AAV8-mediated gene transfer of microRNA-132 improves beta cell function in mice fed a high-fat diet
Mulder, Niels L.; Havinga, Rick; Kluiver, Joost; Groen, Albert K.; Kruit, Janine K.

Published in:
Journal of endocrinology

DOI:
10.1530/JOE-18-0287

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Final author's version (accepted by publisher, after peer review)

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 26-01-2020
AAV8-mediated gene transfer of microRNA-132 improves beta-cell function in mice fed a high fat diet

Niels L. Mulder¹, Rick Havinga¹, Joost Kluiver², Albert K. Groen¹³, Janine K. Kruit¹

¹Departments of Pediatrics and ³Laboratory Medicine, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
²Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands

Corresponding author: Janine K. Kruit, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands, Tel.: +31 50 3614865, Email: j.k.kruit@umcg.nl

Short title: MiR-132 gene transfer in beta-cells

Keywords: Insulin secretion, microRNAs, miR-132, gene therapy

Word count: 3,013
2. Abstract

MicroRNAs have emerged as essential regulators of beta-cell function and beta-cell proliferation. One of these microRNAs, miR-132, is highly induced in several obesity models and increased expression of miR-132 *in vitro* modulates glucose-stimulated insulin secretion. The aim of this study was to investigate the therapeutic benefits of miR-132 overexpression on beta-cell function *in vivo*. To overexpress miR-132 specifically in beta-cells, we employed adeno-associated virus (AAV8) mediated gene transfer using the rat insulin promoter in a double-stranded, self-complementary AAV vector to overexpress miR-132. Treatment of mice with dsAAV8-RIP-mir132 increased miR-132 expression in beta-cells without impacting expression of miR-212 or miR-375. Surprisingly, overexpression of miR-132 did not impact glucose homeostasis in chow fed animals. Overexpression of miR-132 did improve insulin secretion and hence glucose homeostasis in high-fat diet fed mice. Furthermore, miR-132 overexpression increased beta-cell proliferation in mice fed a high-fat diet. In conclusion, our data show that AAV8-mediated gene transfer of miR-132 to beta-cells improves beta-cell function in mice in response to a high fat diet. This suggests that increased miR-132 expression is beneficial for beta-cell function during hyperglycemia and obesity.
3. Introduction

Decreased beta-cell function plays a pivotal role in the development of type 2 diabetes mellitus. Impaired beta-cell function is an early step in the course of type 2 diabetes mellitus, and the onset of beta-cell dysfunction seemingly occurs long before the development of hyperglycemia (Perley & Kipnis 1967; Kahn et al. 2001). MicroRNAs (miRNAs) are a recently discovered class of evolutionarily conserved short noncoding RNAs that regulate gene expression at a posttranscriptional level. MiRNAs bind with imperfect complementary to 3'-UTRs of target mRNAs, causing translational repression of the target gene or degradation of the target mRNA (Bartel 2004). MiRNAs are involved in a wide range of processes that includes development, apoptosis, proliferation, differentiation and regulation of metabolism. In beta-cells, miRNAs have emerged as essential regulators of beta-function, beta-cell proliferation and beta-cell survival (Poy et al. 2009; Latreille et al. 2014; Tattikota et al. 2014; Belgardt et al. 2015).

Obesity, a major risk factor for type 2 diabetes mellitus, is known to change miRNA expression in islets (Zhao et al. 2009; Nesca et al. 2013). One of these miRNAs, miR-132, is of particular interest as expression of this miRNA is highly induced in islets of several obesity models (Zhao et al. 2009; Esguerra et al. 2011; Nesca et al. 2013). This obesity-related increased expression is severely reduced in diabetic-susceptible BTBR ob/ob mice (Zhao et al. 2009). Overexpression of miR-132 in rodent beta cells in vitro results in enhanced glucose-induced insulin secretion (Nesca et al. 2013; Soni et al. 2014). This study aims to investigate the therapeutic benefits of miR-132 overexpression on beta-cell function in vivo. In order to overexpress miR-132 specifically in beta-cells, we created an adeno-associated virus (AAV) vector containing miR-132 under control of the insulin promoter. AAV gene transfer has previously shown to efficiently and stably transduce beta-cells in vivo without impacting beta-cell function (Wang et al. 2006; Montane et al. 2011). Subsequently, the impact of miR-132 overexpression on beta-cell function was studied in mice under normal and insulin resistant conditions.
4. Material and Methods

Generation of viral vectors The dsAAV8-RIP-GFP vector was constructed on the backbone of the dsAAV8 plasmid (Nathwani et al. 2006). The original LP1 promoter and FIX coding sequences were replaced by the rat insulin promoter (RIP) (Addgene Plasmid 15029) and enhanced green fluorescent protein (eGFP), by amplification using primers in table 1 and using MscI-BstXI and EcoRI-HindIII restriction sites. The gene encoding miR-9132 was amplified from chromosomal DNA from C57Bl/6J mice, using primers listed in table 1 and cloned between the RIP and eGFP in dsAAV8-RIP-GFP, using the restriction enzymes BspEI and SbfI (New England Biolabs, Ipswich, MA, USA).

AAV creation dsAAV viral particles were generated by triple transfection of human embryonic kidney 293 cells using the 25-kDa linear polyethylenimine (Polysciences Inc., Eppelheim, Germany) transfection method (Reed et al. 2006). AAV viral particles were purified by iodixanol gradient centrifugation as previously described (Zolotukhin et al. 1999). Viral titers were determined using quantitative PCR (qPCR) with primers specific for RIP and eGFP.

Mice and in vivo virus injection Male C57Bl/6J wildtype, ob/ob and ob/+ mice (9-10 weeks) were obtained from the Harlan Laboratories. C57Bl/6J mice were injected with AAV at the age of 12 weeks. Intraductal injection was performed as described (Jimenez et al. 2011) with minor adjustments. Mice were anaesthetized with isoflurane. The duodenum was isolated with the common bile duct attached. A microclamp was placed on the bile duct caudal to the liver. Using a 27G needle, the duodenum was punctured after which the needle was inserted to advance retrograde through the sphincter of Oddi into the common bile duct. The needle was secured in place using a ligation and 100 µl PBS containing 1.4x10^{11} viral genome particles was injected into the duct over approximately 1 min. At 1 min post-injection the
microclamps and needle were removed. The puncture in the duodenum was closed using tissue glue. Mice received buprenorphine (0.05 mg/kg s.c.) directly and 8 hours after surgery. Mice were allowed to recover for 2 weeks on chow diet (RMH-B, Hope Farms, Woerden, the Netherlands), after which mice received chow or high fat diet (60% kcal% fat diet, #D12492, Research Diets Inc., New Brunswick, USA) for 4 weeks. All experiments were performed with the approval of the Ethical Committee for Animal Experiments of the University of Groningen.

Primary mouse islet isolation, cell culture and in vitro insulin secretion assay. Islets were isolated by collagenase digestion as previously described (Salvalaggio et al. 2002). Islets were rinsed and handpicked in RPMI media containing 10% FBS after which islets were frozen immediately for RNA isolation or cultured overnight. The following day, static insulin secretion assay was performed on size matched islets as previously described (Brunham et al. 2007). Insulin was measured by ELISA (Mouse-Insulin Ultra Sensitive ELISA or the Rat Insulin ELISA, AlpcO, Salem, NH, USA). Rat insulin-producing INS-1E cells (provided by Dr. P. Maechler, Centre Médical Universitaire, Geneva, Switzerland) were cultured as previously described (Merglen et al. 2004). INS-1E cells of passage numbers 50-60 were used in our experiments. For transfection, INS-1E cells were transfected using lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) with miRNA mimics (Ambion, Life Technologies, Eugene, OR, USA). At 2 days after transfection, glucose stimulated insulin secretion was measured. To determine whether hyperglycemia would impact miR-132 expression levels, primary mouse islets were cultured for 24 hours in RPMI containing 2 mM, 8 mM or 16 mM glucose with 1% BSA with or without 0.4 mM palmitate (Sigma-Aldrich, St. Louis, MO, USA).

Glucose tolerance test and BrdU labeling Oral glucose tolerance tests were performed on 8-hour fasted mice administered with 2 g glucose per kg of body weight. Blood was taken by the saphenous vain and blood glucose levels were measured using a glucometer and test strips (Life Scan). For plasma insulin levels, blood was collected using EDTA-coated capillary
tubes and insulin levels were measured by ELISA (Mouse-Insulin Ultra Sensitive ELISA, Alpco, Salem, NH, USA). For beta-cell proliferation measurements, mice were daily injected i.p. with 1 mg/animal BrdU (Sigma-Aldrich) in PBS for 4 days before sacrifice.

Immunostaining and islet morphology analysis Formalin-fixed pancreatic tissues were embedded in paraffin using standard techniques. 4-µm sections were deparaffinized, rehydrated, and incubated with blocking solution. Sections were incubated overnight at 4 °C with antibodies against insulin and glucagon (Dako, Glostrup, Denmark), GFP (Life Technologies, Eugene, OR, USA), and/or BrdU (Abcam, Cambridge, UK), followed by secondary antibodies conjugated to FITC or Cy3 (Life Technologies). DAPI-containing mounting media (Vector Laboratories, Burlingame, CA, USA) was added to coverslips. Proliferating beta cells were identified by co-staining for BrdU and insulin. All islets in 2 pancreatic sections of 200 µm apart were analyzed, resulting in the counting of at least 573 beta-cells/mouse with n = 4 mice per group. For beta cell area measurements, the percentage of insulin-positive area was determined using ImageScope (Aperio) from 5-6 evenly spaced sections per pancreas.

Measurement of miRNA and mRNA expression Total RNA from isolated islets was isolated using the mirVana kit (Life Technologies) according to instructions. RNA quality and concentration was measured using the Bio-rad Experion Bioanalyzer and miRNA microarrays were run with miRNA microarrays (MirBase release 17.0) of Agilent (Santa Clara, CA, USA). Array images were analyzed using Agilent feature extraction software (10.7.3.1) and GeneSpring GX (Agilent). After quantile normalization, statistical significance was tested with an unpaired t test followed by Benjamini-Hochberg multiple testing correction [false discovery rate: 0.01 and a fold change of at least 2]. cDNA for miRNA expression measurements was synthesized using Taqman miRNA reverse transcription kit (Life Technologies). For mature miRNA transcript expression, we used Taqman miRNA Assays.
cDNA for mRNA expression measurement was synthesized using Superscript II (Life Technologies). SYBR Green PCR Master Mix (Life Technologies) was used for RT-PCR in an ABI Prism 7700 Sequence Detection System. Expression values were normalized to GAPDH for mRNA and small nucleolar (sno) RNA202 for miRNA qRT-PCR.

Protein analysis Isolated islets were lysed in M-PER lysis buffer (Thermo Fisher Scientific, USA). Proteins were separated by SDS-PAGE and transferred to a nitrocellulose membrane. The membrane was blocked using TBST with 2% milk and 0.5% BSA for 1hr at room temperature followed by incubation with the primary antibodies in TBST with 0.5% BSA for 2 hours. Primary antibodies used were anti-retinoblastoma (Santa Cruz Biotechnology), anti-Cact (Novus Biologicals), anti-actin (Sigma Aldrich) and anti-Gapdh (Milipore). After probing with the primary antibodies, the membrane was incubated with HRP-conjugated secondary antibodies (rabbit-anti-mouse HRP conjugated, or goat-anti-rabbit HRP conjugated, Dako, Denmark). Chemilunimescence was determined using SuperSignal West Dura Extended Duration Substrate buffer (Thermo Fisher Scientific) and Chemidoc (Biorad, USA).

Statistical Analysis Graphpad Prism 6.0 was used for statistical analysis. Data are presented as Tukey’s Box-and-Whiskers plot using median and 25th and 75th percentile intervals (P_{25}-P_{75}). Differences between groups were calculated by Mann-Whitney test with a P value of 0.05 considered significant. A two-way ANOVA, followed by Bonferroni posthoc tests, was used to evaluate the glucose tolerance tests.
5. Results

Leptin deficiency resulted in profound differences in miRNA profiles of ob/ob islets, with 36 miRNAs increased and 36 miRNAs decreased by >2 fold compared to control islets (n=6, FDR<1%). MiR-132 was one of the most induced miRNAs in ob/ob islets with a fold change of 6.2 (Fig 1A). Using RT-PCR, we showed increased expression of miR-132 in islets of ob/ob mice, high fat fed mice and 14-month aged mice (Fig 1B). As all the diabetic/insulin resistant models tested had elevated fasting blood glucose levels, we determined whether hyperglycemia itself regulated expression of miR-132. Indeed, miR-132 expression levels were upregulated by culturing primary mouse islets in 16 mM glucose for 24 hours. This increase was augmented by the addition of 2 mM palmitate (Fig 1C). In agreement with previous data (Nesca et al. 2013; Soni et al. 2014), overexpression of miR-132 in INS1E cells resulted in increased glucose-stimulated insulin secretion (Fig 1D). Together these results confirm previous data showing a role for miR-132 in glucose-regulated insulin secretion in beta cells in vitro.

Increased miR-132 expression result in improved insulin secretion during high fat feeding

To determine whether increased expression of miR-132 would increase insulin secretion in vivo, we created double stranded adeno-associated virus serotype 8 (dsAAV8) vectors containing mouse miR-132 and GFP cDNA or GFP cDNA driven by the rat insulin promoter (AAV8-RIP-mir132 and AAV8-RIP-GFP). Injection of the constructs in the pancreatic duct resulted in GFP expression specifically in β-cells in the islet (Fig 2A). Based on the GFP, the proportion of islets with GFP positive cells was relatively high; 77±15 % for control and 88±5% for AAV-RIP-miR132 treated mice. Increased expression of miR-132 was detected in isolated islets of AAV-RIP-miR132 injected animals, confirming miR-132 overexpression in β-cells in vivo (Fig 2B). Histological examination of the pancreata of the mice showed no evidence of pancreatitis or fibrosis. Islets of both groups displayed normal morphology with
the β-cells in the core and the α-cells at the rim of the islet (Fig 2E).

Therapeutic overexpression of miRNAs could potentially modify the processing of other cellular miRNAs transcripts due to the same processing pathways (Grimm et al. 2006). Therefore, we tested the expression of miR-375, a microRNA highly expressed in beta cells and involved in regulation of insulin secretion (Poy et al. 2004) and miR-184, a modulator of compensatory beta cell expansion during insulin resistance (Tattikota et al. 2014). To exclude a possible negative feedback loop due to miR-132 overexpression on the miR-132/miR-212 cluster, miR-212 levels were determined in the islets of control and miR-132 treated mice. Overexpression of miR-132 did not impact expression of miR-212, miR-375 or miR-184 (Fig 2C), indicating that overexpression of miR-132 did not interfere with the processing of other microRNAs.

After initial weight loss in the first week after the injection, all mice gained weight 1 month after the injection (Fig 3A) after which glucose homeostasis was analyzed. Surprisingly, overexpression of miR-132 did not impact fasted glucose or insulin plasma levels. In addition, glucose tolerance testing showed no difference in glucose control between the animals (Fig 3B,C). To increase the demand on beta cells, mice were put on a high fat diet for 4 weeks. In the control AAV-RIP-GFP treated mice, high fat diet increased fasted glucose levels and impaired glucose tolerance (Fig 3D). Overexpression of miR-132 specifically in beta cells, however, resulted in improved glucose tolerance compared to control mice. This was due to increased glucose-stimulated insulin secretion as measured during the glucose tolerance test (Fig 3E) and ex vivo in isolated islets (Fig 3F). Insulin content of isolated islets was similar in control and AAV-RIP-miR132 treated mice (0.37±0.04 µg/islet in control islets vs. 0.33±0.04 µg/islet in miR-132 islets; n=6). In addition, gene expressions of genes related to insulin secretion or beta-cell function, such as insulin, glucose transporter 2 (Glut2), prohormone convertase 2 (Psck2), MAF bZIP transcription factor A (Mafa) or pancreatic and duodenal homeobox 1 (Pdx1) were similar between groups (Fig 3G). Gene expression and protein levels of the miR-132 target carnitine acyl-carnitine translocase (Cact) (Soni et al. 2014) was
decreased in islets of AAV-RIP-miR132 injected animals (Fig 3H).

Increased beta cell proliferation in mice overexpressing mir-132

Overexpression of miR-132 in dispersed rat islet cells has been shown to increase beta-cell proliferation *in vitro* (Nesca *et al.* 2013). In order to determine whether overexpression of miR-132 *in vivo* also lead to increased beta cell proliferation, beta cell proliferation was studied in the AAV-RIP-miR132 and control mice after 2 weeks of high fat diet feeding using BrdU incorporation. Overexpression of miR-132 lead to 2.49-fold increase in BrdU+ beta cell (Fig 4A,B). In agreement with this, we found increased expression levels of the proliferation marker *Ki67* in isolated islets from AAV-RIP-miR132 mice fed a high fat diet for 4 weeks (Fig 4C). Although, gene expression levels of the previously identified miR-132 target *retinoblastoma protein (Rb)* (Park *et al.* 2011) were similar in both groups (1.0±0.5 relative expression in control islets vs. 1.2±0.3 relative expression in miR-132 islets; p=0.48), protein analysis revealed decreased Rb protein levels in islets of miR-132 treated mice (Fig 4D). To determine whether the increased proliferation resulted in increased beta cell mass, beta cell area was analysed. However, the beta cell area did not significantly differ between the groups (0.84±0.29% beta cell area in control islets vs. 1.18±0.38% beta cell area in miR-132 islets; n=4; p=0.2).
6. Discussion

Our data show that AAV8-mediated gene transfer of miR-132 to beta cells improves beta cell function in mice in response to a high fat diet. We found significant increased glucose-stimulated insulin secretion and enhanced beta cell proliferation in mice treated with the dsAAV8-RIP-miR132 construct. These data indicate that miR-132 is a potential target to improve beta cell dysfunction during obesity.

Although, overexpression of miR-132 improves insulin secretion in vitro, mice glucose homeostasis remained unaltered in chow-fed mice overexpressing miR-132 indicating that the risk on hypoglycaemia is low. Mice treated with dsAAV-RIP-miR132, however, did show improved insulin secretion during high fat diet feeding. Recent findings identified Cact as miR-132 target in beta cells (Soni et al. 2014). Cact is a transporter involved in transporting long-chain acyl-carnitines into the mitochondria for β-oxidation (Wang et al. 2011). Downregulation of Cact results in an accumulation of fatty acyl-carnitines, which enhances insulin secretion. Addition of long-chain acyl-carnitines to beta cells stimulated insulin secretion; an effect that was enhanced by Cact downregulation (Soni et al. 2014). This could explain our finding that only during increased fatty acid influx, as achieved by the high fat diet, insulin secretion was increased in the miR-132 overexpressing beta cells.

In this study we chose to apply beta cell specific gene therapy to evade possible side effects of miR-132 overexpression in non-beta cells. MiR-132 has previously found to be involved in facilitating pathological angiogenesis in tumors (Anand et al. 2010) and is over-expressed in pancreatic adenocarcinomas (Park et al. 2011). In the pancreatic cancer cell line PAN-1, overexpression of miR-132 leads to decreased expression of the tumor suppressor Rb, leading to increased proliferation (Park et al. 2011). No difference in expression of Rb mRNA in islets of dsAAV8-RIP-miR132 treated mice was found, which could be due to the relative high gene expression of Rb in alpha cells compared to beta cells (Kutlu et al. 2009). Protein levels of Rb, however, were decreased in islets overexpressing MiR-132. Interestingly, exendin-4, a GLP-1 agonist known to induce beta cell proliferation in mice, has been shown
to decrease Rb expression. Further study revealed that this decreased Rb expression is necessary for the beta cell proliferation stimulating effect of excendin-4 (Cai et al. 2014).

GLP-1 agonists increase miR-132 expression in beta cells (Shang et al. 2015), suggesting that miR-132 plays a central role in the adaptive beta cell response to obesity and GLP-1. Although we found increased BrdU incorporation and increased Ki67 expression in islets of dsAAV8-RIP-miR132 treated mice after high fat feeding indicating increased beta cell proliferation, beta cell area was not significantly different between the groups. The high variation in beta-cell area within the groups, the small group size and the relatively short period of high fat diet could potentially explain this discrepancy.

Unfortunately, it was not possible to identify miR-132 targets in our setting due to the difficulty to isolate pure beta cells together with the fact that miRNAs often induce only small changes in the expression of single direct targets (Guo et al. 2010). However, our study does show that the physiological impact of miRNAs in beta cells can be successfully studied in vivo using the AAV8-mediated gene transfer system. This system could potentially help to identify the physiological roles of the over 800 miRNAs which recent ultra-high-throughput sequencing have revealed to be expressed in the endocrine pancreas (Kameswaran et al. 2014).

During the last years, the importance of microRNAs in the control of beta cell function, proliferation and identity has become clear. Several microRNAs, such as, miR-375 and miR-184 have been identified as crucial regulators of adaptive beta cell expansion, whereas miR-7a regulates insulin secretion. Our study shows the beneficial effects of miR-132 overexpression in the setting of obesity and identifies miR-132 or its downstream targets as therapeutic targets to improve beta cell function.
7. Declaration of interests: The authors have no conflicts of interest to declare.

8. Grant support: This research was funded by the Dutch Diabetes Research Foundation (Grant number: 2009.80.114) and the EU FP7 (Marie Curie, International reintegration grant, MiRT2DM).

9. Author contributions: NLM, JK and JKK designed the experiments. NLM, RH and JKK performed the experiments and analysed the data. JKK wrote the manuscript. All authors revised the article and approved the final version.

10. Acknowledgements: We thank Angelika Jurdinzki for assistance with histology.
11. References

Salvalaggio PRO, Deng S, Ariyan CE, Millet I, Zawalich WS, Basadonna GP & Rothstein DM 2002 Islet filtration: a simple and rapid new purification procedure that avoids ficoll and improves islet mass and function. Transplantation 74 877–879. (doi:10.1097/01.TP.0000028781.41729.5B)

Figure legends

Figure 1. Hyperglycemia and obesity induced miR-132 expression resulting in increased insulin secretion. A. Several miRNAs were differently expressed in pancreatic islets of 12 week old ob/ob mice (n=6). B. Increased miR-132 expression in islets isolated from ob/ob (n=4), 10 week high diet-fed C57Bl6 mice (n=4) or 14 month old C57Bl6 mice (n=7-8). C. Culture of primary islet for 24 hours in high glucose media or media containing 2 mM palmitate induced miR-132 expression (n=4). D. Overexpression of miR-132 in INS1E cells resulted in increased glucose-stimulated insulin secretion (n=4).

Figure 2. AAV8 mediated gene transfer resulted in miR-132 overexpression in beta cells. A. Representative image of immunofluorescent staining against GFP (green) and insulin (red) in control AAV-RIP-GFP or AAV8-RIP-miR132 treated mice. B. Increased expression of miR-132 in islets isolated from AAV8-RIP-miR132 treated mice compared to islets isolated from control mice (n=4-6). C. Expression of miR-375, miR-184 and miR-212 in islets was comparable between AAV8-RIP-miR132 treated and control mice (n=4-6). D. Representative image of islet morphology based immunofluorescent staining against insulin (green) and glucagon (red).

Figure 3. Impact of miR-132 overexpression in beta cells on glucose homeostasis. A. Body weights of AAV8-RIP-GFP control and AAV8-RIP-miR132 treated mice (n=6) during chow and high fat diet (HFD) feeding. B. AAV8-RIP-miR132 treated mice showed similar glucose levels during fasting or after oral glucose bolus as control mice fed a chow diet (n=6). C. Insulin levels at 0 and 15 minutes after oral glucose bolus were similar between the 2 groups (n=6). D. Oral glucose tolerance testing showed improved glucose tolerance in AAV8-RIP-miR-132 treated mice after 4 weeks of high fat diet (n=6). E. Analysis of insulin levels at 0 and 15 minutes after oral glucose bolus showed increased insulin secretion in mice overexpressing miR-132 after the glucose bolus (n=6). F. Ex vivo analysis of glucose-
stimulated insulin secretion showed increased insulin secretion at 16.7 mM glucose in miR-132 overexpressing islets (n=6). G. Isolated islets of AAV8-RIP-miR132 treated mice showed normal gene expression of beta-cell related genes (n=4-6). H. Increased expression of miR-132 coincided with reduced expression of CACT mRNA and protein levels (n=4-6).

Figure 4. **Signs of increased proliferation in beta cells of AAV8-RIP-miR132 treated mice.** A. Pancreatic sections of control or AAV8-RIP-miR-132 treated mice stained using immunofluorescence for insulin (green) and BrdU (red). B. Percentage of BrdU positive beta cells in pancreata of control and AAV8-RIP-miR-132 mice (n=4). C. Isolated islets of AAV8-RIP-miR132 treated mice showed increased Ki67 gene expression (n=4-6). D. Decreased Rb protein levels in isolated islets of AAV8-RIP-miR132 treated mice, of which the quantification is shown in E (n=6).
Figure 1
Figure 2

Panel A: Immunofluorescence images showing GFP, Insulin, and GFP/Insulin in control and MiR-132 conditions.

Panel B: Bar graph showing relative miR-132 expression in control and MiR-132 conditions.

Panel C: Box plot showing relative expression of miR-375, miR-184, and miR-212 in control and MiR-132 conditions.

Panel E: Immunofluorescence images showing Insulin, Glucagon, and Insulin/Glucagon in control and MiR-132 conditions.
Figure 3

A) Body Weight (g) over weeks.

B) Glucose (mM) over Time (min) for Chow diet and High fat diet.

C) Insulin (ng/mL) at t=0 min and t=15 min for Control and MiR-132.

D) Glucose (mM) over Time (min) for High fat diet, showing significant differences.

E) Insulin (ng/mL) at t=0 min and t=15 min for Control and MiR-132.

F) Glucose (1.7 mM, 16.7 mM) and insulin (% of total insulin) for Control and MiR-132.

G) Relative mRNA expression for Ins1, Ins2, Glut2, Psck2, Mafa, Pdx1 for Control and MiR-132.

H) Relative Cact mRNA expression for Control and MiR-132, with corresponding Western blots.
13. Tables

Table 1: Primer sequences

<table>
<thead>
<tr>
<th>Primer Name</th>
<th>Sequence</th>
<th>Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>scAAV-GFP-fw</td>
<td>tactaengaattcaccatggagcaagggcgag</td>
<td>GFP</td>
</tr>
<tr>
<td>scAAV-GFP-rv</td>
<td>tactacaagctttcacttgacagctcgtcca</td>
<td>GFP</td>
</tr>
<tr>
<td>scAAV-RIP-fw</td>
<td>gtggagtcgtgtacccgggccc</td>
<td>RIP</td>
</tr>
<tr>
<td>scAAV-RIP-rv</td>
<td>gtggagtcgtgtacccgggccc</td>
<td>RIP</td>
</tr>
<tr>
<td>Mmu-mir132-fw</td>
<td>gcgaaacctgcaggtcctgcgccgctgtccgcg</td>
<td>Mmu-mir132</td>
</tr>
<tr>
<td>Mmu-mir132-rv</td>
<td>gcgaaatccggatgcctccacaccccgagacat</td>
<td>Mmu-mir132</td>
</tr>
</tbody>
</table>