Chain length dependence of the helix orientation in Langmuir–Blodgett monolayers of α-helical diblock copolypeptides†

Le-Thu T. Nguyen, Aditya Ardana, Eltjo J. Vorenkamp, Gerrit ten Brinke and Arend J. Schouten*

Received 18th January 2010, Accepted 14th April 2010
First published as an Advance Article on the web 10th May 2010
DOI: 10.1039/c001163k

The effect of chain length on the helix orientation of α-helical diblock copolypeptides in Langmuir and Langmuir–Blodgett monolayers is reported for the first time. Amphiphilic diblock copolypeptides (PLGA-b-PMLGSLG) of poly(α-l-glutamic acid) (PLGA) and poly(γ-methyl-l-glutamate-$ran-\gamma$-stearyl-l-glutamate) with 30 mol% of stearyl substituents (PMLGSLG) of various block lengths were studied. The tilt angle between the helices and the substrate-normal decreases upon increasing the transfer pressure coincident with “double brush” formation. The hydrophobic block length strongly affects the maximum surface chain density and thereby the helix orientation of the diblock copolypeptides. Increasing the degree of polymerization of the hydrophobic block (DP$_{\text{PMLGSLG}}$) results in an increase in the helix tilt angle tentatively attributed to the off-axis interactions of the unscreened peptide dipoles between the parallel aligned α-helices. In those cases where the alkyl side chains surround the PMLGSLG helices, the smallest helix tilt angle of 29° for the PMLGSLG block and 67° for the PLGA block were obtained for the diblock copolymer of DP$_{\text{PLGA}}$ 37 and DP$_{\text{PMLGSLG}}$ 24. For smaller DP values of the hydrophobic block, in particular the diblock copolymer having DP$_{\text{PMLGSLG}}$ 11, the long alkyl side chains are partially expelled from the brush layer and the α-helices of the PMLGSLG block are oriented nearly perpendicular to the interface.

Introduction

Polymer brushes provide a powerful tool for surface modification as well as for fabrication of highly oriented ultrathin films with controlled surface chemistry and functionality. They have attracted great interest for numerous applications in colloid stabilization, actuation and sensing, and nano- and biotechnology.†–§ Polymer brushes of α-helical synthetic polypeptides are particularly intriguing in this respect due to a large electric field generated by the accumulation of unidirectionally aligned helix macrodipoles.4,§

The surface-grafting-from technique of α-helical polypeptides has been published revealing the interesting electrical properties of these systems.6,7

An alternative way to prepare ultra-thin layers of unidirectionally aligned α-helical polypeptide brushes is via the use of the Langmuir-Blodgett (LB) technique and amphiphilic block copolymers as spreading materials. The latter method overcomes the disadvantage of difficulty in analyzing the grafted polymers in the former approach. Several polypeptide-based amphiphilic systems have been explored by fabrication of Langmuir and LB monolayers with unidirectional helix orientation.8–15 For these layers, the α-helices are usually oriented with a certain tilt angle with respect to the surface normal.

Fourier transform infrared reflection absorption spectroscopy (FT-IR/RAS) has been used to measure the average tilt angle between the helix axis and the surface normal in these studies and depending on different polypeptide systems, different values of the helix tilt angle have been published.11–15

The molecular orientation in Langmuir monolayers can be affected by various factors, including the mutual interactions of polymeric segments and the interactions of the segments with the tethering surface.16 In addition to the specific chemical structure of the amphiphilic polymer system, the chain length of the hydrophobic and hydrophilic segments is expected to be an important factor in controlling the tilting of the helices. However, so far there has been no systematic demonstration of the influence of chain length on the helix orientation in the monolayers of polypeptide amphiphiles.

To estimate the average helix tilt angle, FT-IR/RAS on gold surfaces has been widely used applying the “surface selection rule”, of which only transition dipole moment components perpendicular to the surface can be detected.17 Using a film of the same polypeptide type with a known helix orientation as a reference for calculating a proportionality constant K, which relates to the intrinsic oscillator strengths of the amide I and amide II vibrations specific to that polypeptide, the orientation of the α-helices can be revealed. The “surface selection rule” of specular reflection FT-IR spectroscopy for metal substrate-supporting thin layers was first described by Greenler.18 However, dispersion effects leading to band shifts and distortions in specular reflection FT-IR spectra have been highlighted.19,20

In particular for α-helical diblock copolypeptides, the amide absorption bands, characteristic of the α-helix structure for the two blocks, are usually closely positioned and even overlapping.

Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

† Electronic supplementary information (ESI) available: FT-IR spectra of PtBuLG-b-PMLGSLGs, and X-ray reflectivity electron density profiles and fit parameters. See DOI: 10.1039/c001163k
Evaluation of the helix orientation for such a system has been reported for an amphiphilic diblock copolymer of poly(γ-tert-butyl-L-glutamate) and poly(α,ω-dialkylpoly(ε-caprolactone)). The authors assumed the same average helix tilt angle for both blocks by considering the α-helical amide I and amide II absorptions as single bands. However, this might lead to erroneous tilt angle values, because the two blocks, with different cross-sectional areas and chain lengths, can be tilted at different angles to the surface normal and the proportionality constant can be different for different polyamino acids.

The present work examines for the first time the effect of chain length on the helix orientation and the Langmuir and LB monolayers of unidirectionally aligned α-helices. For this, we studied amphiphilic diblock copolypeptides of poly(α,ω-dialkylpoly(ε-caprolactone)) and poly(γ-tert-butyl-L-glutamate–ran-γ-stearyl-L-glutamate) with 30 mol% of stearyl substituents (PLGA-b-PMLGSLG), which have been found to form stable double-brush monolayers with the α-helices tilted away from the interface. Here, we performed the helix orientation analysis method reported by Wieringa et al. using transmission FT-IR spectroscopy for thin films on silicon substrates, which was developed by the approach described by Enriquez et al. In this method, the incoming IR light is normal to the substrate surface and only transition dipole moment components parallel to the surface can be observed. For the LB monolayers of the PLGA-b-PMLGSLG diblock copolypeptides, the helix tilt angle was calculated separately for the two blocks by careful band identification and deconvolution. Moreover, as the average helix tilt angle relates to the chain length and the layer thickness, small angle X-ray reflectivity was used as an alternative method to confirm the transmission FT-IR results and to deduce the layer properties.

Experimental section

Materials

α-Helical PLGA-b-PMLGSLG was synthesized via a diblock copolymer precursor consisting of poly(γ-tert-butyl-L-glutamate) (PtBuLG) and PMLGSLG, with the tert-butyl group as a mild acid-labile protecting group for the carboxylic acid (Scheme 1). A detailed description of the synthesis can be found elsewhere. The molecular weights of PtBuLG-b-PMLGSLG were characterized by 1H NMR (CDCl₃) and gel permeation chromatography (tetrahydrofuran eluent, polystyrene standard, universal calibration). The polydispersity indexes (PDIs) of the diblock copolymers studied are slightly smaller for copolymers of larger degrees of polymerization (DPs), and are in the ranges of 1.16–1.34 for the PtBuLG block and 1.15–1.37 for the corresponding PtBuLG-b-PMLGSLG, respectively. The tert-butyl group was removed using trifluoroacetic acid (TFA). The PLGA-b-PMLGSLG diblock copolymers (PLGA-b-PMLGSLGs) are abbreviated as CoPo_m.n, where m and n denote the DPs of the PLGA and PMLGSLG blocks, respectively. PLGA (DP = 60) was obtained by hydrolysis of PtBuLG using TFA. PMLGSLG (DP = 118) was prepared by random copolymerization of γ-methyl and γ-stearyl L-glutamate N-carboxyanhydrides (70:30 mole ratio) in chloroform at 0 °C using triethylamine as initiator.

Surface pressure–area (π–A) isotherms

π–A isotherms were measured using a home-modified computer-controlled Lauda Filmbalance (FW2), with an accuracy of 0.05 mN m⁻¹. The water used for the sub-phase was purified by reverse osmosis and subsequently through a Milli-Q filtration system. The acidic pH of the sub-phase was adjusted by adding a HCl (2 N) standard aqueous solution (Aldrich). PLGA-b-PMLGSLGs were spread from N-methylpyrrolidone (NMP) (Acros, 99.9%)/chloroform (Lab-Scan, 99.9%), (3/7, v/v) solutions with 1–3% (v/v) of acetic acid (Acros, 99.5%) added, at a concentration of 0.4–0.6 mg mL⁻¹. PLGA was spread from an NMP/chloroform (3/7, v/v) solution at a concentration of 0.5 mg mL⁻¹. PMLGSLG was spread from a chloroform solution at a concentration of 0.6 mg mL⁻¹. The compression speeds were 38.5 cm² min⁻¹ for PMLGSLG and ca. 19 cm² min⁻¹ for the others.

Stabilization of monolayers

The surface pressure was maintained at a constant value while the surface area was monitored as a function of time. The monolayer stabilized when the surface area remained constant with time and this surface area is defined as the stabilization point at that pressure.

Substrate preparation

The double-sided polished silicon wafers (Topsil Semiconductor Materials A/S, Frederikssund, Denmark, 1000 ± 25 μm thick) and quartz slides used as substrates were cleaned by treating them with a mixture of H₂O₂ (Merck, 30%)/NH₃ (Merck, 25%)/H₂O (1 : 1 : 5, v/v/v) for 30 min at 60 °C, followed by extensive rinsing with Milli-Q water, ultrasonication in a mixture of HCl (Merck, 37%)/H₂O (1 : 6, v/v) for 25 min, rinsing with Milli-Q water, and finally ultrasonication in methanol (Lab-Scan, 99.8%), methanol/chloroform (Lab-Scan, 99.9%), (1 : 1, v/v) and chloroform for 15 min. The cleaned silicon wafers were hydrophobized by treating them with a mixture of hexamethyldisilazane (Acros, 98%)/chloroform (1 : 4, v/v) at 50 °C, and rinsed with chloroform before use.

Langmuir–Blodgett films

Deposition of LB films was carried out in the vertical mode. The sub-phase temperature was maintained at 20 ± 0.1 °C. Transfer
of a monolayer of PLGA-b-PMLGSLGs onto a hydrophilic silicon substrate was done at down- and up-stroke speeds of 100 and 10 mm min\(^{-1}\), respectively, for CoPo\(_{59_82}\) and at down- and up-stroke speeds of 100 and 1 mm min\(^{-1}\) for the other PLGA-b-PMLGSLG diblock copolymers. Monolayers were deposited onto both sides of the hydrophilic substrates during the upward stroke. Transfer ratios were around unity (\(\approx 1\%\)). Multilayer films of PMLGSLG and PtBuLG-b-PMLGSLGs were deposited onto hydrophobized silicon substrates by Y-type transfer, at 20 mN m\(^{-1}\) and at down- and up-stroke speeds of 3 mm min\(^{-1}\).

Transmission Fourier transform infrared (transmission FT-IR)

Transmission FT-IR measurements of films on double-sided polished silicon substrates were performed at a resolution of 3 cm\(^{-1}\), under vacuum on a Bruker IFS66 V/S FT-IR spectrometer equipped with a MIR DTGS detector. A sample shuttle accessory was used for interleaved sample and background scanning. A clean silicon substrate was used as the reference. Each spectrum is an average of 40 cycles of 120 scans.

Curve-fittings of the side chain ester (C=O stretching), acid (C=O stretching), amide I (mainly C=O stretching) and amide II (mainly C–N stretching) regions of transmission FT-IR spectra were performed using Bruker OPUS software (version 4.2). The parameters were optimized using a Levenberg–Marquardt algorithm\(^{24,25}\).

Small angle X-ray reflectivity

Small angle X-ray reflectivity measurements of LB films on silicon substrates were performed in \(\theta/2\theta\) geometry on a Philips X’pert materials research diffractometer (MRD) instrument, employing copper \(K\alpha\) radiation of 1.541 Å and with a divergence slit of 1/8 degrees, an anti-scatter slit of 1/4 degrees and a progressive receiving slit of 0.3 mm. The X-ray tube was operated at \(V = 40\) kV and \(I = 40\) mA. For analysis, the measured reflectivity, \(R\), was normalized by the Fresnel reflectivity, \(R_F\). To model the electron density distribution along the \(z\)-direction, the film was divided into slabs (boxes) with thicknesses \(d_i\), electron densities \(\rho_i\), and interface roughnesses \(\sigma_i\), between slabs \(i\) and \(i + 1\), using a home-made computer program written in IDL 6.0 by Hibma\(^{26}\). A separate SiO\(_2\) layer was not taken into account in the simulation, as this layer contributes insignificantly to the reflectivity of the wafer (\(PSiO\big/PSi = 0.95\)) and could not be resolved for the reflectivity curves of bare silicon wafers\(^{27}\).

Results and discussion

Surface pressure-area (\(\pi-A\)) isotherms

Fig. 1 shows the \(\pi-A\) isotherms for the PLGA-b-PMLGSLG diblock copolymers with different block lengths spread on pure water at 20 °C, in comparison with those for the two separate polymers, PLGA and PMLGSLG. Please note that the \(x\)-axis is expressed as area per molecule, which produces a large dependency of the isotherms on the degree of polymerization. The isotherms of PLGA and PMLGSLG have been reported in literature\(^{28,29}\). PLGA is surface active to some extent, exhibiting a transition at a low surface pressure of below 15 mN m\(^{-1}\).

The isotherm of PMLGSLG shows a steep rise in pressure upon compression due to the packing of the \(\alpha\)-helices lying flat on the water surface, followed by a liquid-condensed phase and subsequently a plateau transition indicating monolayer collapse at about 25 mN m\(^{-1}\).

The PLGA-b-PMLGSLG diblock copolymers give rise to completely different \(\pi-A\) isotherms. Upon compression, the \(\pi-A\) isotherms first show a transition at a low surface pressure which is analogous to the isotherm of PLGA, spread under the same condition, and might be attributed to the immersion of the PLGA block into the sub-phase. Another transition in the isotherms occurring above 40 mN m\(^{-1}\), only clearly observed for CoPo\(_{59_82}\) and CoPo\(_{53_63}\), might be related to rearrangement of the PMLGSLG chains into a denser and more ordered packing. At surface pressures beyond this transition, film deposition resulted in an incomplete transfer, probably because at this stage the monolayers do not maintain their molecular mobility. All the diblock copolymers show high collapse surface pressures of 50–55 mN m\(^{-1}\).

Brewster angle microscopy images of the monolayers of PLGA-b-PMLGSLG diblock copolymers give rise to different \(\pi-A\) isotherms. Upon compression, the \(\pi-A\) isotherms first show a transition at a low surface pressure which is analogous to the isotherm of PLGA, spread under the same condition, and might be attributed to the immersion of the PLGA block into the sub-phase. Another transition in the isotherms occurring above 40 mN m\(^{-1}\), only clearly observed for CoPo\(_{59_82}\) and CoPo\(_{53_63}\), might be related to rearrangement of the PMLGSLG chains into a denser and more ordered packing. At surface pressures beyond this transition, film deposition resulted in an incomplete transfer, probably because at this stage the monolayers do not maintain their molecular mobility. All the diblock copolymers show high collapse surface pressures of 50–55 mN m\(^{-1}\).
pressure buildup to 45 mN m\(^{-1}\) showed homogenous monolayers.\(^{21}\) The compression–decompression of these monolayers is a reversible process with a large hysteresis upon monolayer compression to a pressure above the second transition and no hysteresis before this transition.\(^{30}\)

The linear increment in surface pressure following the first transition in the isotherms of PLGA-\(b\)-PMLGSLGs corresponds to the packing and tilting of the PMLGSLG block segments away from the water surface after the PLGA block is immersed. Assuming the same maximum compression of the PMLGSLG blocks for all of the PLGA-\(b\)-PMLGSLGs \(i.e.\) their ultimate position is perpendicular to the water surface, the isotherms are expected to coincide at the point of monolayer collapse. However, some differences, in terms of molecular surface area, can be observed in the \(\pi-A\) isotherms of PLGA-\(b\)-PMLGSLGs.

The behavior of the diblock copolymers in the 3 regimes in the isotherms is shown schematically in Scheme 2. The first regime (Scheme 2a) is at the onset of the surface pressure buildup, where the diblock copolymer molecules lying flat on the water surface upon spreading just come into contact. This is supported by the agreement of the surface area measured with that calculated supposing that both blocks are lying parallel to the water surface as shown in Fig. 2. The second regime, the start of double-brush formation, occurs just after the PLGA block is pushed into the water sub-phase (Scheme 2b). The surface area per molecule corresponding to this regime can be indicated by extrapolation of the steep rise in pressure after the first transition to zero pressure. As shown in Fig. 3, this extrapolated area increases linearly with DP\(_{\text{PMLGSLG}}\). In the third regime, upon further compression to reduce the surface area, the \(\alpha\) helices become less tilted to the surface normal due to an increase in chain density at the interface (Scheme 2c). The difference in molecular surface area in this regime corresponds to the different surface chain density and hence reflects the different tilt order of the PMLGSLG block.

Generally, the relation between the average helix tilt angle \((\theta)\) and the layer thickness \((h)\) of an \(\alpha\)-helical polymer brush film is described in Scheme 3 and can be estimated as follows:

\[
\cos \theta = \frac{h}{L} = \frac{h}{0.15 \cdot \text{DP}}, \quad \theta < 90^\circ
\]

where \(L\) is the helix length, \(\text{DP}\) is the degree of polymerization, and 0.15 (nm) is the \(\alpha\)-helix pitch per monomer unit along the

Scheme 2 Simple schematic representation of the arrangement of the PLGA-\(b\)-PMLGSLG diblock copolymers with a long (A) and short (B) hydrophobic block at the air–water interface.

Fig. 2 Molecular surface area at the onset of surface pressure buildup of the PLGA-\(b\)-PMLGSLG monolayers. The calculated values were obtained by \(A_{\text{cal}} = 0.185 \cdot \text{DP}_{\text{PLGA}} + 0.265 \cdot \text{DP}_{\text{PMLGSLG}}\), assuming that both blocks are lying flat on the water surface; 0.185 and 0.265 (nm\(^2\)) are the monomer unit areas of PLGA and PMLGSLG, respectively, as deduced from the areas at onset pressures in their isotherms.

Fig. 3 Molecular areas extrapolated from the steep rise in surface pressure after the first transition to \(\pi = 0\) for the \(\pi-A\) isotherms of the PLGA-\(b\)-PMLGSLGs as a function of DP\(_{\text{PMLGSLG}}\).

Scheme 3 Schematic representation of the relation between the layer thickness \((h)\), the helix length \((L)\) and the average helix tilt angle \((\theta)\) in an \(\alpha\)-helical polymer brush film.

This journal is © The Royal Society of Chemistry 2010

Soft Matter, 2010, 6, 2774–2785 | 2777
helix axis. The volume of a helix can be estimated from the relation:

\[V = A \times h = \frac{DP \times M_0}{\rho \times L_AV} \quad (2) \]

where \(V \) is the molecular volume, \(A \) is the molecular surface area, \(M_0 \) is the repeating unit molecular weight, \(\rho \) is the polymer density and \(L_AV \) is the Avogadro’s number. From eqn (1) and (2), the average helix tilt angle can be estimated from the molecular surface area using the relation:

\[\cos \theta = \frac{M_0}{0.15 \times \rho \times A \times L_AV} \quad (3) \]

In the double-brush formation regime (the third regime), the molecular area in the \(\pi-A \) isotherms of PLGA-\(b \)-PMLGSLGs corresponds to the average surface area per helix of the PMLGSLG block. With the density of PMLGSLG at about 1.1 g cm\(^{-3}\), the relation between the average helix tilt angle of the PMLGSLG block and the molecular surface area can be derived as shown in Fig. 4. Obviously, the helix tilt angle decreases with decrease in molecular surface area, i.e. with increase in surface pressure. A comparison of the minimum helix tilt angles calculated from the minimum molecular areas (in the transferable region) for PLGA-\(b \)-PMLGSLGs is shown in Fig. 5. The minimum surface area and the corresponding helix tilt angle are observed to increase with increasing DP\(_{PMLGSLG}\).

![Fig. 4](image)

Fig. 4 Calculated average helix tilt angle of the PMLGSLG block (\(\theta_{PMLGSLG} \)) as a function of molecular surface area for the PLGA-\(b \)-PMLGSLG monolayers (solid line). A \(\rho_{PMLGSLG} \) of 1.1 g cm\(^{-3}\) is used for the calculation.

![Fig. 5](image)

Fig. 5 Measured molecular surface areas (squares) (from the isotherms in Fig. 1) and the corresponding calculated helix tilt angles (circles) of the PMLGSLG block at the highest surface pressures (in the transferable region) as a function of DP\(_{PMLGSLG}\). The highest surface pressure is at just before the second transition for CoPo\(_{53,63} \) and CoPo\(_{59,82} \), and is just before the monolayer collapse for the others.

![Fig. 6](image)

Fig. 6 Stabilization curves of CoPo\(_{59,82} \) at 20 °C and 35, 45, 48 and 50 mN m\(^{-1}\) (a, b, c and d, respectively); CoPo\(_{59,82} \) at 5 °C and 35, 45 and 48 mN m\(^{-1}\) (a’, b’ and c’, respectively); and CoPo\(_{53,63} \) at 20 °C and 47.5 mN m\(^{-1}\) (a”).
it seems that this transition also occurs for CoPo_{63_39}, although the monolayer collapses soon after that. Hence, the DP_{PMLGSLG} of 39 is likely to be a critical value below which monolayers of PLGA-b-PMLGSLGs exhibit a smectic C-like phase already at the beginning of double-brush formation regime (Scheme 2Bc).

In such a liquid-crystalline-like phase where the PMLGSLG block helices are oriented parallel to one another, besides the axial dipole components of the individual peptide units, their off-axis dipole components are distributed around, along the helix and can interact strongly with an off-axis dipole component in the neighboring z-helix. It has been reported that rod-like molecules with lateral permanent dipole moments can exhibit the smectic C mesophase.31 Using a mean-field theory, Govind and Madhusudana32 have shown that the off-axis character of the lateral polar groups is responsible for a molecular tilt in the smectic C phase of liquid crystals. Depending on the number, positions and strengths of the dipoles, the tilt angle can be varied to minimize the interaction energy of the oriented dipoles. It has also been indicated that molecules with stronger dipoles lead to smectic C crystals with larger tilt angles.32 To some extent, the off-axis dipole components of the peptide units may account for the formation of a tilted smectic layer of the helices in the monolayers of PLGA-b-PMLGSLGs. Increasing DP_{PMLGSLG} results in an increased number of the peptide dipoles, which may tentatively change the tilting potential and give rise to an increase in the average helix tilt angle.

The very small length of the PMLGSLG block in CoPo_{50_11} led to a completely different situation. The surface area of 1.50 nm2 at 40 mN m-1, the highest pressure where the monolayer was transferable, is smaller than the minimum cross-sectional area of a PMLGSLG helix with surrounding side chains. The helix length of the PMLGSLG block (1.65 nm corresponding to 11 monomer units, each 0.15 nm in length) is smaller than the length of the fully extended (all-trans) stearyl side chain (2.3 nm).28 Therefore, upon high compression the long side chain might be aligned along the helix with part of it going on top of the monolayer. Indeed, the observed surface area is in accordance with the helix cross-sectional area of poly(γ-methyl-l-glutamate), of 1.54 nm2, including the ester and methyl groups.33

Helix orientation by transmission FT-IR

The LB monolayers of the PLGA-b-PMLGSLG diblock copolymers were transferred onto both sides of hydrophilic silicon substrates and quartz plates. The monolayers consist of molecules that are in a predominantly \(\alpha \)-helix structure, as demonstrated by circular dichroism (CD) and transmission FT-IR.21 From the position and the absorption intensity ratio of the amide I and amide II bands in the transmission FT-IR spectrum of a polypeptide film, the polypeptide conformation and the average helix tilt angle can be determined.22 Due to the different orientations of the transition dipole moments of these vibrations, a higher amide I to amide II band area ratio (AI/AII) corresponds to a larger tilt angle between the helices and the surface normal.22 Fig. 7 shows representative spectra of the LB monolayers of PLGA-b-PMLGSLGs deposited onto silicon substrates at different surface pressures. For all the diblock copolymers, AI/AII decreases, indicating a decrease in the average helix tilt angle, upon increasing the transfer pressure.

Fig. 8 shows a set of representative curve fits of the ester and acid C=O stretching, amide I and amide II transmission FT-IR spectral regions for PMLGSLG, PLGA and PLGA-b-PMLGSLG. The band position, half-width and contour shape of all carbonyl and amide absorptions for both blocks of PLGA-b-PMLGSLG were determined from the curve fits of the transmission FT-IR spectra of PMLGSLG and PLGA. Table I shows band assignments and curve fit parameters observed for PLGA, PMLGSLG and PLGA-b-PMLGSLGs, in comparison with literature values. A small amount of the \(\beta \)-sheet structure is indicated by a small band shoulder positioned at 1626 cm-1, arising mainly from the PLGA block.34 Taking into account the orientations determined for the conformers,35 the \(\beta \)-sheet content was found to be around 10–23% of the PLGA block. This is in agreement with the fact that for PLGA oligomers a 100% \(\alpha \)-helix content cannot be formed.40 The \(\alpha \)-helix content of PLGA oligomers, at pH 3.5, has been reported to increase with chain length, from 25% for DP 12 to 70% for DP 40.40

The determination method of the average helix tilt angle (\(\theta \)) is described in ref. 22. The \(\theta \) values for the PMLGSLG and PLGA

Fig. 7 (a) Transmission FT-IR spectra of the LB monolayers of CoPo_{63_39} deposited at 6 (A), 20 (B), 30 (C) and 40 mN m-1 (D); (b) transmission FT-IR spectra of the LB monolayers of CoPo_{50_11} deposited at 20 (A), 30 (B) and 40 mN m-1 (C). The spectra are normalized to the band area of the side chain ester and acid C=O stretching vibrations at 1738 and 1711 cm-1.

This journal is © The Royal Society of Chemistry 2010

Soft Matter, 2010, 6, 2774–2785 | 2779
blocks were estimated from the α-helix AI/AII ratios corresponding to each block, using the following relation:

\[
\frac{\text{AI}}{\text{AII}} = K \frac{2 \sin^2 \theta \sin^2 \alpha_1 + \cos^2 \theta \cos^2 \alpha_1}{2 \sin^2 \theta \sin^2 \alpha_{II} + \cos^2 \theta \cos^2 \alpha_{II}}
\]

where \(\alpha_1\) and \(\alpha_{II}\) are the transition dipole moment angles of the amide I (38°) and amide II band (73°) with respect to the helix axis. To determine the proportionality constant \(K\), a reference sample with a known helix tilt angle is needed for each block. Because the PMLGSLG helices in an LB film are oriented parallel to the substrate surface, the helix tilt angle is 90° and AI/AII has its maximum value for this system. PLGA was spin-coated onto silicon substrates at different speeds, giving films with different thicknesses, indicated by the difference in intensity in the transmission FT-IR spectra (Fig. 9a). As shown in Fig. 9b, the film with the lowest thickness results in the highest AI/AII ratio, corresponding to the helices oriented largely parallel to the substrate. The AI/AII ratio of 3.92 obtained for this sample is very close to the AI/AII value of 3.88 obtained for a film prepared by transfer of the PLGA monolayer spread on the water surface at sub-phase pH 2. Thus, the AI/AII ratio of 3.92 was used as a reference corresponding to a helix tilt angle of nearly 90° for PLGA. The helix tilt angles estimated for the two blocks are summarized in Table 2 for the PLGA-b-PMLGSLG monolayers deposited at the maximum transfer pressures. Comparison of the FT-IR spectra of some of these LB monolayers is given in Fig. 10.

Assuming a random orientation of the side chain ester and acid groups, the chain density in an LB monolayer of PLGA-b-PMLGSLG can be correlated with the integral area of the C=O stretching vibration bands of these groups by the following relation:

\[
I_{\text{C=O}} = \frac{1}{A} (\text{DP}_{\text{PLGA}} + \text{DP}_{\text{PMLGSLG}})
\]

with \(I_{\text{C=O}}\) is the integral area of the spectral region of the C=O stretching vibrations, \(A\) is the molecular surface area and DP is the degree of polymerization. On this basis, the chain densities in the monolayers are roughly compared in Fig. 11. A higher chain density corresponds to a smaller tilt angle. Apparently, the change in the chain density agrees well with the estimated helix tilt angles shown in Table 2.

The transmission FT-IR results (Table 2, Fig. 10 and 11) show the same trend in the dependence of the helix tilt angle on the hydrophobic block length as observed from the isotherms (Fig. 5). The average helix tilt angle of the PMLGSLG block in the transferred monolayers considerably increases with increasing DP_{PMLGSLG}. The helix tilt angle of the PLGA block is slightly larger than that of the PMLGSLG block and changes with the same trend as the PMLGSLG block.

Helix orientation by small angle X-ray reflectivity
The average helix tilt angle can also be calculated from the layer thickness, as determined from small angle X-ray reflectivity measurements (Scheme 3 using eqn (1)). The X-ray reflectivity simulation results for monolayers transferred at different pressures are depicted for CoPo_{63-39} as an example in Fig. 12 and 13. At first, curve fits were performed with one-slab models. The best one-slab fits to the reflectivity curves for the LB monolayers of CoPo_{63-39} transferred onto silicon substrates at 6 and 20 mN m^{-1} are shown in Fig. 12. At 6 mN m^{-1} in the π-A isotherm, the monolayer is at the beginning of the transition corresponding to the immersion of the PLGA block in water.
Table 1 Band assignment and curve fit parameters for the transmission FT-IR spectra of PMLGSLG, PLGA and PLGA-b-PMLGSLG

<table>
<thead>
<tr>
<th>Vibration</th>
<th>Observed</th>
<th>In literature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Separate PLGA and PMLGSLG</td>
<td>PLGA-b-PMLGSLG diblock Copolymers</td>
</tr>
<tr>
<td></td>
<td>Frequency (FWHH, contour shape/cm⁻¹, fG)/cm⁻¹</td>
<td>Frequency (FWHH, contour shape/cm⁻¹, fG)/cm⁻¹</td>
</tr>
<tr>
<td>PMLGSLG</td>
<td>LB film</td>
<td>LB film</td>
</tr>
<tr>
<td>C=O (ester)</td>
<td>1738.5 (20, 0.65)</td>
<td>1738–1740 (21, 0.65)</td>
</tr>
<tr>
<td>Amide I (transition dipole interactions between helices)</td>
<td>1672</td>
<td>1669–1672 (for both blocks)</td>
</tr>
<tr>
<td>Amide I (z-helix, r₁)</td>
<td>1653 (16.5, 0.4)</td>
<td>1653–1654 (16–17, 0.4)</td>
</tr>
<tr>
<td>Amide II (z-helix, r₂)</td>
<td>1551 (14.5, 0.45)</td>
<td>1550–1551 (15–16, 0.45)</td>
</tr>
<tr>
<td>Overtone of Amide V</td>
<td>1540</td>
<td>1537–1539 (for both blocks)</td>
</tr>
<tr>
<td>Overtone of Amide II</td>
<td>1520</td>
<td>1513–1518</td>
</tr>
<tr>
<td>PLGA</td>
<td>Spin-coated film from DMF LB film</td>
<td>LB film</td>
</tr>
<tr>
<td>C=O (acid, non-hydrogen bonded)</td>
<td>1734 (35, 1)</td>
<td>1735–1737 (26–35, 1)</td>
</tr>
<tr>
<td>C=O (acid, dimer hydrogen bonded)</td>
<td>1707 (29, 0.6)</td>
<td>1709–1712 (24–33, 0.6)</td>
</tr>
<tr>
<td>Amide I (anti-parallel β-sheet, r₁)</td>
<td>1690</td>
<td>1685–1691</td>
</tr>
<tr>
<td>Amide I (transition dipole interactions between helices)</td>
<td>1672</td>
<td>1669–1672 (for both blocks)</td>
</tr>
<tr>
<td>Amide I (z-helix, r₁)</td>
<td>1652 (19, 0.4)</td>
<td>1650–1652 (22–23, 0.4)</td>
</tr>
<tr>
<td>Amide I (anti-parallel β-sheet, r₂)</td>
<td>1626</td>
<td>1626–1630</td>
</tr>
<tr>
<td>Amide II (z-helix, r₁)</td>
<td>1549 (19, 0.45)</td>
<td>1546–1548 (20, 0.45)</td>
</tr>
<tr>
<td>Overtone of Amide V</td>
<td>1538</td>
<td>1537–1539 (for both blocks)</td>
</tr>
<tr>
<td>Overtone of Amide II</td>
<td>1526</td>
<td>1526–1530</td>
</tr>
<tr>
<td>Overtone of Amide II</td>
<td>1514</td>
<td>1513–1518</td>
</tr>
</tbody>
</table>

Fig. 9 (a) Transmission FT-IR spectra of the PLGA films spin-coated from a 1 wt% solution in dimethylformamide onto hydrophilic silicon substrates at speeds of 1000 (A), 3000 (B), and 5000 rpm (C); (b) the spectra in Fig. (a) normalized to the band area of the C=O stretching vibrations of the side chain acid group at 1734 and 1707 cm⁻¹ (see Table 1 for band assignment).

The one-slab fit gives a film thickness of 1.75 nm, a film electron density of 0.370 e⁻/C² and a roughness of 0.69 nm (Fig. 12a). These values are similar to those reported for a monolayer of PMLGSLG with the helices parallel to the substrate. This confirms that at 6 mN m⁻¹ the PLGA-b-PMLGSLG monolayer is in the first regime as described in Scheme 2a. At a transfer pressure of 20 mN m⁻¹, the best one-slab fit gives an unreasonably high electron density of 0.505 × 10⁸ e⁻·nm⁻³ and the curve fit is insufficient at high scattering angles (Fig. 12b).

Instead, as shown in Fig. 13, the two-slab models resulted in good fits of the reflectivity curves for the films transferred at 20 mN m⁻¹ and at higher pressures. The first slab is assumed for the PLGA layer and the second slab for the PMLGSLG layer. The good fits using the two-slab models confirm the third regime of double-brush formation observed in the π–A isotherms. The increase in monolayer thickness, corresponding to a decrease in the helix tilt angle with increasing transfer pressure as demonstrated for CoPo₆₃-₃₉ at the range of 6–40 mN m⁻¹, agrees well with the isotherm and transmission FT-IR results.

With the exception of CoPo₅₀-₁₁, good two-slab fits were also obtained for the reflectivity curves of the LB monolayers of the other PLGA-b-PMLGSLG diblock copolymers transferred at 35–45 mN m⁻¹. The resulting curve fits are shown in Fig. 14 (see ESI† for electron density profiles and fit parameters). The electron densities of the first and second slab corresponding to the PLGA and PMLGSLG layer were determined to be 0.474 e⁻·nm⁻³ at 6 mN m⁻¹, 0.389 e⁻·nm⁻³ at 10 mN m⁻¹, and 0.350 e⁻·nm⁻³ at 20 mN m⁻¹; respectively. From the reported density and specific volume, the electron density of PLGA lies between 0.360–0.381 e⁻·nm⁻³ (from ρ = 0.675 cm³·g⁻¹ in DMF) and 0.505–0.503 e⁻·nm⁻³ (from the core density of esterified polyglutamates ρ = 1.58 g cm⁻³). The electron density of PMLGSLG derived from multilayer studies was reported to be 0.360 × 10⁻¹–0.381 × 10⁻¹ e⁻·nm⁻³ (from ρ = 1.1–1.154 g cm⁻³). Therefore, the electron density values obtained by the two-slab fits are reasonable. The ±2 to 3% difference in electron density from the reported limit values of the PMLGSLG slab for some PLGA-b-PMLGSLG LB monolayers probably arises from the different order of interchain interactions between the PMLGSLG block segments.
Table 2 Average helix tilt angles calculated from the transmission FT-IR and X-ray reflectivity results for the LB monolayers of PLGA-b-PMLGSLGs

<table>
<thead>
<tr>
<th>Entry</th>
<th>Maximum transfer pressure/mN m⁻¹</th>
<th>PLGA block</th>
<th>PMLGSLG block</th>
<th>PLGA block</th>
<th>PMLGSLG block</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AI/AII θ°</td>
<td>AI/AII θ°</td>
<td>Layer thickness/nm</td>
<td>θ°</td>
</tr>
<tr>
<td>1</td>
<td>PMLGSLG</td>
<td>3.92</td>
<td>6.69</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PLGA</td>
<td>3.67</td>
<td>4.73</td>
<td>77</td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td>CoPo_63_39</td>
<td>3.05</td>
<td>2.38</td>
<td>67</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>CoPo_37_24</td>
<td>3.34</td>
<td>3.36</td>
<td>41</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>CoPo_60_19</td>
<td>3.54</td>
<td>4.29</td>
<td>66</td>
<td>53</td>
</tr>
<tr>
<td>6</td>
<td>CoPo_59_25</td>
<td>3.29</td>
<td>5.44</td>
<td>72</td>
<td>66</td>
</tr>
<tr>
<td>7</td>
<td>CoPo_45_38</td>
<td>3.66</td>
<td>5.89</td>
<td>71</td>
<td>71</td>
</tr>
<tr>
<td>8</td>
<td>CoPo_53_63</td>
<td>3.69</td>
<td>6.08</td>
<td>74</td>
<td>74</td>
</tr>
<tr>
<td>9</td>
<td>CoPo_59_82</td>
<td>1.78</td>
<td>2.12</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td>CoPo_50_11</td>
<td>1.51</td>
<td>5.83</td>
<td>39</td>
<td>39</td>
</tr>
</tbody>
</table>

Fig. 10 Comparison of the transmission FT-IR spectra for the region of 1800–1475 cm⁻¹ of the LB monolayers of PLGA-b-PMLGSLGs (transfer pressures listed in Table 2) and an LB multilayer of PMLGSLG on silicon substrates. For ease of comparison, the spectral absorption intensities are normalized relative to the height of the amide II band.

Fig. 11 Correlation of the chain density from the absorption intensities of the side chain C=O stretching vibrations at 1738 and 1711 cm⁻¹ (circles) and the average helix tilt angles of the PMLGSLG block (triangles) and the PLGA block (squares) determined by transmission FT-IR for the LB monolayers of PLGA-b-PMLGSLGs (transfer pressures shown in Table 2).

Fig. 12 Left-hand side: best one-slab fits to the X-ray reflectivity curves of the LB monolayers of CoPo_63_39 transferred onto silicon substrates at 6 (a) and 20 mN m⁻¹ (b); the dots represent the experimental data and the full lines represent the fitted curves; curve a is shifted vertically for clarity. Right-hand side: electron density profiles corresponding to the curve fits (smooth curves); for clarity the same electron density profiles are shown assuming all interface roughnesses to be equal to zero (step-like curves).

Fig. 13 Left-hand side: two-slab fits to the X-ray reflectivity curves of the LB monolayers of CoPo_63_39 transferred onto silicon substrates at 20 (a) and 40 mN m⁻¹ (b); the dots represent the experimental data and the full lines represent the fitted curves; curve a is shifted vertically for clarity. Right-hand side: electron density profiles corresponding to the curve fits (smooth curves); for clarity the same electron density profiles are shown assuming all interface roughnesses to be equal to zero (step-like curves).
Surprisingly, for the LB monolayer of CoPo_50_11, transferred at 40 mN m\(^{-1}\), only a three-slab model gives a good fit of the X-ray reflectivity curve. The fit result is shown in Fig. 15 (see ESI\(^+\) for fit parameters). As discussed above from the \(\pi-A\) isotherm, it is indicated that part of the stearyl side chains is pushed out off the helix layer. In this case, the electron densities determined for the first, second and third slab are 0.460 \(\times\) 10\(^3\), 0.370 \(\times\) 10\(^3\) and 0.284 \(\times\) 10\(^3\) e\(^-\) nm\(^{-3}\), respectively, attributed to the electron densities of PLGA, PMLGSLG and fluid alkyl chains,\(^2\) respectively. A thickness of 1.37 nm was derived for the alkyl top layer, corresponding to about 60% of the full stearyl chain length.

The average helix tilt angles (\(\theta_{\text{PLGA}}\) and \(\theta_{\text{PMLGSLG}}\)) calculated from the layer thicknesses are listed for each block for the LB films of PLGA-b-PMLGSLGs in Table 2. Fig. 16 compares the values of \(\theta_{\text{PLGA}}\) and \(\theta_{\text{PMLGSLG}}\) determined by the different methods. The results obtained by transmission FT-IR and X-ray reflectivity are in good agreement. A similar tendency for change in \(\theta_{\text{PMLGSLG}}\) observed in the monolayers at the air–water interface is found in the transferred films, indicating that the helix orientation is preserved upon transfer. \(\theta_{\text{PLGA}}\) is larger than \(\theta_{\text{PMLGSLG}}\) and is influenced by the tilt order of the PMLGSLG block. A smaller value of \(\theta_{\text{PMLGSLG}}\) results in a slightly smaller \(\theta_{\text{PLGA}}\). The difference in tilt angle between the two blocks arises from the very large helix cross-sectional area of the PMLGSLG helix compared with PLGA. For most of the diblock copolymers, \(\theta_{\text{PMLGSLG}}\) in the transferred films agrees with that estimated from the \(\pi-A\) isotherms, indicating the absence of relaxation effects in the stabilized monolayers.

For \(\text{DP}_{\text{PMLGSLG}} > 39\) in the transferable region (\(\leq 40\) mN m\(^{-1}\)), the \(\alpha\)-helices are oriented isotropically around the surface normal, probably to minimize the unfavorable dipole–dipole interactions between neighboring segments since in such a phase the dipole moments are partly antiparallel to some extent. However, upon compression to high surface pressures, they exhibit a transition to a liquid-crystalline-like phase. For these diblock copolymers at high surface pressures (\(> 40\) mN m\(^{-1}\)) and those with \(\text{DP}_{\text{PMLGSLG}} \leq 39\), the PMLGSLG block segments are

Fig. 14 Two-slab fits to the X-ray reflectivity curves of the LB monolayers of PLGA-b-PMLGSLGs transferred at 35–45 mN m\(^{-1}\) on silicon substrates (transfer pressures listed in Table 2). The dots represent the experimental data and the full lines represent the fitted curves. The individual curves are shifted vertically for clarity.

Fig. 15 Left-hand side: three-slab fits to the X-ray reflectivity curve of the LB monolayer of CoPo_50_11 transferred onto a silicon substrate at 40 mN m\(^{-1}\); the dots represent the experimental data and the full line represents the fitted curve. Right-hand side: electron density profile corresponding to the curve fit (smooth curve); for clarity the same electron density profile is shown assuming all interface roughnesses to be equal to zero (step-like curve).

Fig. 16 Average helix tilt angles of the PLGA block and the PMLGSLG block for the Langmuir and LB monolayers of PLGA-b-PMLGSLGs characterized by the different methods as a function of \(\text{DP}_{\text{PMLGSLG}}\). The transfer pressures are listed in Table 2 and are 6–10 mN m\(^{-1}\) below the highest surface pressures (in the transferable region) in the isotherms, which are just before the second transition for CoPo_53_63 and CoPo_59_82, and just before the monolayer collapses for the others.
preferentially oriented parallel to one another in a liquid-crystalline-like phase. The interactions of the off-axis dipole components between parallel helices may tentatively account for the formation of this smectic C-like phase as well as the increase in the helix tilt angle with increasing DP_{PMLGSLG}.

Conclusions

We have demonstrated the chain length dependence of the helix orientation in double-brush Langmuir and LB monolayers of PLGA-b-PMLGSLG amphiphilic diblock copolypeptides. The average tilt angle between the helices and the surface normal decreased upon compression as a result of the increase in chain density. In particular, the hydrophobic block length was found to significantly affect the maximum surface chain density and hence the helix orientation of the diblock copolypeptides. Monolayers were transferred at 6–10 mN m\(^{-1}\) below the highest surface pressures (in the transferable region) in the isotherms. Decreasing DP_{PMLGSLG} resulted in a decrease in the helix tilt angle. For the diblock copolymers with a DP PMLGSLG < 25, at equilibrium the monolayer can be compressed to a smectic C-like phase upon compression throughout the double-brush formation regime, whereas for larger values of DP_{PMLGSLG} they seem to orient isotropically around the water surface normal. Upon compression to a high surface pressure, the isotherms of the diblock copolymers with DP_{PMLGSLG} > 39 showed a transition to a smectic C-like phase.

The origin of the decrease in helix packing ability in monolayers as a function of increasing hydrophobic block length is not fully understood. However, from the surface potential measurements, we found that the effective dipoles of the \(\alpha\)-helices of the PLGA block in Langmuir monolayers were significantly suppressed due to water screening effects, whereas those of the PMLGSLG block were largely maintained and increased with DP_{PMLGSLG}. Therefore, the helix tilt in the monolayers most likely originates from the off-axis interactions of the unscreened peptide dipoles between parallel \(\alpha\)-helices. The correlation of the helix tilt angle and the PMLGSLG block length tentatively arises from a change in the tilting potential as a function of the number of dipoles.

Acknowledgements

This research is supported by NanoNed, a nanotechnology program of the Dutch Ministry of Economic Affairs.

Notes and references

2 W. Senaratne, L. Andruuzzi and C. K. Ober, Biomacromolecules, 2005, 6, 2427.
33 H. Block, Poly(\(\gamma\)-Benzyl-
\(-\)Glutamate) and Other Glutamic Acid Polymers, Gordon and Breach Publishers, New York, 1963.
34 The amide I band at 1653 cm\(^{-1}\) in the spectra of the PtBuLG-b-PMLGSLG precursors, even for a very small DP_{PMLGSLG} of 11, is narrow, characteristic of a completely \(\alpha\)-helix structure (see ESI† for FT-IR spectra). The \(\beta\)-sheet amide I band at 1626 cm\(^{-1}\) appears as a small shoulder only after removing the tert-butyl group. In addition, the \(\beta\)-sheet amide I band at 1626 cm\(^{-1}\) disappears when the PLGA block is ionized at a subphase pH 8.6, suggesting that the \(\beta\)-sheets belong to the PLGA block (see ref. 21).
35 Both the antiparallel \(\beta\)-sheet amide I (1626 cm\(^{-1}\), perpendicular to the sheet fiber) and \(\beta\)-sheet II (1526 cm\(^{-1}\), parallel to the sheet fiber) vibrations are in the plane of the sheet. From the spectra of the PLGA-b-PMLGSLG monolayers, the decreasing \(\beta\)-sheet amide I to \(\beta\)-sheet II band absorption intensity ratio correlates with the helix tilt angle of the PLGA block, suggesting that the \(\beta\)-sheet fiber is tilted from the substrate. Thus, the dipole moment of the \(\beta\)-sheet amide I vibration is parallel to the substrate and its absorption intensity does not change irrespective of the \(\beta\)-sheet tilt order. The \(\beta\)-sheet content, arising mainly from the PLGA block, was roughly estimated by comparing the absorption intensities of the \(\alpha\)-helix and \(\beta\)-sheet amide I bands, taking into account the average helix tilt angles.
38 The film was prepared by spreading PLGA on the water surface at subphase pH 2, followed by surface compression to 4 mN m⁻¹, vertical dip and subsequent withdrawal of the substrate through the polymer layer.

43 Y. N. Chirgadze and E. V. Brazhnikov, Biopolymers, 1974, 13, 1701.

46 J. L. Koenig and B. Frushour, Biopolymers, 1972, 11, 1871.

