Gas sensing with self-assembled monolayer field-effect transistors

Andringa, Anne-Marije; Spijkman, Mark-Jan; Smits, Edsger C. P.; Mathijssen, Simon G. J.; van Hal, Paul A.; Setayesh, Sepas; Willard, Nico P.; Borschchev, Oleg V.; Ponomarenko, Sergei A.; Blom, Paul W. M.

Published in:
Organic Electronics

DOI:
10.1016/j.orgel.2010.02.007

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2010

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Gas sensing with self-assembled monolayer field-effect transistors

Anne-Marije Andringa a,b,* , Mark-Jan Spijkman a,b, Edsger C.P. Smits c, Simon G.J. Mathijssen b,d, Paul A. van Hal b, Sepas Setayesh b, Nico P. Willard b, Oleg V. Borshchev e, Sergei A. Ponomarenko e, Paul W.M. Blom a,c, Dago M. de Leeuw a,b

a Molecular Electronics, Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
b Philips Research Laboratories, High Tech Campus 4, 5656 AE Eindhoven, The Netherlands
c Holst Centre, High Tech Campus 31, 5656 AE Eindhoven, The Netherlands
d Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
e Russian Academy of Sciences, Enikolopov Institute of Synthetic Polymer Materials, Profsoyuznaya 70, 117393 Moscow, Russia

A R T I C L E I N F O

Article history:
Received 28 October 2009
Received in revised form 8 February 2010
Accepted 10 February 2010
Available online 16 February 2010

Keywords:
Gas sensor
Self-assembled monolayer field-effect transistor
Nitric oxide
Porphyrin

A B S T R A C T

A new sensitive gas sensor based on a self-assembled monolayer field-effect transistor (SAMFET) was used to detect the biomarker nitric oxide. A SAMFET based sensor is highly sensitive because the analyte and the active channel are separated by only one monolayer. SAMFETs were functionalised for direct NO detection using iron porphyrin as a specific receptor. Upon exposure to NO a threshold voltage shift towards positive gate biases was observed. The sensor response was examined as a function of NO concentration. High sensitivity has been demonstrated by detection of ppb concentrations of NO. Preliminary measurements have been performed to determine the selectivity.

© 2010 Elsevier B.V. All rights reserved.

Human noses can perceive hundreds of thousands of different odor molecules [1]. The olfactory system consists of an array of receptors, each of which detects a limited number of substances. This complex system warns us about dangers such as fire, air pollutants or spoiled food. In the past decades electronic noses have been developed that mimic the human olfactory system [2]. An electronic nose comprises a gas sampling unit and an array of chemical sensors. Various transducers can be used like carbon black or conducting polymer based chemiresistors, metal oxide semiconductor field-effect transistors, and surface or bulk acoustic wave resonators [3]. The sensors themselves are not selective; a fingerprint of the smell is obtained and a neural network is incorporated for pattern recognition.

An emerging application is the detection of the biomarker nitric oxide (NO). NO plays an important role in biological functions by acting as a neurotransmitter and by regulating the relaxation of blood vessels [4]. Furthermore NO is a marker for airway inflammations such as asthma [5]. Measurement of the NO concentration in exhaled breath is applied to diagnose and monitor the inflammation and the obtained information is used as a tool to manage the asthma treatment. NO detection is based on electrochemical, optical or electrical techniques [6,7]. Typically, NO is detected indirectly as NO is first converted into NO2 by e.g. CrO3 or ozone [8]. Although NO sensors are commercially available [9], there is a demand for small, sensitive NO transducers for point of care use [10,11].

Here we introduce a new sensitive gas sensor based on self-assembled monolayer field-effect transistors (SAMFET). The proof-of-principle is demonstrated by direct...
transistors with a channel length of 10 nm and a width of 2500 μm. Semiconducting monolayers were self-assembled from a toluene solution on a HF activated SiO2 gate dielectric, as described previously [16]. The SAMFETs were annealed in vacuum at 110°C for one hour to remove residual water and solvents. Electrical measurements were performed under vacuum using an Agilent 4155B semiconductor parameter analyzer. Possible gate bias stress effects in the electrical measurements were prevented by using a short integration time of less than 1 ms per step. A typical transfer curve is presented in Fig. 2. The mobility is about 0.01 cm²/Vs and the current modulation six decades, in good agreement with previous reports.

The response of the SAMFETs was measured by admitting small amounts of NO, diluted in nitrogen carrier gas, to the closed chamber. The gas pressure in this static system was used to calculate the partial NO concentration at 1 bar. The response of the SAMFET itself to NO is indistinguishable from random drift of the threshold voltage. To make the SAMFET specific for NO, a porphyrin receptor was used. Porphyrins are known to bind NO in biological systems [17]. Here we used iron(III) tetraphenylporphyrin chloride (Fe(TPP)Cl, Sigma Aldrich), that was previously used to detect NO in solution with a molecular controlled semiconductor resistor [18]. In the ideal case this receptor is grafted on, or incorporated into, the monolayer. Here, to demonstrate the concept, we used a thin spin coated film. The porphyrin receptor was dissolved in toluene, 1.6 mg/ml, and thin layers were spin coated at 800 rpm. The films

Fig. 1. Schematic representation of the operation principle of a SAMFET sensor. The transistor consists of an organic semiconductor, a source and drain electrode, a gate dielectric and a gate. A conducting channel is formed at the semiconductor gate dielectric interface. On the left side, analyte molecules are absorbed on top of a thick semiconductor layer. The current modulation is limited by the thickness of the semiconductor. The electrostatic interactions are stronger when the distance between the analyte and the channel is decreased. Hence a monolayer thick semiconductor (right) yields the ultimate sensing performance.

Fig. 2. Transfer characteristics of a typical SAMFET in vacuum with a 1 μm SiO2 gate dielectric in the linear and saturated regime. The device exhibited p-type behavior with a pinch off voltage around 0 V. The inset shows a schematic cross-section of the SAMFET sensor. The chemical structures of the SAM molecule (left) and the NO receptor Fe(TPP)Cl (above) are shown.
are only 10 nm thick and they contain a lot of pinholes. Therefore the diffusion of the nitric oxide is not limiting the detection rate. The addition of porphyrin on the SAMFET had no significant influence on the performance of the SAMFET. The chemical structure and the device layout are schematically depicted in the inset of Fig. 2.

The transfer curve of the SAMFET with the porphyrin shifts upon exposure to NO. We observe that the field-effect mobility remains unaffected; the only effect is a change in the threshold voltage towards positive gate bias. This clearly points to an increase of fixed negative interface charges upon exposure to NO. However, the reaction is not instantaneous, the threshold voltage shifts with time. A typical example is presented in Fig. 3. A possible reason might be the slow supply of negatively charged minority carriers needed to convert NO into NO\(^{-}\), an effect that is presently under study. The threshold voltage shift takes about half an hour to saturate. Hence, in order to arrive at a dose response curve, the transfer curves were measured 30 min after NO exposure. To exclude any influence of competing charging effects, the threshold voltage of the SAMFET was monitored in the absence of NO. This measurement did not reveal a change of threshold voltage in time. The response to NO of the SAMFET without porphyrin was also investigated. These reference measurements are shown in Fig. 3. Only the combination of the SAMFET and the receptor in NO atmosphere yields a shift in threshold voltage.

We made many sensors and investigated the response to NO. Fig. 3 discussed above showed a typical measurement for 2.7 ppm NO. Concentrations in the ppm regime can reproducibly be detected. In exceptional cases however a much higher sensitivity has been measured. An example is presented in Fig. 4 where the transfer curves measured in the linear regime are presented on a linear scale as a function of the NO concentration. The transfer curve systematically shifts to positive gate biases with increasing NO content. The relative threshold voltage shift, \(\Delta V_{\text{th}}\), was determined by taking the gate biases yielding a fixed source drain current of 60 nA, as indicated by the arrow in Fig. 4. The shifts are used to construct a dose response curve. The inset shows the threshold voltage shift as a function of the NO concentration. The detection limit is as low as sub 100 ppb NO.

The magnitude of the shift and the functional dependence such as the apparent saturation at high NO content are not yet quantitatively understood. Various operation mechanisms have been reported. For instance Fe(TPP)Cl has been attached to functionalised GaAs surfaces [18]. The current was measured upon exposure to NO in aqueous buffer solution. The current did increase with NO content. The change in current was explained as originating from a change in dipole moment of the Fe(TPP)Cl complex. However a threshold voltage shift in a field-effect transistor cannot be explained with only a change in surface dipole moment [20]. A different reaction mechanism was proposed by Lin and Farmer [21]. In solution NO forms a complex with Fe(TPP), NO–Fe(TPP). Catalytic reaction of this nitrosyl-complex with free NO then yields amongst others NO\(_2\) which is known to cause a shift in threshold voltage [22] presumably by formation of negative surface charges. Recently, ZnO chemiresistors have been functionalised with a comparable iron(III)porphyrin, viz. ferriproto-porphyrin IX chloride [23]. NO could be detected down to the ppm range. The operation is reported to be due to electron transfer from ZnO to the receptor. In summary, iron porphyrins could selectively react towards NO, but the microscopic mechanism is unknown.

The selectivity of the SAMFET sensor versus other vapors was investigated. Preliminary experiments show that the sensor is not sensitive to a variety of gases. No threshold
voltage shift was observed for non-oxidizing agents as toluene (8 ppm), methanol (%) and ammonia (2 ppm). Even for oxidizing agents as O₂ and SO₂ the threshold voltage shift is negligible showing the selectivity of the porphyrin towards these gases. Reversibility of the sensor after NO detection was also examined. Full recovery of the sensor is achieved by annealing under vacuum conditions at 110 °C for 1 h. Under those conditions the threshold voltage returns to its pristine value. Our explanation is that the threshold voltage shift upon NO exposure is due to the formation of NO₃⁻. At elevated temperature the equilibrium shifts to neutral nitrogen oxides that subsequently desorb from the surface. This could explain the full reversibility. A major problem still to be resolved is that a significant spread in the NO response was found for the numerous investigated SAMFET sensors. The differences can be due to imperfections in the monolayer, variations in the porphyrin converter deposition, or parasitic reactions with residual water. The latter becomes more important at lower NO content. The parameter spread is the focus of current research.

In summary, the response of a field-effect sensor is dominated by the electrostatic interactions between analyte and the conducting channel. In a self-assembled monolayer field-effect transistor the semiconductor is only one molecule thick, making it highly suited for sensing applications. SAMFETs sensors were fabricated using iron porphyrin as a specific receptor for the biomarker NO. The transfer curve systematically shifts to positive gate biases with increasing NO content. Dose response curves were obtained by plotting the threshold voltage shift as a function of NO concentration. High sensitivity was demonstrated by detecting parts per billion concentrations NO.

Acknowledgements

We gratefully acknowledge technical assistance from T. Geuns and financial support from the Zernike Institute for Advanced Materials, The Dutch Organization for Scientific Research (NWO) and from the EC (Project ONE-P No. 212311).

References