Switching direction in electric-signal-induced cell migration by cyclic guanosine monophosphate and phosphatidylinositol signaling

Masayuki J. Satoa,b, Hidekazu Kuwayamaa–1, Wouter N. van Egmond4, Airi L. K. Takayamaa, Hiroaki Takagia,b,2, Peter J. M. van Haastert1, Toshio Yanagida3, and Masahiro Ueda3,4

Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; bDepartment of Molecular Cell Biology, University of Groningen, 9751 NN, Haren, The Netherlands

Edited by Peter N. Devreotes, Johns Hopkins University School of Medicine, Baltimore, MD, and approved February 24, 2009 (received for review October 7, 2008)

Switching between attractive and repulsive migration in cell movement in response to extracellular guidance cues has been found in various cell types and is an important cellular function for translocation during cellular and developmental processes. Here we show that the preferential direction of migration during electrotaxis in Dictyostelium cells can be reversed by genetically modulating both guanylyl cyclases (GCases) and the cyclic guanosine monophosphate (cGMP)-binding protein C (GbpC) in combination with the inhibition of phosphatidylinositol-3-OH kinases (PI3Ks). The PI3K-dependent path is involved in cathode-directed migration under a direct-current electric field. The catalytic domains of soluble GCase (sGC) and GbpC also mediate cathode-directed signaling via cGMP, whereas the N-terminal domain of sGC mediates anode-directed signaling in conjunction with both the inhibition of PI3Ks and cGMP production. These observations provide an identification of the genes required for directional switching in electrotaxis and suggest that a parallel processing of electric signals, in which multiple-signaling pathways act to bias cell movement toward the cathode or anode, is used to determine the direction of migration.

cGMP | chemotaxis | electrotaxis | PI3K

Directional cell migration of eukaryotic cells in response to external guidance cues plays crucial roles in many physiological phenomena, such as embryogenesis, neurogenesis, immune response, wound healing, and the regeneration of multicellular organisms, as well as in tactic responses by unicellular organisms (1). Clarifying the molecular basis for determining migration direction is an important topic in cell and developmental biology. Cells can exhibit attractive and repulsive migrations in response to the same external signals. For example, in the chemotactic responses of neuronal cells, growth cones exhibit a repulsive response to a chemotactic signal, but in the presence of membrane-permeable analogs of cyclic nucleotides, they exhibit an attractive response (2). Furthermore, investigations of the mechanism underlying reversal in migration direction have revealed that the ratio between intracellular cAMP and cyclic guanosine monophosphate (cGMP) regulates Ca2+ channels that are responsible for the directional selection of migration (3). In the case of chemotaxis in Dictyostelium discoideum, cells exhibit attraction toward the source of the extracellular chemoattractant cAMP but repulsion from the source of the chemorepellent cAMP analog 8CPT-cAMP (4). Chemoattractants induce activation of phosphoinositide-3-kinases (PI3Ks) and phospholipase C (PLC) at the cell surface with the higher cAMP gradient, leading to localized accumulation and depletion of phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] and phosphatidylinositol 4,5-biphosphate [PtdIns(4,5)P2], respectively, which induces pseudopod formation directionally toward the chemoattractant source. On the other hand, chemorepellent gradients induce localized inhibition of PLC, leading to localized accumulation of PtdIns(4,5)P2. This chemorepellent-elicited reaction is opposite that of chemotactant-elicited ones, meaning that the polarized localization of the PtdIns lipids is reversed, leading to repulsive migration from the chemorepellent. Thus, studies of directional switching in response to external signals have been useful to clarify the molecular mechanisms underlying the direction of migration.

As with chemotaxis, evidence that electrotaxis plays important roles in many physiological phenomena is accumulating (5–9). In electrotaxis, cells move with a directional preference toward the cathode or anode under direct-current electric fields (dcEFs) (5–9). The preferential direction of migration during electrotaxis varies among cell types and under different experimental conditions. For example, corneal epithelial cells, human keratinocytes, osteoblasts, rat prostate cancer cells, lymphocytes, and Xenopus neurons migrate toward the cathode, whereas corneal stromal fibroblasts, osteoclasts, human granulocytes, and macrophages migrate toward the anode. Even in the same cell type, cells derived from different species exhibit opposite migration direction in dcEFs; bovine vascular endothelial cells migrate toward the cathode, whereas human vascular endothelial cells migrate toward the anode (10, 11). Furthermore, lens epithelial cells change their migration direction depending on the applied electric field strength (12). However, despite the mechanistic importance regarding the coupling between gradient sensing and directional cell migration, the molecules responsible for selecting migration direction in electrotaxis have not been identified.

To investigate the molecular mechanisms underlying the determination of migration direction in electrotaxis, we here used the cellular slime mold Dictyostelium. Dictyostelium cells present a well-established model for elucidating the mechanisms and regulation of amoeboid movements (13–17). Their chemotactic responses have been extensively studied at the molecular and cellular levels, which has resulted in the identification of multiple and parallel chemotactic signaling pathways (18–21). Because Dictyostelium cells exhibit strong electrotaxis, they are
also useful for studying the mechanism of this process (22, 23). Previous reports revealed that upstream components of chemo-
tactic signaling pathways such as cAMP receptor 1 and its
coupled heterotrimeric G proteins are not essential for electro-
taxis (in contrast to chemotaxis) (22), although whether down-
stream components are involved in electrotaxis has not been ex-
amined. Here we found that chemotaxis-deficient mutant
cells, which have defects in their guanylyl cyclase (GCase)-
dependent signaling pathway, exhibited reversed migration in
electrotaxis. We further confirmed that simultaneous suppres-
sion of GCase and PI3K activities caused switching in the
preferential direction of migration from the cathode to the
anode in response to the same electric signals. These observa-
tions provide identification of the genes required for directional
switching in electrotaxis.

Results
Defects of KI Mutant Cells in Electrotaxis. First, we examined the
effects of electric signals on a series of mutant cells called KI
mutants, originally isolated as chemotaxis-deficient mutants by
means of chemical mutagenesis (24). We used 3 types of
mutants—KI-5, KI-8, and KI-10—for electrotactic assays. Bio-
chemical characterization of these mutants during chemotactic
responses revealed that KI-8 cells have virtually no GCase
activity, KI-10 cells have basal GCase activity but are not
activated by chemoattractants, and KI-5 cells exhibit relatively
normal chemoattractant-mediated GCase activation (25, 26).
In the absence of an electric field, these mutant cells and WT cells
moved randomly in all directions with a migration velocity
between ~6 and 26 µm·min⁻¹ (Table S1). Upon electrical
stimulation, WT cells moved toward the cathode. This move-
ment became obvious by gradually increasing the electric field
strength. At 10 V·cm⁻¹, the cells’ maximum electrotactic ef-

ciency was reached (Fig. 1 A and B and Movie S1). KI-5 cells
moved efficiently toward the cathode at 10 V·cm⁻¹ showing no
defects in electrotaxis (Fig. 1 C and D). Impaired responses to
electric stimulation were clearly observed in the other KI mutant
cells. KI-8 cells moved toward the anode, a direction opposite of
WT cells at the same dcEF strength (Fig. 1 E and F and Movie
S2). KI-10 cells moved in random directions (Fig. 1 G and H).
To examine the effects of electric signals on cell motility, we
analyzed quantitatively the motile properties of cells as summa-
rized in Table S1. The preferential direction and migration speed
depended on the mutant types but not on the dcEF strength (Fig.
1 I and J). Reversal of preferential direction was constantly
observed in KI-8 cells between 1 and 10 V·cm⁻¹. Thus, severe
defects in directional movement during electrotaxis were ob-
served in KI-8 and KI-10 but not in KI-5, indicating that the
molecular mechanisms for electrotaxis are shared in part with
those of chemotaxis. Mutant type-specific directionality in KI
mutants during electrotaxis suggests that GCase activity is
involved in determining the migration direction. We should note
that the responsible mutation(s) in KI mutants has not been
identified genetically (24).

Switching Direction by Simultaneous Inhibition of GCase and PI3K-
Mediated Signaling Pathways. To test directly whether the GCase-
dependent signaling pathway is involved in the electrotaxis of
Dictyostelium cells, we next examined the effects of genetically
disrupting GCases and the cGMP-binding protein on the elec-
trotactic response (Fig. 2). In Dictyostelium cells, 2 types of
GCases—GCase A (GCA) and soluble GCase (sGC)—have
been identified as responsible for all cGMP production in cells
(27). cGMP-binding protein C (GbpC) is the major binding
target for intracellular cGMP and transmits cGMP signals, which
are responsible for the regulation of myosin filament formation
on the side and at the tail end of Dictyostelium cells (28, 29).
Thus, both GCases and GbpC are the upstream and downstream
molecules of cGMP, respectively. On electric stimulation (10
V·cm⁻¹), both gca⁻/sgc⁻ (gc-null) and gbpC-null cells exhibited
attenuated directional migration toward the cathode, indicating
that the GCase-dependent signaling pathway plays an important
role in cathode-directed electrotaxis (Fig. 2 A and E). Consistent
with this observation, the electrotactic efficiency of

gbpA⁻/gbpB⁻ cells, which lack the degradation activities of
intracellular cGMP, was almost the same as that of WT cells (Fig.
2 E and F) (28, 29). Thus, the GCase-dependent cGMP signaling
mediates cathode-directed electrotaxis. However, in contrast to
KI-8 cells, the gc-null and gbpC-null cells were still able to move
toward the cathode, showing no reversal of preferential direc-
tion. Therefore, the GCase-dependent pathway is not solely
responsible for cathode-directed electrotaxis, indicating that

![Fig. 1. Reversal of directional preference during electrotaxis in KI-8, a particular chemotaxis-deficient mutant. (A–H) Migration of WT cells (A and B) and the mutants KI-5 (C and D), KI-8 (E and F), and KI-10 (G and H) under a dcEF (10 V·cm⁻¹) in which WT and the KI-5 mutant migrated toward the cathode. The KI-8 mutant moved toward the anode. The KI-10 mutant migrated in random directions. Blue lines and orange arrows represent the cell trajectory and its direction of migration, respectively. (B, D, F, and H) Cell trajectories in 10 V·cm⁻¹. The starting points for cell migration were at the origin. (I) Dependence of directedness on the dcEF strength. (J) Although migration velocity was specific for cell type, velocity had minimal dependence on electric field strength. Data (mean ± SEM) for each cell type were quantified from 7–9 independent experiments. (Scale bar, 100 µm.)](image-url)
additional GCase-independent pathways are involved in cathode-directed electrotaxis.

PI3Ks comprise one candidate for the GCase-independent signaling pathways because their involvement in electrotaxis has been revealed in other cell types (9, 11, 30). In Dictyostelium, PI3K2 is highly localized at the leading edge of moving cells. On the membranes of these moving cells, PI3K2 catalyses the production of PtdIns(3,4,5)P3, a molecule key in regulating the localized activation of actin polymerization via interaction with pleckstrin homology (PH)-domain-containing proteins such as Akt/PKB (19–21). To test the possible involvement of PI3Ks in electrotaxis, we examined the effects of a PI3K inhibitor, LY294002, on the electrotaxis of WT, gc-null, and gbpC-null cells (Fig. 2 C–F). Because treatment with 60 μM LY294002 strongly inhibited basal cell migration (see Table S1), we added 1 μM cAMP to the medium to restore the basal speed of cell movement (31, 32). In WT cells, treatment with 1 μM cAMP alone enhanced the cathode-directed electrotaxis (Table S1), whereas the addition of 60 μM LY294002 with 1 μM cAMP strongly attenuated the cathode-directed electrotaxis (Fig. 2 E and F), thus demonstrating the involvement of PI3Ks in electrotaxis toward the cathode. In the same medium conditions, gc-null and gbpC-null cells exhibited anode-directed electrotaxis opposite that of WT cells (Fig. 2 C–F and Movie S3). These results reveal that simultaneous inhibition of GCase- and PI3K-mediated signaling pathways is required to reverse migration direction. The anodal electrotaxis under the simultaneous inhibition suggests that GCase- and PI3K-independent pathways are involved in biasing cell migration toward the anode.

Opposite Function of sGC Subdomains in the Determination of Migration Direction. sGC contains an N-terminal domain, which shows no homology to any other known protein sequence, and a catalytic domain that have distinct functions during chemotaxis (18, 33). In chemotaxis, the N-terminal domain mediates the “front” signal via interaction with the actin cytoskeleton at the leading-edge pseudopod, whereas the catalytic domain mediates the “rear” signal via cGMP-dependent myosin activation at the tail (18, 33). To examine whether both domains of sGC have some functional differences in electrotaxis, we further studied gc-null cells expressing either sGC with an inactivated catalytic domain (sGC_{Cat}) or sGC with a deleted N-terminal domain (sGCAN) (Fig. 3). Although sGC_{Cat} does not produce cGMP, it can mediate the front signal for chemotaxis (18, 33). On the contrary, sGCAN shows WT-like cGMP production and can mediate the rear signals for chemotaxis (18, 33). In a dcEF, gc-null cells expressing sGCAN (gc-null/sGCAN) exhibited full recovery of cathode-directed electrotaxis with an efficiency similar to that of WT cells, whereas gc-null cells expressing sGC_{Cat} (gc-null/sGC_{Cat}) exhibited attenuated cathode-directed electrotaxis (Fig. 3 A, B, and G). The directedness of gc-null/sGCAN and gc-null/sGC_{Cat} cells was 0.83 units and 0.32 units, respectively, which is larger and smaller than the directedness of parental gc-null cells (0.63 units), respectively. That is, expression of the catalytic domain (sGCAN) and the N-terminal domain (sGC_{Cat}) in gc-null cells caused enhancement and inhibition of the cathode-directed electrotaxis, respectively. These results confirm that the catalytic product cGMP mediates cathode-directed signaling in electrotaxis.

To further examine the roles of the catalytic and N-terminal domains of sGC in electrotaxis, other cathode-directed signaling pathways were inhibited by adding cAMP and LY294002. Treatment of cAMP alone to gc-null/sGCAN and gc-null/sGC_{Cat} cells had inhibitory effects on the cathode-directed electrotaxis (Fig. 3 C and D). Directedness decreased incrementally by ~0.4–0.5 units for both cell types (Fig. 3G), meaning that cAMP constantly affects the background phenotype. In this medium condition, the expression of sGCAN and sGC_{Cat} biased gc-null cells toward the cathode and anode, respectively. When further treated with 60 μM LY294002 to inhibit PI3K-dependent cathode-directed signaling, directional switching toward the anode was clearly observed in gc-null/sGC_{Cat} cells but not in gc-null/sGCAN cells (Fig. 3 E and F). The respective directedness of gc-null/sGCAN and gc-null/sGC_{Cat} cells was 0.01 and 0.17 units in the presence of cAMP and the PI3K inhibitor, which is larger and smaller, respectively, than that of parent gc-null cells (~0.17) (Figs. 2E and 3G and Table S1). That is, expression of the catalytic and N-terminal domains of sGC in gc-null cells consistently caused the cathode-directed and anode-directed bias in electrotaxis, respectively, even when the cathode-directed signaling was successively inhibited by cAMP and the PI3K inhibitor. The anode-directed electrotaxis of gc-null/sGC_{Cat} became more obvious and stable with time than the electrotaxis of gc-null cells, showing an enhancement of anode-directed signaling (Figs. 2F and 3H and Movie S4). Thus, sGC has competing functions in electrotaxis in which the catalytic and N-terminal domains of sGC mediate electrotactic signals to bias.
cell migrations toward the cathode and anode, respectively. Because WT sGC, which has both domains, mediates cathode-directed signaling in electrotaxis (Fig. 2A), the catalytic domain dominates the N-terminal domain in WT sGC, and thus the anode-directed signaling by the N-terminal domain is somehow inhibited.

Extracellular cAMP had bidirectional effects on electrotaxis in a cell-type-dependent manner. cAMP addition to the medium enhanced the cathode-directed electrotaxis in WT cells but attenuated it in gc-null/sGΔN and gc-null/sGΔCat cells (Fig. 3 and Table S1). Because cAMP is charged negatively, this finding suggests the possibility that cAMP addition to the medium may cause chemotaxis toward the anode through a gradient generation of cAMP caused by the applied dcEFs (34), which may at least account for the cAMP-dependent attenuation of the cathode-directed electrotaxis. However, cross-current fluid flow experiments, in which the medium including 1 μM cAMP and 60 μM LY294002 was perfused continuously across the chamber in the direction perpendicular to the electric fields, revealed no obvious changes in the migration direction toward the anode in gc-null/sGΔCat cells, confirming no effect by possible field-induced artifacts such as chemical gradients. In chemotaxis, it has been revealed that PI3K- and GCase-mediated signaling pathways are modulated by extracellular cAMP stimulation (18–21). Similarly, the bidirectional effects of cAMP in electrotaxis may be due to cAMP-dependent modulation of the intracellular dynamics of multiple-signaling pathways.

Intracellular Localization of Electrotactic Signaling Components During Electrotaxis. We next examined the intracellular localization of sGC, GbpC, sGΔN, and sGΔCat for the GCase-mediated signaling pathway and the localization of PI3K2 and the PH domain of Akt/PKB for the PI3K2-mediated signaling pathway during electrotaxis under a dcEF (10 V cm\(^{-1}\)) by using GFP (sGΔ-GFP, GbpC-GFP, sGΔN-GFP, sGΔCat-GFP, PI3K2-GFP, and PHAKT/PKB-GFP, respectively). PHAKT/PKB-GFP is an indicator for PtdIns(3,4,5)P\(_3\), which is the catalytic product of PI3Ks on the membrane. In the condition in which cells exhibit cathode-directed electrotaxis, these proteins were all localized at the leading edge of cells migrating toward the cathode (Fig. 4A–E) except for sGΔCat-GFP, which was often localized both at the leading edge and the tail end of the migrating cells (Fig. 4F). These distributions resemble those observed in chemotactic cells under cAMP gradients (18–21, 35). The presence of sGΔ, GbpC, PI3K2, and PIP\(_3\) in the pseudopod could stabilize the pseudopod, thereby allowing the cell to preferentially migrate toward the cathode during electrotaxis. Bipolar distribution of sGΔCat-GFP at the leading edge and tail end of the migrating cells is consistent with the less-effective cathode-directed electrotaxis seen in gc-null/sGΔCat cells.

In the presence of 1 μM cAMP and 60 μM LY294002, which cause anode-directed electrotaxis in gc-null/sGΔCat cells, sGΔCat-GFP was localized dominantly at the anode-directed
Fig. 5. Model for directional switching in electrotaxis. Multiple-signaling pathways mediate electrotactic signals to bias migration toward the cathode and anode. PI3Ks and the catalytic domain of sGC with GbpC are involved in cathode-directed migration, whereas the N-terminal domain of sGC and unidentified cAMP-activated pathways (X) mediate anode-directed migration. Migration direction is determined by a tug-of-war-like mechanism between the multiple-signaling pathways. The sGC-dependent pathways can be switched between cathode-directed and anode-directed signaling through intracellular cGMP levels.

Discussion

The results we report here identify genes required to determine migration direction in electrotaxis and show that the GCase- and PI3K-dependent signaling pathways work to bias cell movements in electrotaxis. Similarities and differences in the molecular mechanisms between electrotaxis and chemotaxis are discussed below. Furthermore, we propose a mechanism for switching the direction in electrotaxis, in which parallel processing of electric signals by multiple pathways determine the migration direction toward the cathode or anode (Fig. 5).

Previous reports have revealed that chemotaxis in Dictyostelium cells is mediated by PI3K-α, PLA2-γ, and GCase-dependent signaling pathways (18–21, 36, 37). Simultaneous inhibition of these pathways abolishes chemotactic movements completely, whereas functional signaling in either one of these multiple pathways can restore chemotaxis at least in part, suggesting that these pathways work independently (18). Similar to chemotaxis, multiple-signaling pathways work in parallel for electrotaxis to orient cells directionally toward the cathode or anode (Fig. 5). Both the GCase- and PI3K-dependent signaling pathways are involved in cathode-directed electrotaxis. Suppression of either GCase- or PI3K-dependent signaling partially decreased the electrotactic efficiency (Fig. 2). Molecular components of the GCase- and PI3K-dependent signaling pathways localized at the leading edge of migrating cells during electrotaxis in an actin-dependent manner (Fig. 4). Similar results have been observed in chemotactic cells under chemotaxant gradients in which a distinctive localization of signaling components at the leading edge has been implicated to enhance chemotactic efficiency (20, 35). These results suggest functional sharing of intracellular signaling components for directional cell migration between chemotaxis and electrotaxis.

Nevertheless, there exist significant differences between electrotaxis and chemotaxis. First, although F-actin-independent localization of PtdIns(3,4,5)P3 on the membrane facing the chemotaxant source is one key signaling event in chemotaxis (20), no localization of PtdIns(3,4,5)P3 was observed under a deEF when the actin polymerization was inhibited (Fig. 4). This finding indicates that the PI3K-dependent signaling pathway mediates electrotactic signals in an actin-dependent manner. Because PI3K activity is regulated by a feedback mechanism through a Ras/PI3K/F-actin circuit (20, 32), electric signals may affect some components of this feedback circuit. Second, sGC is involved in both electrotaxis and electrotaxis but in different ways. For example, expression of sGCa Cat in gc-null cells can partly restore chemotaxis, but expression of sGCaN is not sufficient for chemotaxis (18). However, the converse applies to electrotaxis, where gc-null/sGCaCat cells cannot restore effective cathode-directed electrotaxis but gc-null/sGCaN cells can (Fig. 3). Roles of the N-terminal and catalytic domains of sGC in electrotaxis are discussed below with a proposed mechanism (Fig. 5). Additionally, the behaviors of electrotactic cells sometimes depend on the application time of the electric fields. WT and gc-null/sGCaCat cells exhibited electrotaxis continuously toward the cathode and anode, respectively, whereas gc-null and gbpC-null cells gradually became random during electric field application (Figs. 2F and 3H). Such stimulation-time-dependent directionality has not been observed in chemotaxis.

Switching direction in electrotaxis can be explained by the balance of multiple pathways acting in parallel to bias cell migration toward the cathode or anode as follows (Fig. 5). In this model, PI3Ks and cGMP mediate cathode-directed signaling, whereas the N-terminal domain of sGC mediates anode-directed signaling. In addition, an unidentified pathway X, responsible for anode-directed signaling, is included in the model because even under simultaneous inhibition of PI3Ks and GCase, cells can still exhibit anode-directed electrotaxis (Fig. 2). Furthermore, to explain the inhibitory effects of the catalytic domain of sGC on the N-terminal domain, we assumed that cGMP not only mediates cathode-directed signaling by GbpC activation but also suppresses anode-directed signaling mediated by the N-terminal domain. According to this assumption, the sGC-dependent signaling pathways can switch in response to intracellular cGMP levels. At a higher concentration of cGMP, cathode-directed signaling becomes dominant by both activation of GbpC-mediated cathode-directed signaling and suppression of N-terminal-domain-mediated, anode-directed signaling. On the other hand, at a lower concentration of cGMP, anode-directed signaling becomes dominant by both inhibition of GbpC and release of the N-terminal domain suppression. As shown in Fig. 4, sGCaCat-GFP and sGCaN-GFP were localized dominantly to the pseudopod directed toward the cathode and the anode, respectively. These results suggest that sGC localization toward the cathode and the anode in electrotaxis is regulated by the catalytic domain and that the catalytic product cGMP works as a directional switcher in electrotaxis.

Based on this model, we estimated the relative contributions of 4 signaling pathways on the directedness of electrotaxis (Fig. S1). PI3Ks, GbpC, the N-terminal domain of sGC, and the pseudopod, whereas sGCaN-GFP was observed in the cytosol with no polarized localization on the membrane (Fig. 4 G and H)). These results suggest that the N-terminal domain of sGC mediates anode-directed signaling by localizing dominantly to the pseudopod facing the anode. Because WT sGC-GFP was localized at the cathode-directed pseudopod (Fig. 4 A), the N-terminal domain-dependent localization at the pseudopod facing the anode was somehow inhibited in WT sGC.

When cells were treated with Latrunculin A (5 μM), which is an F-actin-depolymerizing reagent, the distinctive localization of these signaling molecules was lost, instead of being random, with respect to the direction of the electric field (10 V cm⁻¹) (Fig. 3 B, D, F, H). Both PHAkt/PKB-GFP and sGCαCat-GFP were localized on the membrane in an F-actin-independent manner, but their localization was not polarized under a deEF. These observations indicate that signaling molecules of the GCase- and PI3K-mediated signaling pathways are polarized through actin-dependent localization.

polarized localization on the membrane (Fig. 4 G and H)). These results suggest that the N-terminal domain of sGC mediates anode-directed signaling by localizing dominantly to the pseudopod facing the anode. Because WT sGC-GFP was localized at the cathode-directed pseudopod (Fig. 4 A), the N-terminal domain-dependent localization at the pseudopod facing the anode was somehow inhibited in WT sGC.

When cells were treated with Latrunculin A (5 μM), which is an F-actin-depolymerizing reagent, the distinctive localization of these signaling molecules was lost, instead of being random, with respect to the direction of the electric field (10 V cm⁻¹) (Fig. 3 B, D, F, H). Both PHAkt/PKB-GFP and sGCαCat-GFP were localized on the membrane in an F-actin-independent manner, but their localization was not polarized under a deEF. These observations indicate that signaling molecules of the GCase- and PI3K-mediated signaling pathways are polarized through actin-dependent localization.

polarized localization on the membrane (Fig. 4 G and H)). These results suggest that the N-terminal domain of sGC mediates anode-directed signaling by localizing dominantly to the pseudopod facing the anode. Because WT sGC-GFP was localized at the cathode-directed pseudopod (Fig. 4 A), the N-terminal domain-dependent localization at the pseudopod facing the anode was somehow inhibited in WT sGC.

When cells were treated with Latrunculin A (5 μM), which is an F-actin-depolymerizing reagent, the distinctive localization of these signaling molecules was lost, instead of being random, with respect to the direction of the electric field (10 V cm⁻¹) (Fig. 3 B, D, F, H). Both PHAkt/PKB-GFP and sGCαCat-GFP were localized on the membrane in an F-actin-independent manner, but their localization was not polarized under a deEF. These observations indicate that signaling molecules of the GCase- and PI3K-mediated signaling pathways are polarized through actin-dependent localization.
Materials and Methods

Cell Preparation and Electrotactic Assay. Ax2 cells (WT) and knockout cell lines were grown at 21°C in HLS medium supplemented with 5 ng/ml vitamin B12 and 100 ng/ml folic acid (23). Strains of gc-null and gpa1-gbpB cells were obtained from the Dicty Stock Center and selected with 10 μg/ml blasticidin S. The gbpC-null strain was created in WT Ax2 background, similar to a previously described method using D11 background (28), and selected with 10 μg/ml blasticidin. gc-null/sGC-null cells were tagged with enhanced GFP. Cells expressing sGC-GFP, GbpC-GFP, P3K2-GFP, and PHA2-GFP were selected with 20 μg/ml G418.

For electrotactic assays, cells were scored by a standard method (23). The starved cells were suspended in development buffer containing 10 mM NaKPO4, 2 mM MgSO4, and 0.2 mM CaCl2, (pH 6.5). In electrotactic assays for Ax2, gpa1-gbpB, gc-null, gc-null/sGC-gc, and gc-null/sGC-cat cells, 4 mM caffeine was added to inhibit adenylyl cyclase activity, which in turn reduced cell–cell interactions (39).

The construction of the chambers for electrotactic assays and dEF application has been previously described (23). The cells in the chamber were observed with an Olympus IX-71 inverted microscope capable of producing phase contrast optics. Cell behavior was recorded with a cooled CCD camera (MicroMax; Princeton Instruments) and software (MetaMorph; Molecular Devices) in a personal computer. To trace cell trajectories, images were processed automatically using lab-developed software. From the positional changes, motile properties such as directedness, migration velocity, path linearity, and asymmetric index were obtained by a previously reported method (23).

Fluorescence Imaging. To visualize GFP fused proteins, cells were examined through an inverted microscope (TE2000-IFS; Nikon) with an Apo TIRF 60×1.49 oil immersion lens. Confocal images were obtained by using a CSU10 scanner unit (Yokogawa) at an excitation wavelength of 488 nm from a DPPS laser (Sapphire 488–200 CDHR; Coherent) with an EM-CCD camera (iXon3 EM-DU-897; Andor). A barrier filter was used to detect emissions of >522 nm. The image was captured with Andor IQ software.

Acknowledgments. We thank all members of the T.Y. laboratory for discussions and technical assistance, Peter Karagianis for reading the manuscript, and Y. Asano and T. Uyeda (National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan) for the kind gift of PHA2-sGC-GFP plasmid. M.S. is supported by a research fellowship of the Japan Society for the Promotion of Science. This study was supported by Leading Project Bio-Nano-Process of the Japanese Ministry of Education, Culture, Sports, and Technology and was supported in part by the Yuragi Project of the Japanese Ministry of Education, Culture, Sports, Science and Technology.