Gas sensing with self-assembled monolayer field-effect transistors

Anne-Marije Andringaa,b,*, Mark-Jan Spijkmana,b, Edsger C.P. Smitsc, Simon G.J. Mathijssenb,d, Paul A. van Halb, Sepas Setayeshb, Nico P. Willardb, Oleg V. Borshcheve, Sergei A. Ponomarenkoe, Paul W.M. Bloma,c, Dago M. de Leeuwa,b

aMolecular Electronics, Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
bPhilips Research Laboratories, High Tech Campus 4, 5656 AE Eindhoven, The Netherlands
cHolst Centre, High Tech Campus 31, 5656 AE Eindhoven, The Netherlands
dDepartment of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
eRussian Academy of Sciences, Enikolopov Institute of Synthetic Polymer Materials, Profsoyuznaya 70, 117393 Moscow, Russia

A new sensitive gas sensor based on a self-assembled monolayer field-effect transistor (SAMFET) was used to detect the biomarker nitric oxide. A SAMFET based sensor is highly sensitive because the analyte and the active channel are separated by only one monolayer. SAMFETs were functionalised for direct NO detection using iron porphyrin as a specific receptor. Upon exposure to NO a threshold voltage shift towards positive gate biases was observed. The sensor response was examined as a function of NO concentration. High sensitivity has been demonstrated by detection of ppb concentrations of NO. Preliminary measurements have been performed to determine the selectivity.

Keywords:
Gas sensor
Self-assembled monolayer field-effect transistor
Nitric oxide
Porphyrin

A R T I C L E I N F O

Article history:
Received 28 October 2009
Received in revised form 8 February 2010
Accepted 10 February 2010
Available online 16 February 2010

Human noses can perceive hundreds of thousands of different odor molecules\cite{1}. The olfactory system consists of an array of receptors, each of which detects a limited number of substances. This complex system warns us about dangers such as fire, air pollutants or spoiled food. In the past decades electronic noses have been developed that mimic the human olfactory system\cite{2}. An electronic nose comprises a gas sampling unit and an array of chemical sensors. Various transducers can be used like carbon black or conducting polymer based chemiresistors, metal oxide semiconductor field-effect transistors, and surface or bulk acoustic wave resonators\cite{3}. The sensors themselves are not selective; a fingerprint of the smell is obtained and a neural network is incorporated for pattern recognition.

An emerging application is the detection of the biomarker nitric oxide (NO). NO plays an important role in biological functions by acting as a neurotransmitter and by regulating the relaxation of blood vessels\cite{4}. Furthermore NO is a marker for airway inflammations such as asthma\cite{5}. Measurement of the NO concentration in exhaled breath is applied to diagnose and monitor the inflammation and the obtained information is used as a tool to manage the asthma treatment. NO detection is based on electrochemical, optical or electrical techniques\cite{6,7}. Typically, NO is detected indirectly as NO is first converted into NO\textsubscript{2} by e.g. CrO\textsubscript{3} or ozone\cite{8}. Although NO sensors are commercially available\cite{9}, there is a demand for small, sensitive NO transducers for point of care use\cite{10,11}.

Here we introduce a new sensitive gas sensor based on self-assembled monolayer field-effect transistors (SAMFET). The proof-of-principle is demonstrated by direct
transistors with a channel length of 10 nm. Conventional photolithographic methods, resulting in ring geometries, were employed to fabricate the transistors. Gold source and drain electrodes were defined by lift-off lithography on heavily doped -type Si wafers, acting as common gate electrode, with a 2500 nm thermally oxidized SiO2 layer as gate dielectric. The chemical structure of the SAM molecule (left) and the NO receptor Fe(TPP)Cl3 (above) are shown.

To demonstrate the concept, we used a thin spin coated film. The porphyrin receptor was dissolved in toluene, 1.6 mg/200 ml, and thin layers were spin coated at 800 rpm. The films demonstrate the concept, we used a thin spin coated film. The porphyrin receptor was dissolved in toluene, 1.6 mg/200 ml, and thin layers were spin coated at 800 rpm. The films were annealed in vacuum at 110 °C for one hour to remove residual water and solvents. Electrical measurements were performed under vacuum using an Agilent 4155B semiconductor parameter analyzer. Possible gate bias stress effects in the electrical measurements were prevented by using a short integration time of less than 1 ms per step. A typical transfer curve is presented in Fig. 2. The mobility is about 0.01 cm2/Vs and the current modulation six decades, in good agreement with previous reports.

The response of the SAMFETs was measured by admitting small amounts of NO, diluted in nitrogen carrier gas, to the closed chamber. The gas pressure in this static system was used to calculate the partial NO concentration at 1 bar. The response of the SAMFETs to NO is indistinguishable from random drift of the threshold voltage. To make the SAMFET specific for NO, a porphyrin receptor was used. Porphyrins are known to bind NO in biological systems. Here we used ironIII tetraphenylporphyrin chloride (Fe(TPP)Cl3, Sigma Aldrich), that was previously used to detect NO in solution with a molecular controlled semiconductor resistor [18]. In the ideal case this receptor is grafted on, or incorporated into, the monolayer. Hence, a monolayer thick semiconductor (right) yields the ultimate sensing performance.

detection of NO. The operation principle is elucidated in Fig. 1. The left side shows a standard organic field-effect transistor consisting from top to bottom of an organic semiconductor, a source and drain electrode, a gate dielectric and a gate. Upon applying a bias to the gate, charge carriers are accumulated at the gate dielectric-semiconductor interface. A conducting channel is formed with a thickness of approximately 1–2 nm [12]. Analyte molecules adsorbed on top of the semiconductor can modulate the charge transport in the channel by electrostatic interactions. However, it has been demonstrated by Huang et al. [13] that the sensitivity of such a sensor is dependent on the thickness of the active layer. The response of organic transistors to nerve agent simulants increased dramatically with decreasing layer thickness, due to the strong distance dependence of the electrostatic interactions. Torsi et al. [14] have reported chiral sensors and argue that the sensing is restricted to the conducting channel. The sensitivity did not increase with decreasing layer thickness but this could be due to the granular nature of the semiconducting films. Finally, sensitivity enhancement of up to an order of magnitude has been reported in transistors with one monolayer thickness should yield the most sensitive gas sensor, as shown in Fig. 1 on the right.

A SAMFET has recently been reported by Smits et al. [16]. The monolayer consists of molecules with a semiconducting quinque thiophene core and an aliphatic spacer that is attached to the gate dielectric with a monofunctional anchoring group. The chemical structure of chloro[11-(5'-ethyl-2,2':5',2'':5'',2''':5''',2''''-quinque thien-5-yl)undecyl]dimethylsilane is shown in the inset of Fig 2. The SAMFETs were fabricated on heavily doped n-type Si wafers, acting as common gate electrode, with a 1000 nm thermally oxidized SiO2 layer as gate dielectric. Gold source and drain electrodes were defined by conventional photolithographic methods, resulting in ring transistors with a channel length of 10 μm and a width of 2500 μm. Semiconducting monolayers were self-assembled from a toluene solution on a HF activated SiO2 dielectric, as described previously [16]. The SAMFETs were annealed in vacuum at 110 °C for one hour to remove residual water and solvents. Electrical measurements were performed under vacuum using an Agilent 4155B semiconductor parameter analyzer. Possible gate bias stress effects in the electrical measurements were prevented by using a short integration time of less than 1 ms per step. A typical transfer curve is presented in Fig. 2. The mobility is about 0.01 cm2/Vs and the current modulation six decades, in good agreement with previous reports.

The response of the SAMFETs was measured by admitting small amounts of NO, diluted in nitrogen carrier gas, to the closed chamber. The gas pressure in this static system was used to calculate the partial NO concentration at 1 bar. The response of the SAMFETs to NO is indistinguishable from random drift of the threshold voltage. To make the SAMFET specific for NO, a porphyrin receptor was used. Porphyrins are known to bind NO in e.g. biological systems [17]. Here we used ironIII tetraphenylporphyrin chloride (Fe(TPP)Cl3, Sigma Aldrich), that was previously used to detect NO in solution with a molecular controlled semiconductor resistor [18]. In the ideal case this receptor is grafted on, or incorporated into, the monolayer. Here, to demonstrate the concept, we used a thin spin coated film. The porphyrin receptor was dissolved in toluene, 1.6 mg/ml, and thin layers were spin coated at 800 rpm. The films...
are only 10 nm thick and they contain a lot of pinholes. Therefore the diffusion of the nitric oxide is not limiting the detection rate. The addition of porphyrin on the SAM-FET had no significant influence on the performance of the SAMFET. The chemical structure and the device layout are schematically depicted in the inset of Fig. 2.

The transfer curve of the SAMFET with the porphyrin shifts upon exposure to NO. We observe that the field-effect mobility remains unaffected; the only effect is a change in the threshold voltage towards positive gate bias. This clearly points to an increase of fixed negative interface charges upon exposure to NO. However, the reaction is not instantaneous, the threshold voltage shifts with time. A typical example is presented in Fig. 3. A possible reason might be the slow supply of negatively charged minority carriers needed to convert NO into NO\(_2\), an effect that is presently under study. The threshold voltage shift takes about half an hour to saturate. Hence, in order to arrive at a dose response curve, the transfer curves were measured 30 min after NO exposure. To exclude any influence of competing charging effects, the threshold voltage of the SAMFET was monitored in the absence of NO. This measurement did not reveal a change of threshold voltage in time. The response to NO of the SAMFET without porphyrin was also investigated. These reference measurements are shown in Fig. 3. Only the combination of the SAMFET and the receptor in NO atmosphere yields a shift in threshold voltage.

We made many sensors and investigated the response to NO. Fig. 3 discussed above showed a typical measurement for 2.7 ppm NO. Concentrations in the ppm regime can reproducibly be detected. In exceptional cases however a much higher sensitivity has been measured. An example is presented in Fig. 4 where the transfer curves measured in the linear regime are presented on a linear scale as a function of the NO concentration. The transfer curve systematically shifts to positive gate biases with increasing NO content. The relative threshold voltage shift, \(\Delta V_{th}\), was determined by taking the gate biases yielding a fixed source drain current of 60 nA, as indicated by the arrow in Fig. 4. The shifts are used to construct a dose response curve. The inset shows the threshold voltage shift as a function of the NO concentration. The detection limit is as low as sub 100 ppb NO.

![Fig. 3. The response of the SAMFET sensor as a function of time for a fixed NO concentration (2.7 ppm). The threshold voltage shifts towards more positive voltages and saturates after approximately 30 min. Reference measurements of the SAMFET without the porphyrin in NO (2.7 ppm) and the SAMFET with porphyrin in absence of NO are included. Only the combination of the SAMFET and the receptor in NO shows a threshold voltage shift that stands out over random drift.](image)

![Fig. 4. Linear plot of the transfer characteristics of the SAMFET sensor. The measurements performed in vacuum and nitrogen were identical. The transfer curve measured 30 min after exposure is shifted towards positive values for increasing NO concentrations. The inset shows the threshold voltage shift as a function of NO concentration. The detection limit is as low as sub 100 ppb NO.](image)
voltage shift was observed for non-oxidizing agents as toluene (8 ppm), methanol (%) and ammonia (2 ppm). Even for oxidizing agents as O₂ and SO₂ the threshold voltage shift is negligible showing the selectivity of the porphyrin towards these gases. Reversibility of the sensor after NO detection was also examined. Full recovery of the sensor is achieved by annealing under vacuum conditions at 110 °C for 1 h. Under those conditions the threshold voltage returns to its pristine value. Our explanation is that the threshold voltage shift upon NO exposure is due to the formation of NO₃⁻. At elevated temperature the equilibrium shifts to neutral nitrogen oxides that subsequently desorb from the surface. This could explain the full reversibility. A major problem still to be resolved is that a significant spread in the NO response was found for the numerous investigated SAMFET sensors. The differences can be due to imperfections in the monolayer, variations in the porphyrin converter deposition, or parasitic reactions with residual water. The latter becomes more important at lower NO content. The parameter spread is the focus of current research.

In summary, the response of a field-effect sensor is dominated by the electrostatic interactions between analyte and the conducting channel. In a self-assembled monolayer field-effect transistor the semiconductor is only one molecule thick, making it highly suited for sensing applications. SAMFETs sensors were fabricated using iron porphyrin as a specific receptor for the biomarker NO. The transfer curve systematically shifts to positive gate biases with increasing NO content. Dose response curves were obtained by plotting the threshold voltage shift as a function of NO concentration. High sensitivity was demonstrated by detecting parts per billion concentrations NO.

Acknowledgements

We gratefully acknowledge technical assistance from T. Geuns and financial support from the Zernike Institute for Advanced Materials, The Dutch Organization for Scientific Research (NWO) and from the EC (Project ONE-P No. 212311).

References