New Data on the Late Neandertals: Direct Dating of the Belgian Spy Fossils

Patrick Semal,1* Hélène Rougier,1,2,3* Isabelle Crevecoeur,1,3 Cécile Jungels,1 Damien Flas,4 Anne Hauzeur,5 Bruno Maureille,3 Mietje Germonpré,1 Hervé Bocherens,5 Stéphane Pirson,1 Laurence Cammaert,1 Nora De Clerck,7 Anne Hambucken,1 Thomas Higham,8 Michel Toussaint,9 and Johannes van der Plicht10

1 Department of Paleontology, Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium
2 Department of Anthropology, California State University Northridge, Northridge, CA 91330
3 Laboratoire d’Anthropologie des Populations du Passé, PACEA–UMR 5199, Université de Bordeaux, 33405 Talence, France
4 Department of Prehistory, Royal Museums of Art and History, 1000 Brussels, Belgium
5 Région Centre, Institut National de Recherches Archéologiques Preventives, 37100 Tours, France
6 Biogeologie, Institut für Geowissenschaften, Universität Tübingen, 72076 Tübingen, Germany
7 Microtomography Research Group, Department of Biomedical Sciences, Universitat Antwerpen, 2610 Antwerpen, Belgium
8 Oxford Radiocarbon Accelerator Unit, Research Lab for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, England
9 Direction de l’Archéologie, Ministère de la Région wallonne, 5100 Namur, Belgium
10 Center for Isotope Research, Groningen University, 9747 AG Groningen, Netherlands

KEY WORDS northwest Europe; Middle to Upper Paleolithic transition; acculturation

ABSTRACT In Eurasia, the period between 40,000 and 30,000 BP saw the replacement of Neandertals by anatomically modern humans (AMH) during and after the Middle to Upper Paleolithic transition. The human fossil record for this period is very poorly defined with no overlap between Neandertals and AMH on the basis of direct dates. Four new 14C dates were obtained on the two adult Neandertals from Spy (Belgium). The results show that Neandertals survived to at least \(\approx36,000\) BP in Belgium and that the Spy fossils may be associated to the Lincombian–Ranisian–Jerzmanowician, a transitional techno-complex defined in northwest Europe and recognized in the Spy collections. The new data suggest that hypotheses other than Neandertal acculturation by AMH may be considered in this part of Europe.

The replacement of Neandertals by anatomically modern humans (AMH) in Eurasia is one of the major issues in paleoanthropology (Gravina et al., 2005; Orlando et al., 2006; Trinkaus, 2007). This population process corresponds to the period between 40,000 and 30,000 14C BP, during which the transition from the Middle to Upper Paleolithic took place. Different scenarios have been proposed for explaining these two major events, from a certain degree of both biological and cultural continuity (e.g. Wolpoff et al., 1994) to complete replacement of Neandertals by modern humans together with either acculturation or independent technical evolution of the last Neandertals (Mellars et al., 2007; Zilhão et al., 2008a).

Understanding the biological and/or cultural relationships of the two groups has been limited by the dearth of well-dated and diagnostic human remains associated to a secure archeological context. Numerous Neandertal remains come from old excavations that yielded incomplete or no stratigraphic data or for which the dating and/or associated archeological context have not been reevaluated by current methods. Between 40,000 and 30,000 BP, techno-complexes described as transitional have been documented across Eurasia. Identifying the manufacturers of these industries is one of the main keys for answering the question of the biocultural relationships between Neandertals and AMH. The only transitional techno-complex to which diagnostic human remains have been associated is the Châtelperronian of southwestern France and northern Spain. The Neandertal specimens discovered at Saint-Césaire and Arcy-
René (France) suggest that at least some of the transitional industries are related to Neandertals. Bordes (2002) invalidated the Châtelperronian/Aurignacian interstratification at the two sites where it was proposed, but this matter is debated again (Mellars et al., 2007, 2008; Zilhão et al., 2008a,b).

In the northwest of Europe, the Châtelperronian is not recognized, but sites located between Wales and southern Poland have provided another transitional techno-complex, the Lincombian–Ranisian–Jerzmanowician (LRJ; Flas, 2006; Jach, 2007).

Neandertals from only a handful of sites have been directly dated using AMS radiocarbon techniques. Among them, those from Engis, El Sidróen, Feldhofer, Okladnikov, Spy, and Vindija may be attributed to the period under examination (Schmitz et al., 2002; Higham et al., 2006a; Rosas et al., 2006; Toussaint and Pirson, 2006; Krause et al., 2007). Besides dating methodology problems (Smith et al., 1999; Higham et al., 2006a; Rosas et al., 2006; Krause et al., 2007), inconsistencies with the archeological context (Skinner et al., 2005; Toussaint and Pirson, 2006) may also invalidate the youngest dates. Finally, the most reliable results for northwest Europe point to ≈40–39,000 BP for the youngest directly dated Neandertal remains (Schmitz et al., 2002). The oldest occurrence of European AMH (Peștera cu Oase, Romania), at ≈35,000 BP (Trinkaus et al., 2003), indicates that there is no clear overlap between Neandertals and modern humans based on the direct AMS dating of human fossils.

It is therefore essential to obtain new dates on human fossils using rigorous protocols to evaluate the various hypotheses regarding the replacement of Neandertals by AMH in Europe. In this context, we have directly dated several human bones and teeth from the Spy Cave collections hosted at the Royal Belgian Institute of Natural Sciences.

SPY CAVE

The discoveries of Spy Cave and their importance in Paleoanthropology

Spy Cave is one of the richest prehistoric sites in Belgium. The first human remains were discovered in 1885 during excavations by M. De Puydt and M. Lohest. They hired a miner, A. Orban, who dug a gallery to reach the lower levels. Orban worked by candlelight, and his finds were inventoried outside (Lohest et al., 1925). The miner was often alone in the field, and the few preserved archives mention quick excavations. The goal of De Puydt and Lohest was to prove the contemporaneity of human specimens with layers yielding remains of extinct species. In early July 1886, a statement was recorded in a hurry (because of the risk of collapse for the gallery) to testify to the discovery of *in situ* human fossils. This was presented in the first ever published monograph on Neandertal remains, and their study was entrusted to the paleontologist J. Fraipont (Fraipont and Lohest, 1887). Since then, many excavations (whether official or not) have been carried out at Spy (Rougier et al., 2004). The most extensive one, by F. Twieselmann (Royal Belgian Institute of Natural Sciences) between 1948 and 1956, encountered only archeologically rich sediments from disturbed layers. Most of the material coming from the various excavations has been only partially studied and remains unpublished.

Reassessment of Spy Cave and its contents

The work of De Puydt and Lohest (1887) allows us to reconstruct partially the context of the human remains. The first skeleton discovered (Spy I) was quite incomplete and its position is difficult to assess, since the bones were not in anatomical connection; the second skeleton (Spy II) was also incomplete, but lying on the right side, with one hand against the mandible. A. Hrdlička, who had the opportunity to study the Spy human remains in the 1910s and 1920s, noted that “A repeated critical examination of the specimens leaves a serious doubt as to the accuracy of [Fraipont’s] distribution. No photographs or sketches were made on the spot; the bones were not marked, and have evidently become mixed up, their distribution being decided upon later. The specimens indicate very strongly different relations.” (Hrdlička, 1930, p. 188).

Recent reassessment of all the collections from Spy has allowed us to discover numerous unpublished human remains from Neandertals and AMH mainly among the unsorted fauna (Rougier et al., 2004). The number of human remains from Spy has increased from 89 numbered bones and teeth to 1,816 (including at least 24 new Neandertal remains), representing all skeletal elements. The minimum number of individuals (MNI) is 26, the great majority of which probably derives from a collective Neolithic burial. The large number of recent remains questions the homogeneity of the original Spy collection. Beside the two Neandertal individuals recognized in 1886, only one additional immature individual had been mentioned (Twieselmann, 1971), and Trinkaus (1978) suggested the existence of at least three adult Neandertal individuals based on the foot bones.

The morphometrical analysis of the newly recognized human remains has allowed us to compare these new specimens with the two adult Neandertals to further consider issues of attribution. The following results have emerged: 1) the original collection includes mature and juvenile anatomically modern bones; 2) the attribution of the remains to each adult Neandertal skeleton has been reassessed; 3) among the numerous human remains recognized within the faunal collections, some show characteristics that bring them closer to the range of Neandertal variability. For instance, only five of the thirteen hand bones from the original human collection can be attributed to Neandertals. IC discovered ten more Neandertal hand bones, which can be associated with the five from the original collection based on morphometry and anatomical connections. The new human remains that refit with the original collection are of particular interest, since they were discovered among unwashed fauna, which makes them available for isotopic analyses, unlike the original, consolidated, and varnished specimens.

Stratigraphical and archeological context of the Neandertal skeletons

The discoverers identified only three fauna-bearing levels. The two Neandertal individuals were found in the deepest level, above brown clay lying on the bedrock and below thin yellow clay (Fraipont and Lohest, 1887; De Puydt and Lohest, 1887). The hard reddish breccia of the intermediate fauna-bearing level lying just above the skeletons was an argument for unmixed deposits. The possibility of a burial was rejected by the discoverers but commonly inferred later (Rutot, 1909; Maureille and...
Vandermeersch, 2007). Although the primary and/or intentional character of the anthropological deposit at Spy may never be proved, the coherence of the identified Neandertal hand bones gives credence to the description by the discoverers (De Puydt and Lohest, 1887) of the position of the now most complete skeleton.

A few lithic pieces were found near the human fossils. The only characteristic tool is a phytane Mousterian point purportedly found beside Spy I, which is similar to the Mousterian points of the intermediate fauna-bearing level (Jungels et al., 2006).

The original stratigraphy was replaced by a cultural stratigraphy based on typology when Breuil (1912) recognized four cultural levels by dividing the Middle Paleolithic assemblage into two different Mousterian industries. He considered that the burial was associated with the upper Mousterian cultural level. This stratigraphy, with four cultural levels, has introduced an additional source of inconsistency and material mixing. Bordes (1959) recognized a Quina-type Charentian industry based on the presence of some Quina-type tools in the collections. He suggested that the human fossils may be related to this industry based on the comparison with other Neandertal burial sites. Subsequently, Ulrix-Closset (1975) recognized three Middle Paleolithic industries at Spy: a Mousterian of Acheulian tradition, a Charentian-type industry, and a late Mousterian (“Mousterien évolué”). The last was found in the intermediate fauna-bearing level. Recent studies (Jungels, 2006; Jungels et al., 2006) have shown that a Quina-type Mousterian as defined by Bourguignon (1997) is, however, not represented at Spy. The association of the human fossils with such an industry is thus no longer tenable.

A transitional industry, the LRJ (Campbell, 1980; Flas, 2006), and an important Aurignacian industry (Otte, 1979) have also been identified in the intermediate fauna-bearing level. The LRJ is a relatively unknown and rarely discussed industry that is characterized by the presence of leaf-points (“Jerzmanowice points”) made on blades using bifacial retouch. At Spy, the LRJ is represented by 22 Jerzmanowice points (of which nine are complete), as well as by two burins and one splintered piece made on Jerzmanowice point fragments, a reuse behavior commonly found in LRJ sites (Flas, 2006).

The imprecision of the field data and the mixing of material prevent us from defining precisely all of the techno-complexes present at Spy. In the same way, no reliable information is available regarding the archeological context of the human fossils.

PREVIOUS DIRECT DATING ATTEMPTS

OF HUMAN REMAINS FROM THE SPY COLLECTIONS

Direct dating of a couple of human remains from the Spy collections was carried out by MT (Toussaint and Pirson, 2006) (Table 1). A first direct dating attempt was done on a sample from one of the two human scapulae housed at the University of Liège. These fragmentary scapulae, attributed to Spy II since their discovery in 1886 (Fraipont and Lohest, 1887), present a dorsal sulcus along the axillary border identified as a derived Neandertal trait relative to earlier humans (Trinkaus, 2006). Nevertheless, their presence in a minority of Gravettian humans is also attested (Trinkaus, 2007). The reassessment of the Spy collections shows that their attribution to one or the other of the adult Neandertals

TABLE 1. Direct radiocarbon ages and sample information for human remains from Spy (Belgium).

<table>
<thead>
<tr>
<th>Lab number</th>
<th>Sample description</th>
<th>Material</th>
<th>Sample</th>
<th>Collagen yield (mg)</th>
<th>C/N</th>
<th>% C</th>
<th>% N</th>
<th>C / N</th>
<th>δ13C (‰)</th>
<th>δ14C (years BP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OxA-8912d</td>
<td>23,880</td>
<td>Bone</td>
<td>250</td>
<td>25.6</td>
<td>3.4</td>
<td>33.6</td>
<td>3.3</td>
<td>10.0</td>
<td>-19.2</td>
<td>-19.4</td>
</tr>
<tr>
<td>OxA-8913g</td>
<td>24,730</td>
<td>Bone</td>
<td>300</td>
<td>12.3</td>
<td>4.1</td>
<td>35.3</td>
<td>3.3</td>
<td>-19.4</td>
<td>-18.9</td>
<td>-18.4</td>
</tr>
<tr>
<td>GrA-21546d</td>
<td>31,810</td>
<td>Bone</td>
<td>560</td>
<td>24.5</td>
<td>4.4</td>
<td>41.5</td>
<td>3.4</td>
<td>-20.2</td>
<td>-18.4</td>
<td>-18.2</td>
</tr>
<tr>
<td>OxA-20981</td>
<td>3,896</td>
<td>Bone</td>
<td>537</td>
<td>13.5</td>
<td>4.4</td>
<td>46.1</td>
<td>3.4</td>
<td>-19.8</td>
<td>-18.9</td>
<td>-18.8</td>
</tr>
<tr>
<td>GrA-32623</td>
<td>35,810</td>
<td>Bone</td>
<td>357</td>
<td>13.5</td>
<td>4.4</td>
<td>46.1</td>
<td>3.4</td>
<td>-19.8</td>
<td>-18.9</td>
<td>-18.8</td>
</tr>
<tr>
<td>GrA-32628</td>
<td>4,800</td>
<td>Bone</td>
<td>630</td>
<td>12.4</td>
<td>4.4</td>
<td>40.4</td>
<td>3.4</td>
<td>-19.2</td>
<td>-18.9</td>
<td>-18.2</td>
</tr>
<tr>
<td>GrA-32626</td>
<td>4,800</td>
<td>Bone</td>
<td>630</td>
<td>12.4</td>
<td>4.4</td>
<td>40.4</td>
<td>3.4</td>
<td>-19.2</td>
<td>-18.9</td>
<td>-18.2</td>
</tr>
<tr>
<td>GrA-32625</td>
<td>4,800</td>
<td>Bone</td>
<td>630</td>
<td>12.4</td>
<td>4.4</td>
<td>40.4</td>
<td>3.4</td>
<td>-19.2</td>
<td>-18.9</td>
<td>-18.2</td>
</tr>
<tr>
<td>GrA-32624</td>
<td>4,800</td>
<td>Bone</td>
<td>630</td>
<td>12.4</td>
<td>4.4</td>
<td>40.4</td>
<td>3.4</td>
<td>-19.2</td>
<td>-18.9</td>
<td>-18.2</td>
</tr>
<tr>
<td>GrA-32624</td>
<td>4,800</td>
<td>Bone</td>
<td>630</td>
<td>12.4</td>
<td>4.4</td>
<td>40.4</td>
<td>3.4</td>
<td>-19.2</td>
<td>-18.9</td>
<td>-18.2</td>
</tr>
<tr>
<td>GrA-32624</td>
<td>4,800</td>
<td>Bone</td>
<td>630</td>
<td>12.4</td>
<td>4.4</td>
<td>40.4</td>
<td>3.4</td>
<td>-19.2</td>
<td>-18.9</td>
<td>-18.2</td>
</tr>
<tr>
<td>GrA-32624</td>
<td>4,800</td>
<td>Bone</td>
<td>630</td>
<td>12.4</td>
<td>4.4</td>
<td>40.4</td>
<td>3.4</td>
<td>-19.2</td>
<td>-18.9</td>
<td>-18.2</td>
</tr>
<tr>
<td>GrA-32624</td>
<td>4,800</td>
<td>Bone</td>
<td>630</td>
<td>12.4</td>
<td>4.4</td>
<td>40.4</td>
<td>3.4</td>
<td>-19.2</td>
<td>-18.9</td>
<td>-18.2</td>
</tr>
</tbody>
</table>
NEW 14C DATING RESULTS ON THE SPY COLLECTIONS

Materials and methods

Samples selection and preparation. The sampled specimens are bones and teeth that were recognized during the recent reassessment of the Spy collections. The human specimens are numbered following the new numbering system we have adopted (see Rougier et al., 2004), i.e., with "Arabic" numbers followed by a lower-case letter. The specimens housed at the University of Li`ege were not associated to either of the two adult Neandertals.

Radiocarbon dating protocols. At the CIO, extraction of the collagen samples followed the procedure developed by Longin (1970), and the samples’ chemical pretreatment used standard procedures (Mook and Streurman, 1983). Samples dated at the ORAU using ultrafiltration were prepared following the protocol described by Higham et al. (2006b).

Neolithic human material among the Spy original collection

Four human remains from the Spy collection are dated to the Neolithic (Table 1, Fig. 1). The first one, Spy 425k, is a fragment of right fibula diaphysis that matches Spy 26A from the original collection, attributed to Spy II by Hrdliˇcka (1930). The second one, Spy 398l, is a right third metacarpal (MTC) that articulates with MTC2 Spy 22B from the 1886 collection. Spy 22B presumably belongs to a set of MTCs that Fraipont and Lohest (1887) attributed to Spy I/II. However, its distal end corresponds to a metaphyseal surface. The two MTCs thus represent an immature individual that cannot be either Spy I or Spy II, and the direct dating of Spy 398l shows that they do not represent an additional Neandertal. We also discovered among the fauna the symmetrical phalanx (Spy 425n) to the proximal hallucal phalanx Spy 25G, attributed to one of the two adult Neandertals by Twiesselmann (1971). The resultant date shows that the two pedal phalanges do not belong to Neandertals. Finally, we dated the Spy 7A left ulna fragment from the original collection, despite the risk of contamination through glue and varnish, because its morphological restudy raised doubts about its Neandertal affinities. The direct dating of Spy 7A shows that it is Neolithic. The mixture of the Neolithic bones with those of the Neandertals is most probably the result of a postexcavation mishandling of the specimens. The position of the Neolithic bones in the site is not precisely known, but the preliminary report of 1885 excavation mentioned the presence of a human bone and ceramic in the upper layer. Some other Neolithic human remains were also discovered by de Loé and Rahir in the beginning of the 20th Century (archives and inventories of the Royal Museum of Art and History).

Direct dating of the Spy adult Neandertals

Two sets of teeth represent the Spy adult Neandertals. Both individuals were directly dated in the present study, since one extra tooth belonging to each of the dental sets has been discovered among the faunal remains from the site (see Fig. 2). These two samples Spy 94a
and Spy 92b (upper left I1) yielded dates that are very close to each other (Table 1), at 36,000 ± 2,110 14C BP. The last dated human specimen is a hand third middle phalanx (Spy 430a), recognized within the Spy faunal collection. In total, ten new Neandertal hand bones have been discovered. Most of them belong to the same individual, which helped in the determination of Spy 430a as a MP 3 of Spy II. Its morphometrical characteristics are fully Neandertal. The length of Neandertal phalanges is within the modern range of variation, but several authors have noted the difference in proportions between the breadth of their distal and proximal extremities and their maximal length (Musgrave, 1973; Heim, 1982; Villemeur, 1994). In absolute value, the distal articular breadth of Neandertal middle phalanges is significantly greater than modern humans, whatever is their rank. This is illustrated on Figure 3, where Spy 430a lies out of the fossil and extant modern human ranges.

Radiocarbon dates on the fauna and archaeological remains from Spy

There have been twelve attempts at dating fauna remains and an archeological bone artifact from Spy. All selected bones and teeth were unconsolidated and unvarnished. Four of the obtained radiocarbon dates were rejected, since their C/N ratios were outside the accepted range of 2.9–3.5. The eight remaining radiocarbon results allow us to give chronological reference points (Table 2) for the three fauna-bearing levels identified by the discoverers (Fraiport and Lohest, 1887).

Two of the dated specimens were excavated in 1886 and their stratigraphical origin was recorded at that time (Table 2). The first one (GrA-37936) comes from the upper fauna-bearing level, and its age is 25,670 ± 130, −120 14C BP. Another sample from a metatarsal fragment of *Rangifer tarandus* with cutmarks and ochre traces but of unknown position gave a similar date...
(26,390 ± 140, −130 14C BP; GrA-37931). This corresponds to the time period of the Gravettian in Belgium (Straus et al., 2000).

The second dated faunal remain for which the stratigraphical position is known is a first phalanx of R. tarandus from the intermediate level. It is dated to 29,040 +180, −160 14C BP (GrA-37934). A flat and triangular spearpoint fragment (most likely split-base point) was recently identified among the fauna from the site. Such spearpoints are recognized as being markers of the Aurignacian (Otte, 1990). The direct date of the piece (32,830 ± 200, −190 14C BP; GrA-32619) corresponds to what we know about the appearance of the Aurignacian in the region (Flas, 2004).

Two fauna remains with ochre (GrA-32612 and GrA-32615) provided similar ages, around 34,500 14C BP. We believe that these samples may belong to the reddish breccia of the intermediate fauna-bearing level situated above the Neandertal remains.

Finally, two deciduous teeth of Mammuthus primigenius (GrA-32616) and Coelodonta antiquitatis (GrA-32613) have been dated >42,000 14C BP. They may belong to the lower fauna-bearing level described by the discoverers (Fraipont and Lohest, 1887).

DISCUSSION

The Neandertal collection

The dating to the Neolithic of four of the human remains from the original Spy collection has reinforced the hypothesis, raised by the morphological study, of the mixed nature of the collection. The Neandertal remains from the original collection provide a MNI of two adults: Spy I and II. New hand bones and teeth identified among the faunal collection add to the corpus of material. The direct dating of Spy I and II (GrA-32623 and GrA-32626; Table 1, Fig. 4) shows that both individuals date to ≈36,000 14C BP. These new dates fit well with the previous result on the human vertebra Spy 737a (Toussaint and Pirson, 2006; Table 1), which may belong to either Spy I or Spy II. It is important to note that these congruent results dating the Spy adult Neandertals to ≈36,000 BP were obtained in two different laboratories on bone (both with and without using ultrafiltration) or on dentine without using ultrafiltration.

The dating of the Spy 430a manual phalanx at the CIO (GrA-32630) yielded a young age outside of the 2σ range of the dates on the samples representing Spy I and II. The determination obtained by ORAU using ultrafiltration (OxA-17916) is ≈1,500 years younger than the age obtained by Groningen. The C/N ratio (3.8) is outside the accepted range of 2.9–3.5; therefore, there are grounds for considering this age to be in error. Finally, the new dates confirm that the age previously obtained for the Spy 572a scapula belonging after Fraipont and Lohest (1887) to Spy I or II is too young when compared with other dates (Toussaint and Pirson, 2006; Table 1). In this case, a contamination could be due to the consolidation of the bone in the 19th century. This is the most parsimonious interpretation, but we cannot exclude that Spy 572a belongs to a third younger adult Neandertal or even to an AMH exhibiting the dorsal sulcus pattern as do some Gravettian specimens (Trinkaus, 2007).

Our interpretation of the dating of the Spy adult Neandertals is not contradicted by the other radiocarbon dates obtained on fauna remains and a bone artifact from different levels of the stratigraphical sequence of the site (Table 2).

Chronology and cultural context

The available chronological data for the end of the Mousterian in the Mosan Basin are rare, as is the case for north-
tern Europe as a whole. No assemblage younger than \(\approx 38-37,000 \) BP has been clearly attested so far (Vršek, 1999; Jacobi et al., 2006; Toussaint and Pirson, 2006), while the first traces of the Aurignacian are dated in the region at \(33,000 \) BP (Flas, 2004; Grünberg, 2006; Jacobi, 2007). In northern Europe, the LRJ transitional complex has been recognized in more than thirty sites from Wales to southern Poland (Fig. 5; Kozlowski and Kozlowski, 1979; Campbell, 1980; Flas, 2006; Jacobi, 2007). No dating or precise stratigraphical information is available in Belgium for this techno-complex. At Ranis (Thuringia, Germany), the LRJ industry is wedged between a late Middle Paleolithic layer and an Aurignacian layer (Hülle, 1977). In the Nietoperzowa Cave sequence (Jerzmanowice, Poland), the dates of the oldest LRJ assemblage (layer 6) are \(\approx 38,000 \) BP (Chmielewski, 1961). In Great Britain, the most reliable \(^{14}\text{C}\) dates for the LRJ are \(\approx 37-36,000 \) BP (Jacobi, 2007). Diagnostic artifacts belonging to this industry have been recognized in the collections from Spy Cave, one of the richest LRJ sites (Flas, 2006).

The dates obtained on the Spy Neandertals are closer to the chronological range of the LRJ (Flas, 2006; Jacobi, 2007) than to the known late Mousterian from northern Europe, even if this latter attribution might not be excluded. Because of the uncertainties surrounding their discovery and context, the hypothesis that the Neandertal remains from Spy may be associated with the LRJ assemblage is unverifiable. However, it has often been proposed that the LRJ industry was made by the last Neandertals of northern Europe on the basis of its cultural roots in the local late Middle Paleolithic (e.g. Otte, 1990). The new radiocarbon dates from the Spy Neandertal remains are in agreement with this hypothesis.

CONCLUSIONS

The debate regarding the population history of western Europe during the transition between the Middle and Upper Paleolithic is often limited to a restricted part of the territory (i.e. France and northern Spain), given the proposed association of Neandertals with the Châtelperronian. The dates obtained for the Spy Neandertals from Belgium provide an age of \(\approx 36,000 \) BP. On the basis of the radiocarbon chronology, they are contemporaneous with the LRJ culture, the only one recognized so far in northwest Europe during this time period and represented at Spy. In this region, only the maxillary fragment Kent’s Cavern 4 (southwest England) may be of a comparable age (Jacobi et al., 2006). The maxilla was referred to as an AMH (Keith, 1927), but its fragmentary state and the heavy wear of its teeth leaves doubts regarding its taxonomic attribution. Artifacts attributable to the LRJ were discovered at Kent’s Cavern, but they come from a different area of the cave (Jacobi, 2007).

Taken together, the new dating results suggest that the two Spy individuals are the youngest Neandertals identified thus far in northwest Europe. They are contemporary with a transitional culture (the LRJ) present in the collections from Spy Cave, whereas the contemporaneity of two biologically distinct populations has not yet been documented in this territory (Flas, 2004; Jacobi, 2007). Moreover, the origin of the LRJ has most often been interpreted as a local evolution not linked to an acculturation process (Otte, 1990; Flas, 2006). This suggests that the biological and cultural changes that took place during the transition between the Middle and Upper Paleolithic were more complex than that previously thought. In this case, whether the LRJ is the result of an acculturation process will raise new questions. However, if such a process could be proposed for a small territory like southwest France in the 1980s, it would be more difficult to consider it for an area as large as the northern European plains, especially since no contemporaneous early Aurignacian occupation has been discovered on the LRJ distribution area (Flas, 2006). Moreover, the hypothesis of a large biological and cultural Aurignacian wave sweeping away the European Mousterian populations has been widely abandoned (Dysseny, 2006). Different scenarios for the disappearance of the Neandertals have then to be tested and the model proposed and already debated since the end of the 1990s (D’Errico et al., 1998) for southwest France cannot be simply generalized and used for northwest Europe.

ACKNOWLEDGMENTS

We are grateful to the institutions that funded the TNT (The Neandertal Tools, IST 6th framework), the Spy Action 1 (Research project MO/36/012, Belgian Science Policy) and MARS (IST project 12/2F/212, Belgian Science Policy) projects that gave the opportunity to perform a multidisciplinary research on the Spy Cave collections to appreciate and highlight their potential and importance. BM thanks the “Transitions d'une société à l'autre: processus d’adaptation et de peuplements” program (Région Aquitaine, convention 2005/146/0002AB). We are very grateful to E. Trinkaus, the AJPA editor and two anonymous reviewers who provided helpful comments.

LITERATURE CITED

