Mechanical Strength and Stiffness of the Biodegradable SonicWeld Rx Osteofixation System

Buijs, Gerrit J.; van der Houwen, Eduard B.; Stegenga, Boudewijn; Verkerke, Gijsbertus; Bos, Ruud R.M.

Published in:
Journal of Oral and Maxillofacial Surgery

DOI:
10.1016/j.joms.2008.07.022

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2009

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Mechanical Strength and Stiffness of the Biodegradable SonicWeld Rx Osteofixation System

Gerrit J. Buijs, DMD,* Eduard B. van der Houwen, MSc,† Boudewijn Stegenga, DMD, MSc, PbD,‡ Gijbertus J. Verkerke, MSc, PbD,§ and Rudolf R.M. Bos, DMD, PbD||

Purpose: To determine the mechanical strength and stiffness of the new 2.1 mm biodegradable ultrasound-activated SonicWeld Rx (Gebrüder Martin GmbH & Co, Tuttlingen, Germany) osteofixation system in comparison with the conventional 2.1 mm biodegradable Resorb X (Gebrüder Martin GmbH & Co) osteofixation system.

Materials and Methods: Plates and screws were fixed to 2 polymethylmethacrylate blocks to simulate bone segments and were subjected to tensile, side bending, and torsion tests. During testing, force and displacement were recorded and graphically presented in force-displacement diagrams. For the tensile tests, the strength of the osteofixation system was measured. The stiffness was calculated for the tensile, side bending, and torsion tests.

Results: The tensile strength and stiffness as well as the side bending stiffness of the SonicWeld Rx system presented up to 11.5 times higher mean values than the conventional Resorb X system. The torsion stiffness of both systems presents similar mean values and standard deviations.

Conclusions: The SonicWeld Rx system is an improvement in the search for a mechanically strong and stiff as well as a biodegradable osteofixation system. Future research should be done to find out whether the promising in vitro results can be transferred to the in situ clinical situation.

© 2009 American Association of Oral and Maxillofacial Surgeons

Biodegradable plates and screws are used increasingly in oral and maxillofacial practice. These biodegradable plates and screws have several advantages over conventional titanium plates and screws including: 1) no need for a second intervention to remove the devices; 2) no interference with imaging or radiotherapeutic techniques; 3) no possible growth disturbance or mutagenic effects; 4) no potential brain damage; and 5) no thermal sensitivity. However, the use of biodegradable plates and screws also has introduced several disadvantages. First, that the boreholes need to be tapped before the screws can be inserted is time-consuming. A second disadvantage could be that the biodegradable plates and screws represent inferior mechanical strength and stiffness compared with conventional titanium plates and screws. To resolve these disadvantages, a new biodegradable osteofixation system, SonicWeld Rx (Gebrüder Martin GmbH & Co, Tuttlingen, Germany), has been developed. In contrast to conventional biodegradable osteofixation systems, tapping of the cortical bone layer is not necessary before inserting the SonicWeld Rx biodegradable pins. A biodegradable pin is placed onto an ultrasound-activated sonic elec-
trod, called a sonotrode, and inserted into the bore-
hole. As a result of the added ultrasound energy, the
thermoplastic biodegradable pin will melt, resulting
in a flow of biodegradable polymers into the cortical
bone layer and the cavities of the cancellous bone.
There is no cellular reaction due to thermal stress
during insertion.13 The biodegradable plate and pin-
head fuse at the same time. Theoretically, the fusion
of plate and pinhead will result in superior mechani-
cal device characteristics in comparison with conven-
tional biodegradable osteofixation systems.
The mechanical strength and stiffness of 7 biode-
gradable as well as 2 titanium osteofixation systems
have been investigated recently.12 One of these inves-
tigated biodegradable systems is the Resorb X bio-
degrable osteofixation system (Gebrüder Martin
GmbH & Co). The SonicWeld Rx and the Resorb X
biodegradable osteofixation systems are made of the
same copolymer compositions and have the same
device dimensions. These systems are both supplied
by Gebrüder Martin GmbH & Co. The question arises
as to what extent the biodegradable ultrasound-acti-
vated SonicWeld Rx osteofixation system presents
superior mechanical strength and stiffness as com-
pared with the conventional biodegradable Resorb X
osteofixation system.
The objective of this study was to determine the
mechanical strength and stiffness of the biodegrad-
able ultrasound-activated SonicWeld Rx osteofixation
system in comparison with the conventional biode-
gradable Resorb X osteofixation system.

Materials and Methods

The specimens to be investigated were 2 commer-
cially available biodegradable osteofixation systems
(i.e., 2.1 mm Resorb X and 2.1 mm ultrasound-acti-
vated SonicWeld Rx). All the specimens consisted of
biodegradable amorphous poly-(50%D, 50%L)-lactide.
The plates under investigation were 4-hole extended
plates. The manufacturer supplied sterile implants.
The general characteristics of the included plates and
screws are summarized in Table 1. Eighteen plates
and 72 screws/pins of each system were available to
carry out 3 different mechanical tests. The osteofix-
ation plates and screws were fixed in 2 different ways
to 2 polymethylmethacrylate (PMMA) blocks (with
polished surface) that simulated bone segments. For
the Resorb X osteofixation system, the screws were
inserted in both PMMA blocks according to the pre-
scriptions of the manufacturer (using prescribed burs
and taps). The applied torque for inserting the screws
was measured to check whether it was comparable to
the clinically applied torque (hand tight) defined in a
previous study.14 For the SonicWeld Rx system, the
biodegradable pins were inserted into the boreholes
(after the use of prescribed burs) with the sonotrode.
The biodegradable polymers melted due to the ultra-
sound vibrations of the sonotrode. Subsequently, the
biodegradable material flowed into the borehole and
the pinhead fused with the biodegradable plate. In
both situations, the boreholes were irrigated with
saline before insertion of the screws/pins to simulate
the in situ lubrication.
The 2 PMMA blocks, linked by the osteofixation
device (1 plate and 4 screws/pins) were stored in a
water tank containing water (37.2°C) for 24 hours to
simulate the relaxation of biodegradable screws/pins
at body temperature.15 The tests were carried out in
another tank containing water at the same tempera-
ture to simulate physiologic conditions. The use of
saline was omitted because of the associated corro-
sion problems of the test set-up. Omitting the use of
saline was not expected to influence the test results.
The plates and screws/pins were subjected to ten-
sile, side bending, and torsion tests. The tensile test
was carried out as a standard loading test (Fig 1). Side
bending tests were carried out to simulate an in vivo
bilateral sagittal split osteotomy (BSSO) situation
(Fig 2). Torsion tests were carried out to subject the
osteofixation devices to high torque to simulate the
most unfavorable situation (Fig 3). The 2 PMMA
blocks, linked by the osteofixation device, were
mounted in a test machine (Zwick/Roell TC-FR2,
5TS.D09, 2.5 kN test machine, force accuracy 0.2%,
positioning accuracy 0.0001 mm; Zwick/Roell Neder-

<table>
<thead>
<tr>
<th>Brand Name</th>
<th>Manufacturer</th>
<th>Composition</th>
<th>Sterility</th>
<th>Screw/Pin (mm)</th>
<th>Plate (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Diameter†</td>
<td>Length†</td>
</tr>
<tr>
<td>Resorb X</td>
<td>Gebrüder Martin GmbH & Co*</td>
<td>100 D(50%), L(50%)-lactide</td>
<td>Sterile</td>
<td>2.1</td>
<td>7.0</td>
</tr>
<tr>
<td>SonicWeld Rx</td>
<td>Gebrüder Martin GmbH & Co*</td>
<td>100 D(50%), L(50%)-lactide</td>
<td>Sterile</td>
<td>2.1</td>
<td>7.0</td>
</tr>
</tbody>
</table>

*Tuttlingen, Germany.
†According to the specifications of the manufacturers.
land, Venlo, The Netherlands). Regarding the tensile tests, the 2 PMMA blocks, and thus the osteofixation plate, were subjected to a tensile force with a constant speed of 5 mm/min until fracture occurred (according to the standard ASTM D638M). For the side bending test, the 2 PMMA blocks were supported at their ends whereas the plates were loaded in the center of the construction with a constant speed of 30 mm/min (with this speed the outer fibers were loaded as fast as the fibers of the osteofixation system in the tensile test) until the plate achieved a 30° bend. For the torsion test, the 2 PMMA blocks were rotated along the long axis of the osteofixation system with a constant speed of 90°/min (with this speed the outer fibers were loaded as fast as the fibers of the osteofixation system in the tensile test) until the plate was turned 160°.

During testing the applied force was monitored by the load cell of the test machine. Both force and displacement were recorded with a sample frequency of 500 hertz and graphically presented in force-displacement diagrams. During tensile tests, the strength of the osteofixation system was measured. The stiffness was calculated for the tensile, side bending, and torsion tests by determining the slope of the curve between 25% and 75% of F_{max} on the force-displacement curves.

![Figure 1. Tensile test set-up.](image1)

![Figure 2. Side bending test set-up.](image2)

![Figure 3. Torsion test set-up.](image3)

![Figure 4. Mean tensile strength organized by system. Legend: bars, SD of the mean strength; points in figure, mean strength; x-axis, brand names of the investigated osteofixation systems; y-axis, mean strength in Newtons.](image4)

Statistical Package of Social Sciences (version 14.0; SPSS, Chicago, IL) was used to analyze the data. Means and standard deviations (SD) were calculated to describe the data. To determine whether there were significant differences between the 2 biodegradable osteofixation systems in tensile strength and stiffness, side bending stiffness, and torsion stiffness, the maximum values were subjected to independent samples t tests. Differences were considered to be statistically significant when P was less than .05 for all tests.

Results

The mean tensile strength and stiffness of the Resorb X as well as the SonicWeld Rx biodegradable osteofixation systems are graphically presented in Figures 4 and 5, respectively. Tensile strength and stiffness of the SonicWeld Rx system were significantly higher than those of the Resorb X system. The tensile strength of the SonicWeld Rx system was approximately 2 times the tensile strength of the Resorb X system, whereas the tensile stiffness of the SonicWeld Rx system was about 11.5 times that of the Resorb X system. The significant differences between the 2 systems are outlined in Table 2. The SD for the systems regarding the tensile strength and stiffness were small.

The mean side bending stiffness of the 2 biodegradable osteofixation systems is plotted in Figure 6. The SonicWeld Rx system showed significantly higher side bending stiffness than with the Resorb X system. The SDs of the 2 systems were small (Table 3). The significant results were additionally illustrated by the 95% confidence interval of the difference, which did not include zero.

There was no significant difference between the mean torsion stiffness of the SonicWeld Rx and the Resorb X osteofixation system (Table 2), as is graphically displayed in Figure 7. Table 3 shows a summary of the descriptive statistics of the tensile strength and stiffness, side bending stiffness as well as torsion stiffness.

Regarding the side bending test, no fracture at all of either the plate or the screws/pins has been observed.

Table 2. COMPARISON BETWEEN OSTEOFIXATION SYSTEMS

<table>
<thead>
<tr>
<th>Systems</th>
<th>Test</th>
<th>Property</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resorb X 2.1 mm vs SonicWeld Rx 2.1 mm*</td>
<td>Tensile</td>
<td>Strength</td>
<td>45.31 64.05</td>
</tr>
<tr>
<td>Resorb X 2.1 mm vs SonicWeld Rx 2.1 mm*</td>
<td>Tensile</td>
<td>Stiffness</td>
<td>420.54 483.20</td>
</tr>
<tr>
<td>Resorb X 2.1 mm vs SonicWeld Rx 2.1 mm*</td>
<td>Side bending</td>
<td>Stiffness</td>
<td>0.76 0.95</td>
</tr>
<tr>
<td>Resorb X 2.1 mm vs SonicWeld Rx 2.1 mm</td>
<td>Torsion</td>
<td>Stiffness</td>
<td>−0.06 0.05</td>
</tr>
</tbody>
</table>

Abbreviation: CI, confidence interval.

*Significant.

for both systems. For the tensile as well as the torsion test, shear of the screw-heads was observed regarding the Resorb X system whereas fracture of the plates was observed regarding the SonicWeld Rx system.

Discussion

The differences in strength and stiffness between the SonicWeld Rx and the Resorb X biodegradable osteofixation systems can be explained partly by the difference in geometry of the screws and pins, but predominantly by the 2 different methods of application. Using a sonotrode to bring the plate and pin in a thermoplastic state fusing the plate and pin, results in a firm and stable fixation. The tensile strength and stiffness as well as the side bending stiffness of the SonicWeld Rx system presented significantly higher mean values compared with the conventional Resorb X system (Table 2). In contrast, the torsion stiffness of both systems presents remarkably similar means and standard deviations. The torsion test was used to simulate the torsion forces that exist in the area between the 2 canine teeth when a median fracture of the mandible is present. In various clinical cases, however, these torsion forces are neutralized by the interdigitation of the fracture segments. The torsion forces exerted on the fixation devices are transferred subsequently to tensile forces in these cases.

The biodegradable polymers used to manufacture the SonicWeld Rx plates and pins are melted through an ultrasound-activated sonotrode resulting in a fusion of the plate and screwhead/pinhead. As mentioned before, fusion results in a firm and stable device especially where shear strength and stiffness of the device are concerned. This is supported by the authors’ experience that in all test samples of the SonicWeld Rx system for both the tensile and side bending test, fracture of the plate occurred away from the pin, and not near the pin or of the pin or pinhead itself. Regarding the conventionally screwed Resorb X system, the authors experienced shear of the screw-heads in all test samples. These in vitro observations support the hypothesis that the principle of fusion of the plate and the pinheads results in better mechanical biodegradable device strength and stiffness. For orthopedic and maxillofacial metallic plates and screws, this principle is well-known as locking plates. These locking plates present increased in vitro strength and stiffness of the device characteristics as well as good clinical performance.

As described in Materials and Methods, the Resorb X screws were applied with a specific torque defined in a previous study, resulting in a pressure of the plates to the PMMA blocks. For the SonicWeld RX pins this pressure was not specified; the pins were applied as the surgeon would do in clinical practice. This difference could theoretically confound the test results of especially the SonicWeld RX system. When looking to the test results, however, the authors conclude that the lack of pressure of the plates to the PMMA blocks for the SonicWeld RX system could not confound the test results because fracture of the plates (instead of shear of the screws) occurred in all specimens.

The use of PMMA instead of real bone was a conscious decision of the authors. Real bone could have different calcification levels that could result in different fracture patterns of the plates and screws. Subsequently, this could influence the results. PMMA blocks have the same mechanical characteristics as real bone and each block does have the same “quality” level. Moreover, the difference between cancellous/cortical bone and PMMA was not a major concern. Theoretically, the flow of polymers of the ultrasound-activated SonicWeld Rx pin into the cavity...
ties of the cancellous bone would enhance the pull out strength of the screws. However, none of the screws were pulled out during testing.

Regarding the thermoplastic state of the biodegradable pin, we were concerned about the fusion or sticking of the biodegradable pin to the PMMA blocks. This could theoretically affect the test results. To prevent this, the boreholes were irrigated with saline before insertion of the pins. To check whether fusion or sticking had occurred, we checked whether the pin could be pulled out of the PMMA blocks after the test. Despite not actually measuring the pull out strength of the pins, the authors noted that high forces were not required to do so.

The SonicWeld Rx system is obviously an improvement in the search for a mechanically strong and stiff as well as a biodegradable osteofixation system. Moreover, usage of the device is relatively easy and comfortable. The application of SonicWeld Rx plates and pins is fast and easy. Nevertheless, the plates and screws are still bulky compared with the conventional titanium plates and screws. The question is whether the promising in vitro results can be transferred to the in situ clinical situation. Future research about biodegradable osteofixation devices should include the SonicWeld Rx system in randomized clinical trials in which a conventional titanium fixation device serves as the "gold standard" fixation device.

Acknowledgments

The authors thank Gebrüder Martin GmbH & Co for supplying the biodegradable plates and screws/pins. The authors also thank Dr H. Groen for his statistical assistance. Mr J. de Jonge is acknowledged for the fabrication of the test set-ups.

References