between 10 and 12 mg/mL. The 2D IR spectra of UL, S1, and K8 were taken in a phosphate-buffered pH 7.0 solution at similar concentrations.

Spectroscopic Methods. Temperature dependent infrared absorption spectra of each peptide isotopologue were collected from 5 to 95 °C in 5 °C increments. The sample cell used in these measurements consists of ~25 µL of the peptide solution sandwiched between two 1 mm thick CaF2 windows that are separated by a 50 µm Teflon spacer. For temperature control, the cell was mounted in a brass housing whose temperature was regulated with water from a recirculating chiller. Spectra were acquired on a Nicolet 380 FTIR spectrometer at 1.0 cm⁻¹ spectral resolution by averaging 64 one-second scans.

2D IR spectra were collected as described in previous publications, with t1 = 100 fs and the polarization geometry all parallel (ZZZZ) unless otherwise noted. The evolution time, t2, was scanned to 1.5 ps for the nonrephasing spectrum and 2.0 ps for the rephasing spectrum at 4 fs time steps, and a rectangular window function was used for the Fourier transform.

Simulation and Modeling. To simulate 2D IR spectra, five kinetically metastable macrostates were chosen from the decomposition made by Chodera et al. Their work distilled the 3.23 µs of trpzip2 simulation data by Pitera et al. into 40 Markov states that displayed patterns in backbone hydrogen bonds and side chain packing. Each macrostate, which was
composed of 30 structurally related microstates with atomistic coordinates, was chosen to represent a different structural model of TZ2.

All molecular dynamics simulations were performed with GROMACS 3.3.1.54,65 The simulations of Pitera et al.46 considered the unblocked peptide, which was fully protonated here (+3 charge) with chloride counterions. Each of the atomistic structures comprising the macrostate was subjected to ~5000 steps of a steepest descent energy minimization to conform to the OPLS/AA force field.66–72 using the particle mesh Ewald method to treat long-range electrostatics.73 The peptides were solvated in a box of rigid SPC/E water74 that extended 1.5 nm from the solute, and the water was allowed to equilibrate for 10 ps in the NPT ensemble (300 K, 1 atm) while the peptide was fixed.75–78 The simulation was continued with no constraints, except on the bond lengths, for 1 ns of equilibration and 100 ps of data acquisition. Structures were saved every 20 fs to yield 5000 frame trajectories.

For each frame, a Hamiltonian was constructed using the ab initio based models given in refs 57 and 58

\[H_s = \sum_i \left(\omega_i B_i^\dagger B_i - \frac{1}{2} \Delta_i B_i^\dagger B_i^\dagger B_i B_i \right) + \sum_{ij} J_{ij} B_i^\dagger B_j \]

where \(B_i^\dagger \) and \(B_i \) are bosonic creation and annihilation operators for a vibration at site \(i \). The frequency of each site and the coupling between sites are given by \(\omega_i \) and \(J_{ij} \) respectively. The anharmonicity, \(\Delta_i \), lowers the energy for double excitation of site \(i \), and was fixed at 16 cm\(^{-1}\). The frequencies and coupling values were calculated as previously described.57,58 The transition dipoles for each site had a unit magnitude and were oriented 20° off the CO bond vector in the CN direction. Where applicable, the sites were isotope-labeled by shifting their frequency 41 cm\(^{-1}\) to the red.

The 2DIR spectra were calculated using the numerical integration of the Schrödinger equation (NISE) scheme.79,80 In this procedure the time-evolution matrices needed in the nonlinear response functions that govern the 2DIR spectra are calculated by solving the time-dependent Schrödinger equation. This is done numerically by dividing time into small intervals during which the Hamiltonian can safely be assumed to be constant. The time-evolution matrix for the time-independent Schrödinger equation can then be found for each interval and the time-evolution matrices for longer time periods are found by multiplying the matrices for the small intervals in a time ordered fashion. The resulting spectra were summed over each structure in the macrostate to produce spectra that reflected the disordered ensembles.

Results

Amide I’ FTIR Spectroscopy. FTIR spectra of the TZ2 isotopologues at 25 °C are shown in Figure 2. The peak maximum of the UL amide I’ band is 1636 cm\(^{-1}\), and there is a prominent shoulder at 1674 cm\(^{-1}\). On the basis of the NMR structure, these bands have previously been assigned to \(\nu_{1s} \) and \(\nu_{1p} \) excitonic transitions, delocalized vibrations of the amide backbone in which cross-strand peptide bonds oscillate in-phase or out-of-phase with one another.53,62 Twisting of the \(\beta \)-strands leads to two nearly degenerate \(\nu_{1s} \) vibrations located at the turn and midstrand regions of the peptide, while the \(\nu_{1p} \) vibration is largely localized at the turn. Because the spectra shown are taken at pH 2.5, the glutamic acid side chain carbonyl stretch contributes at 1710 cm\(^{-1}\).51

![Figure 2.](image)

Changes to the IR spectrum upon isotope substitution are also plotted in Figure 2 for K8, T10, TT and S1. Isotope-labeling leads to small shifts in intensity and frequency of the \(\nu_{1s} \) and \(\nu_{1p} \) bands, and an increase of amplitude to the red of the bands from the isotope-labeled peptide carbonyl. As seen in difference spectra relative to UL, K8 has a broad (~35 cm\(^{-1}\)) increase in intensity from \(\nu_{K8} = 1585–1615\) cm\(^{-1}\), indicating significant structural heterogeneity at this site. The \(\nu_{1s} \) band of K8 narrows and shifts slightly to the blue (1638 cm\(^{-1}\)), suggesting that isotopic substitution significantly rearranges the underlying \(\nu_{1s} \) eigenstate composition.

In addition to a drop in intensity in the \(\nu_{1s} \) band, the T10 spectrum shows a pronounced shoulder at 1627 cm\(^{-1}\) due to the labeled peptide group. This is a relatively high frequency, indicative of a single moderately strong hydrogen bond to the oxygen as expected from the NMR structure. Upon labeling both threonines (TT), spectral loss is observed at 1640 and 1675 cm\(^{-1}\), and a broad absorbance gain is observed at \(\nu_{TT} \) = 1610 cm\(^{-1}\). The additional red shift of \(\nu_{TT} \) relative to UL at 1610 cm\(^{-1}\), and the additional red shift of \(\nu_{1p} \) relative to UL at 1610 cm\(^{-1}\), reflect the strength of coupling between the cross-strand labeled oscillators of the \(\nu_{TT} \) band. Labeling both of the threonine residues red-shifts the midstrand \(\nu_{1s} \) vibration and also perturbs the high frequency, \(\nu_{1p} \). A similar but narrower band was observed at 1608 cm\(^{-1}\) for the TZ2 mutant TZ2-T3A*T10A*.25

The FTIR spectrum of S1 is qualitatively similar to the UL spectrum. The peak absorption frequency is red-shifted by 2 cm\(^{-1}\) relative to UL, and the difference spectrum reveals a slight shift in the relative intensities of the bands.
transitions. As described previously, the UL spectrum shows a difference spectrum of two structurally distinct subensembles. The 18 cm$^{-1}$ transition is not observed in the FTIR, and the peak splitting between v_{\perp} and v_{1} peaks is 37 cm$^{-1}$ in the ω_{1} dimension. Coupling between v_{\perp} and v_{1} vibrations is observed in the off-diagonal region as ridges that extend along $\omega_{1} = 1630$ and 1674 cm$^{-1}$.

For K8, the most striking feature in the 2D IR spectrum is the observation that the v_{K8} band is composed of two distinct diagonal peaks: one at 1593 cm$^{-1}$ (v_{K8-1}) and the other at 1611 cm$^{-1}$ (v_{K8-2}), with no detectable cross peak between them. (See also Figure 6.) Also, the diagonal line width of v_{K8-1} ($\sigma = 6.9$ cm$^{-1}$) is broader than v_{K8-2} ($\sigma = 4.5$ cm$^{-1}$). Strong coupling of the v_{K8-2} to the v_{1} band is observed as a ridge extending to $\omega_{1} = 1612$ cm$^{-1}$ and $\omega_{1} = 1650$ cm$^{-1}$ (Figure 6). The presence of two shifted peaks for a single K8 isotope-label is an indication of two structurally distinct subensembles. The 18 cm$^{-1}$ peak splitting between these features indicates that the conformers differ considerably in hydrogen bonding configuration to the K8 peptide oxygen. The relatively high frequency of v_{K8-2} indicates a single hydrogen bond to oxygen. The most reasonable explanation for this observation is that the v_{K8-2} peak originates in a properly folded type I$'$ turn in which the labeled oxygen has a single cross-strand hydrogen bond. The v_{K8-1} peak frequency is characteristic of a peptide group with two or more hydrogen bonds and a higher degree of configurational freedom. This suggests a solvent exposed carbonyl that might be present in a disordered or bulged turn.

For T10, the main excitonic band retains the Z-shaped contours of UL, but an additional sharp peak from the labeled site is observed at $\omega_{1} = \omega_{3} = 1630$ cm$^{-1}$. Like v_{K8-2} this high frequency is suggestive of a single hydrogen bond to oxygen as seen in the NMR structure. In the 2D IR spectrum of the double labeled species, TT, the v_{\perp} band is well-resolved at 1602 cm$^{-1}$, and the splitting between v_{\perp} and v_{\perp} in the ω_{1} dimension is 28 cm$^{-1}$. The additional red-shift relative to T10 arises from strong coupling between the Thr3 and Thr10 amides forming a midstrand v_{\perp}-like mode. Changes to the 2D IR v_{1} band relative to the other isotopologues are dramatic, including loss of off-diagonal structure and a diagonal line width increase of approximately 21 cm$^{-1}$. This line width change suggests that the eigenstate distribution of TZ2-TT is much more heterogeneous than in the other peptides.

The 2D IR spectrum of S1 does not show a peak corresponding to the 18O label in the serine group; however, there are changes relative to UL along the diagonal. The v_{\perp} band of the S1 2D IR spectrum, which has a resolvable peak at 1674 cm$^{-1}$ in the UL spectrum, now appears as a diagonal ridge to the blue of the v_{\perp} band. In addition there is a 2 cm$^{-1}$ red-shift to 1634 cm$^{-1}$ and line-narrowing of the v_{\perp} peak. These observations indicate that the frequency of the UL S1 site energy is relatively high (≈1675 cm$^{-1}$) and that labeling moves the oscillator into resonance with the v_{\perp} exciton band. This would also explain the lack of both a resolvable peak and interstrand coupling observed between labeled residues in the TZ2 mutant TZ2-S1A*-T10A*.

Temperature-Dependent Spectra. Temperature-dependent amide I' FTIR spectra of each isotope-labeled hairpin are shown in Figure 4. Each spectrum shows similar trends with temperature, including the loss of amplitude in the v_{\perp} region and rise of amplitude in the 1660 cm$^{-1}$ region commonly attributed to disordered chains. To characterize the overall melting behavior, singular value decomposition (SVD) of the entire amide I' band is carried out for each data set. For each isotopologue, the data is well described with the first two spectral components. Spectral changes with temperature are characterized by the second SVD component, and are shown as melting curves in Figure 5. The melting curves are nearly identical and each show slight curvature without a distinct cooperative unfolding transition.

![Figure 3. 2D IR Spectra of TZ2 isotopologues at 25 (top) and 75 °C (bottom).](image-url)
at pH 7.62

observe specific spectral regions within the band. The relative component spectra. (Bottom) FTIR peak absorbance versus temperature. the temperature-dependent FTIR spectra. The inset shows the second CD measurements17,23,24,82 and is identical to the earlier UL data.

This data is consistent with previous IR, fluorescence, and UV-CD measurements17,23,24,82 and is identical to the earlier UL data at pH 7.2.

In addition to SVD characterization, it is also useful to observe specific spectral regions within the band. The relative intensities of the isotope-shifted peaks of K8, T10 and TT are compared with the ν₁ peak of UL in Figure 5. Intensities are obtained by averaging the absorbance around the peak positions (ν = ±5 cm⁻¹), and are compared by overlaying the curves between 70–95 °C. This demonstrates that the melting behavior follows the same trends for all spectroscopic features between 55 and 95 °C. The melting curves for ν₁ peak intensities of all isotopologues have profiles matching the second SVD component melting curves within 10%. Similarly, the intensity of the T10 and TT labels both track the SVD melting curves, suggesting that these curves report on the interstrand contacts in the central region of the peptide. For K8, the νK₈₋₁ region changes quasi-linearly with increasing temperature. In contrast, the νK₈₋₂ region is largely unchanged for temperatures <40 °C. This melting behavior suggests that the νK₈₋₂ peak reports on peptides with a natively structured turn, while the νK₈₋₁ peak reports on non-native turn configurations that show a melting curve similar to that expected for a less-stable or disordered peptide. The high apparent melting temperature of the νK₈₋₂ peak suggests that the natively structured turn region is in fact more stable than the rest of the peptide and could account for the residual backbone structure previously reported over similar temperatures.

Temperature-dependent changes to the 2D IR spectra of each isotopologue can be seen by comparing the 25 and 75 °C spectra shown in Figure 3. Along the diagonal axis (ω₁ = ω₂), spectral shifts track those observed in the FTIR data, and spectral features broaden along the antidiagonal axis with increasing temperature. In our analysis, we concentrate on the center frequency, amplitude, and 2D lineshapes of the isotope-labeled features. The line shape can be characterized by their widths parallel and perpendicular to the diagonal axis. The diagonal line width (σ) reflects inhomogeneous broadening that originates in static structural disorder on the time scale of the experiment (~2 ps). Antidiagonal widths (Γ) report on rapid frequency shifts that originate in subpicosecond peptide-solvent interactions and structural fluctuations. The relative magnitudes of these line-widths, or ellipticity E = (σ² + Γ²)/Γ², measured as a function of temperature can be used to interpret changes from static disorder to dynamic disorder due to increasing structural flexibility and solvent exposure.61

Spectral changes to the UL 2D IR data are similar to those reported earlier at pH 7, which were interpreted as fraying of the termini and an intact turn at all temperatures. The antidiagonal line width grows with temperature for both of the β-sheet modes in the 2D IR spectrum (data not shown). The full width at half-maximum (FWHM) of the ν₁ band is only ~2.0 cm⁻¹ larger than that of the ν₁ band at 15 °C, but the slope of the line width increase versus temperature of ν₁ is twice that of the ν₁ band.

Thermally induced spectral changes to the ν₈ peaks can be seen more clearly in Figure 5. As the temperature of the system increases, the spectrum responds both to structural rearrangements and shifting populations between native and misfolded ensembles. The center frequency of the νK₈₋₁ and νK₈₋₂ bands does not change with temperature, but the amplitudes of both peaks decrease. In addition, the νK₈₋₁ intensity decreases with respect to the νK₈₋₂ peak, indicating that the native turn is more stable than the disordered turn. Linewidth changes to the TZ2-K8 spectra are consistent with those of the unlabeled hairpin (Figure 7). The slope of the line fit to the FWHM of the ¹³C ν₁ band (0.058 ± 0.012 cm⁻¹/°C) is twice as large as the corresponding slope of TZ2-UL (0.020 ± 0.006 cm⁻¹/°C). For the νK₈₋₁ and νK₈₋₂ peaks, the FWHM measurement is noisier

Figure 4. Temperature-dependent FTIR spectra of each TZ2 isotopologues taken from 10 to 85 °C in 15 °C increments (pH 2.5). Line color shows progression from cold (blue) to hot (red).

Figure 5. (Top) Second component amplitudes from SVD analysis of the temperature-dependent FTIR spectra. The inset shows the second component spectra. (Bottom) FTIR peak absorbance versus temperature. The ¹³C peak intensities are obtained from the absorbance within 5 cm⁻¹ of the amide I peak maximum. The integration regions for other traces are νK₈₋₁, 1588–1598 cm⁻¹; νK₈₋₂, 1612–1619 cm⁻¹; νTT, 1603–1611 cm⁻¹. Traces are scaled to overlap between 70 and 95 °C.
due to lower signal strength. However, the line width of the high frequency peak, ν_{K8-2}, does not display a significant slope with temperature, indicating that the homogeneous broadening does not increase significantly with temperature. The limited resolution of the ν_{K8} peaks prevents a quantitative description of the diagonal line width. However, in the spectra shown in Figure 6 there does not seem to be any clear sign of diagonal peak broadening with temperature.

Together, these observations support the idea that two bands are reporting on subensembles of peptides for which the relative population shifts with temperature, but the line width properties remain relatively constant. The presence of two isotope-shifted peaks in the turn may reflect two distinct conformational states of the peptide; however, from the K8 measurement alone one cannot rule out additional states that have the same type of solvent exposure in the turn. Of course, conformational dynamics will be present that interconvert these turn structures. Not surprisingly, if a two state analysis is applied to this exchange of conformers (K8-1 to K8-2), one finds that the temperature-dependence does not follow van’t Hoff behavior (Figure 7). However, on average the frequency of the ν_{TT} peak and magnitude of cross-strand coupling remains unchanged from lower temperatures. These disordering pathways are consistent with the fraying transition described in previous hairpin simulations.30,84,85

Simulation Results. To better interpret how the observed amide I spectral features report on peptide conformation, structure-based modeling of 2D IR spectra was applied to five sets of TZ2 conformers drawn from the Markov state analysis of Chodera et al.29 Each configuration chosen for the spectral simulations should be viewed as an ansatz from which structural features can be identified that play an important role in determining the spectroscopy. One representative structure from each Markov state chosen is shown at the top of Figure 8, but conformational disorder varies for each of these states, as shown in the Supporting Information. Specifically, we focused on the following five conformational ensembles:

• “Folded” (FO, 250851) is a well-ordered ensemble that has an average of four backbone hydrogen bonds, which correspond to those in the NMR structure.21 The S1, T3, K8, and T10 carbonyls are all oriented for cross strand hydrogen bonds, and all four tryptophan side chains are packed to one face of the peptide.
“Bulged Turn” (BT, 214369) is a compact coiled structure with a well-solvated, bulged turn region and an average of one cross-strand hydrogen bond that appears near the strand termini. This state contains S1, T3, K8, and T10 peptide carbonyls that are solvent exposed, and tryptophan side chains make rare contacts.

“Disordered” (SR, 271154) is a disordered ensemble whose common feature is a bulged turn and an average of one backbone hydrogen bond with a misaligned registry near the C terminus. Tryptophans are poorly organized.

“Frayed” (FR, 11131) has a compact properly formed type 1’ turn region with an average of two backbone hydrogen bonds.

Figure 8. 2D IR spectral simulations of all five TZ2 isotopologues studied for five different conformational ensembles. One representative structure for each conformer macrostate is presented. Simulations of K8 for the spectral region $\omega_1 < 1650$ cm$^{-1}$ have the amplitudes scaled by a factor of 10^9.

"Bulged Turn" (BT, 214369) is a compact coiled structure with a well-solvated, bulged turn region and an average of one cross-strand hydrogen bond that appears near the strand termini. This state contains S1, T3, K8, and T10 peptide carbonyls that are solvent exposed, and tryptophan side chains make rare contacts.

“Disordered” (SR, 271154) is a disordered ensemble whose common feature is a bulged turn and an average of one backbone hydrogen bond with a misaligned registry near the C terminus. Tryptophans are poorly organized.

“Frayed” (FR, 11131) has a compact properly formed type 1’ turn region with an average of two backbone hydrogen bonds,
The mean value gives for the five Markov states. (Bottom) Distribution of calculated amide e and a longer component assigned to sampling of backbone functions for the site energy showed biphasic behavior, with a appear to be insensitive to conformation. Time-correlation the FO and BT conformers. On the other hand, S1 and T10 K8 vary in such a way that the mean frequency is unique for 9, with the remainder in the Supporting Information. It is Histograms for sites S1, T3, K8, and T10 are shown in Figure 9.

As a first point of contact to experiment, we used electric field mapping to calculate histograms of amide I site energies for the 11 peptide units of the backbone. The red-shift is formed. The νK8 peak is split from the amide I maximum by 25–30 cm⁻¹, and the diagonal line width is a compact 5–6 cm⁻¹. In addition, a distinct cross peak is observed between the νK8 and νl bands in the calculated spectra for these states. For each of the other structures (SR, BT, and ED) the K8 oxygen has higher water exposure on average, although with higher variance in hydrogen bonds formed. The νK8–νl amide I peak splitting for each of the corresponding spectra is 30–36 cm⁻¹, and the label resonance has distinctly broader diagonal linewidths of 10–14 cm⁻¹. The calculated BT spectrum shows the largest shift and line width. The observed differences can be attributed to variation in hydrogen bonding to the K8 carbonyl. Fully solvated carbonyls will on average participate in two hydrogen bonds to water, as opposed to one cross-strand hydrogen bond in the case of properly folded β turns. For the K8 carbonyl, we find that each hydrogen bond contributes on average a 16 cm⁻¹ red shift. However, the correlation between hydrogen bond number and red-shift is mild (r = -0.53). Therefore the solvent-exposed K8 conformers should exhibit an additional red shift relative to FO, but the conformational disorder and fluctuations in peptide backbone and water hydrogen bonds will also lead to a larger inhomogeneous width. Based on these observations, we conclude that the νK8–1 peak represents peptides with non-native turns, and the high frequency νK8–2 peak reports on structures with native type I β-turns.

Figure 9. (Top) Isotope-labeled TZ2 amide I site energy distributions for the five Markov states. (Bottom) Distribution of calculated amide I site energies grouped by number of hydrogen bonds. A linear fit to the mean value gives ω = 1645.7 cm⁻¹ – 16.3 × (no. of CO H-bonds).
two configurations of the glutamic acid side chain and backbone dihedrals that differed in O(K8)···O(C(E5)) separation by 6.1 and 6.8 Å were predicted to be observed with frequency splitting of 12 cm\(^{-1}\). The observation of these two conformers required a protonated form of the glutamic acid (\(pK_a\) 4.6). We ruled this out as an explanation of the two K8 peaks in experiments because the amide I resonances in FTIR and 2D IR spectra exhibit no pH dependence between pH 2.5 and 7.

The T10 peptide carbonyl adopts a variety of conformations in the Markov states simulated. In the case of the FO and FR states it is oriented for a cross-strand hydrogen bond, for BT it is entirely solvent exposed, and for SR and ED it samples a variety of configurations. In simulated spectra we note that a conformer with solvent exposed T10 carbonyl gives rise to a structured excitonic spectrum and a red-shifted and spectrally distinct T10 peak, whereas the internally hydrogen bonded site gives a peak merged with the excitonic band, as observed in experiment. For the SR and ED states, the intensity of the labeled transition is greatly diminished over the intense band seen in the completely water-exposed state. Of all simulations, the FR state corresponds best to the low temperature experimental spectra. These observations demonstrate that the T10 experimental spectra provide evidence of a T10 carbonyl that participates in a single cross-strand hydrogen bond over the temperature range sampled.

For 2D simulations of TT, we find that all conformers except ED have a resolvable red-shifted peak arising from the TT label. In the case of the disordered states SR and ED, there is little change in the spectrum between the T10 and TT simulations, which reflects the limited correlation between the positions of their T3 and T10 peptide units. For the FO and FR conformers, which have close T3-T10 contacts, a distinct \(\nu_{\text{TT}}\) peak is observed although the T10 spectrum showed no distinct T10 isotope-shifted feature. This is a result of the additional red-shift of the \(\nu_{\text{TT}}\) band as a result of T3-T10 amide \(\gamma\) coupling, which varies between 6–7 cm\(^{-1}\) for the FO conformers and leads to a \(\nu_{\text{TT}} - \nu_\perp\) splitting of >30 cm\(^{-1}\). Comparing the T10 and TT 2D spectra for the BT state shows few differences besides additional inhomogeneous broadening of the \(\nu_{\text{TT}}\) transition. Each of the simulated spectra containing proximal T3 and T10 sites bear similarity to the experimental spectra, but those that compare favorably to the calculated T10 and TT spectra are FR and FO. Finally, we note that the intensity of the simulated \(\nu_{\text{TT}}\) feature scales with the strength of coupling between the two threonine sites. From these observations, we conclude that contacts between strands in the central region of the peptide exist throughout the temperature range studied. We also conclude that out-of-registry structure is not significantly populated in the equilibrium conditions observed here.

Simulations of the S1 spectrum were used to address the lack of a distinct peak for the \(^{18}\)O peptide site, and the shifts in intensity and line shape seen in FTIR and 2D IR spectra. In general, for the Markov states studied, the S1 site is protected from the solvent, because the serine side chain and terminal -NH\(_2\) both prefer to be oriented to the solvent, and because tryptophan side chains interfere with water penetration to the S1 carbonyl. Thus, the S1 site energies are generally high regardless of conformation. The FO state has many intact S1–W11 hydrogen bonds, the SR has S1 carbonyls that experience a range of solvent and side chain environments, and the FR is the most solvent exposed.

The experimental (S1-UL) FTIR difference spectrum indicates that intensity is lost at 1675 and 1640 cm\(^{-1}\) upon S1 labeling. Simulations of this spectrum for various conformers shows that this characteristic double peak loss feature matches those observed in the FO state, whereas other states show a single loss feature (see Supporting Information). Cross-strand hydrogen bonding between the S1 and W11 in the FO state lead to strong coupling across the \(\beta\)-strand and a low frequency \(\nu_\perp\)-like mode which is decoupled from the rest of the band and shifts upon \(^{18}\)O isotope-labeling. However, the high frequency loss features in FTIR and 2D IR are also present in BT, SR, and FR, which have high site energies and weak coupling to the remaining peptide units. \(^{18}\)O labeling shifts the S1 vibrational frequency for each system from very high energies (\(\geq 1700\) cm\(^{-1}\)) in the unlabeled spectrum to frequencies just to the blue of the \(\nu_\perp\). The distribution of S1 configurations available in these conformers suggests that the S1 site is generally disordered at all temperatures.

Discussion and Conclusions

Spectral changes to the amide I band of TZ2, using four isotopic substitutions to probe the \(\beta\)-turn (K8), the N-terminus (S1), and the midstrand region (T10 and TT) of the hairpin structure, provide a site-specific description of the thermal denaturation of this \(\beta\) hairpin. The \(^{13}\)C\(^{\#}\) label at K8 reveals two unique turn geometries, the type I/\(\beta\)-turn observed in the NMR structure \(v_{\nu_{K8-2}}\), and a less populated disordered or bulged loop \(v_{\nu_{K8-1}}\). Structural disorder within the \(v_{\nu_{K8-2}}\) band does not increase significantly with temperature, from which we conclude that the \(\beta\)-turn structures remain well-ordered. The \(v_{\nu_{K8-1}}\) population in contrast does decay with temperature, indicating a relatively unstable loop. The hairpin retains interstrand contacts in the midstrand T3-T10 region over the entire temperature range as evidenced by the consistently high frequency of the T10 resonance and coupling-shifted TT resonance. Unlike \(v_{\nu_{K8-2}}\), the \(2D_\gamma\) line shape changes from a heterogeneously broadened peak to a more symmetric homogeneously broadened peak, indicating that this region experiences an increase in the magnitude of picosecond fluctuations in the peptide, its internal contacts, and immediate surroundings. Spectroscopy of the N-terminal serine group amide group puts constraints on the possible conformations of the termini. From our observations, we believe that S1 is free to explore a large configurational space, relative to the other labeled residues. These vary from structures in which the S1 amides are hydrogen bonded to the W11 amide to structures in which there is no interaction with the other peptide amides.

Additional information on the TZ2 turn is available from recent experiments on turn labeled TZ2-G7\(^*\) and spectroscopic simulations based on the NMR structure.\(^{17,85}\) An isotope-shifted peak was well-resolved in the room temperature 2D IR spectrum, and shown to be consistent with a solvent exposed amide groups. In addition, 1 ps waiting-time 2D IR data revealed cross peak structure to the G7\(^*\) site that was attributed to different solute–solvent substates. These observations are consistent with our assignments, and can be explained with our conformer simulations. The dominant isotope-shifted peak is at 1595 cm\(^{-1}\), reflecting the high degree of solvent exposure of the G7 carbonyl observed in the FO structure. Other conformers studied have lower solvent exposure and considerable disorder, leading to higher transition frequencies, as observed in experiment.

The picture that emerges from these data provides a detailed view of a heterogeneous thermal fraying process. The 25 °C state includes roughly 60% conformers that retain most of the cross-strand contacts seen in the NMR structure, whereas others have midstrand hydrogen bonding contacts and a bulged loop. As temperature is raised, the ends fray for all molecules,
becoming more solvent exposed, and introducing more disorder into the central contacts of the hairpin. Contacts remain within the central region of the hairpin, but on average the turn is more ordered. No idealized unfolded state with fully solvated backbone is observed. These results add structural insight to the building body of evidence that TZ2 folding is heterogeneous. Further, these data provide a point of reference for testing the conformational variation and energy landscape observed by TZ2 molecular dynamics simulations.

These results also provide insight into the kinetics observed in temperature-jump unfolding experiments. We have evidence of different compact conformers and that the extended state is never realized under the conditions studied here. Therefore T-jump experiments do not characterize an idealized transition from folded to random coil structure. Instead such experiments characterize the shifting distribution of conformational substates, and changes in thermal disorder within those minima. In the future, transient T-jump 2D IR experiments will provide an avenue to more directly follow the evolution of conformational distributions. Such experiments could use folding rates to test for a correspondence of our K8 conformers with the Trp fluorescence wavelength dependent folding rates observed by Gruebele.

Curiously, the type I’ turn appears to be favorable at high temperature. One can rationalize the origin of this apparent annealing by comparison of Markov states. The frayed state provides the possibility of packing W4 and W9 side chains about the turn which is not possible with the bulged turn. As such it appears that the desolvation entropy for water about tryptophans plays a key role in determining the relative stability of these conformers. This counterintuitive shift of turn stability could be compared with cold-denaturing transitions attributed to hydrophobic hydration.

What can we say about the TZ2 and the folding pathways of β hairpins? While it was originally assumed that there is a choice to be made between zipping and hydrophobic collapse, it appears that both of these processes play crucial roles for the folding of TZ2. For TZ2, the simulations seem to be in agreement that folding proceeds from the turn to the termini, but that this “zip-out” process involves both contacts between W4 and W9 and turn hydrogen bonding contacts. This hybrid zipper type model explains the varying experimental views that both the nature of the turn and the hydrophobic packing are critical to hairpin folding.

Our observations closely match those of Gao and co-workers, who recently performed MD simulations of the sequence dependent temperature-dependence of β hairpin folding. Temperature-dependent studies of TZ2 unfolding indicated that there was a propensity for the HB closest to the turn (E5-G7) to form as the temperature is raised, even though other HB tended to rupture. These authors used clustering analysis of states during TZ2 folding to argue that the folding mechanism from an extended state is dominated by a zip-out mechanism in which the turn forms first, although they do identify bulged configurations along the folding path. Hydrophobic clustering and cross-strand HBs were favorable at low temperature in the central region, whereas the frayed state was favored at high temperature.

Recently there have been several studies of peptide structure with isotope-labeled 2D IR spectroscopy that demonstrate the capabilities of this method for insight into backbone conformation and hydrogen bonding environment. This work indicates the potential of the method to unravel systems with conformational heterogeneity and disorder. With an appropriately large set of trial conformers and increased improvements in spectroscopic modeling, one should be able to use self-consistent modeling of multiple isotopologues to provide a detailed picture of the global range of conformations adopted by the peptide. Experimentally, one can also imagine that for cases such as TZ2, 3D IR spectroscopy on multiply labeled peptides can provide a higher level of conformational detail by correlating the local structural environment between multiple sites of the same peptide. Such experiments provide an avenue to characterize conformational heterogeneity of rapidly exchanging conformers of proteins and peptides in folded and disordered states.

Acknowledgment. We thank Bill Swope for providing us with the Markov states used in our modeling. We are indebted to John Chodera, Vijay Pande, Jed Pitera, and Bill Swope for extensive conversations on the simulation and analysis of TZ2 folding mechanisms and heterogeneity. For advice on various steps in the peptide synthesis, we thank Khaled A. Nasr and Dan Kemp. Additional technical support was provided by Jongjin Kim. This work was supported by the U.S. National Science Foundation (CHE-0316736, CHE-0616575, and CHE-0911107 to A.T.), the U.S. Department of Energy (DE-FG02-99ER14988 to A.T.), the David and Lucile Packard Foundation, and the ACS Petroleum Research Fund. Z.G. thanks the Poitras Predoctoral Fellowship for Fellowship support. T.L.C.J. acknowledges The Netherlands Organization for Scientific Research (NWO) for support through a VIDI grant.

Supporting Information Available: Details on the synthesis and calculations including (1) mass spectra of the synthesized peptides, (2) temperature dependent trends in FTIR and 2DIR spectra of TZ2 isotopologues, (3) table of spectral features in simulated 2D IR spectra of TZ2 isotopologues, (4) visualization of Markov states, (5) histograms of TZ2 site energies from simulations, (6) analysis of site frequency shifts as a function of hydrogen bonding, and (7) spectral simulations for single structures. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes
